П. М. Панасюк, С. Ф. Мельникова, И. В. Целинский

ИСПОЛЬЗОВАНИЕ СПЕКТРОСКОПИИ ЯМР ¹³С ДЛЯ УСТАНОВЛЕНИЯ СТРОЕНИЯ 6(7)-R-ХИНОКСАЛИН-N,N'-ДИОКСИДОВ

Проанализировано влияние заместителей в положении 6 на положение сигналов атомов углерода в спектрах ЯМР ¹³С замещенных 1,2,3,4-тетрагидро-5,10-феназин-N,N'-диоксидов, найдены инкременты заместителей, предложена схема расчета химических сдвигов атомов углерода в спектрах ЯМР ¹³С 6(7)-R-хиноксалин-N,N'-диоксидов.

Ключевые слова: 1,2,3,4-тетрагидро-5,10-феназин-N,N'-диоксиды, 6(7)-R-хиноксалин-N,N'-диоксиды.

Производные хиноксалин-N,N'-диоксида обладают значительной химиотерапевтической активностью при острых бактериальных инфекциях, в том числе при инфекциях, трудно поддающихся терапии другими антимикробными средствами [1, 2]. Оригинальными представителями этой новой химиотерапевтической группы являются хиноксидин и диоксидин – антибактериальные средства широкого спектра действия [3]. Интерес к этому классу соединений объясняется тем, что соединения, содержащие 1,4-ди-N-оксидный фрагмент, являются цитотоксинами, селективными по отношению к раковым клеткам [4–7].

Одним из путей синтеза хиноксалин-N,N'-диоксидов является реакция бензофуроксанов с нуклеофильными реагентами (бейрутская реакция), однако в результате реакции нередко образуется смесь изомеров, разделить которые и определить их соотношение часто не представляется возможным.

Для определения строения изомерных продуктов бейрутской реакции предлагаем использовать спектры ЯМР ¹³С. Информация о спектрах ЯМР ¹³С этого класса гетероциклических соединений весьма незначительна, однако знание их особенностей может заметно облегчить отнесение сигналов атомов углерода в новых представителях этого класса.

Для определения влияния заместителя в положении 6 бензольного кольца хиноксалин-N,N'-диоксидов на химические сдвиги сигналов атомов углерода (инкрементов заместителей) использовали спектры замещенных 1,2,3,4-тетрагидро-5,10-феназин-N,N'-диоксидов **1а–h**, полученных взаимодействием замещенных бензофуроксанов с морфолиноциклогексеном [8]. Строение их подтверждено данными элементного анализа, ЯМР ¹H, ¹³C и масс-спектроскопии.

Отнесение сигналов атомов углерода в спектрах ЯМР ¹³С сделано на основании анализа спектров, снятых без подавления спин-спинового взаимодействия (ССВ) с протонами, и экспериментов по селективному подавлению гетероядерного ССВ. Кроме того, отнесению сигналов соединений **1e** и **1f** способствовало наличие ССВ между ядрами фтора заместителя и ядрами углерода 5,6,7,8,10 (**1e**) и 5,6,7 (**1f**).

 $\mathbf{a} \mathbf{R} = \mathbf{OMe}, \mathbf{b} \mathbf{R} = \mathbf{Me}, \mathbf{c} \mathbf{R} = \mathbf{Br}, \mathbf{d} \mathbf{R} = \mathbf{Cl}, \mathbf{e} \mathbf{R} = \mathbf{F}, \mathbf{f} \mathbf{R} = \mathbf{CF}_3, \mathbf{g} \mathbf{R} = \mathbf{COOMe}, \mathbf{h} \mathbf{R} = \mathbf{H}$

Для иллюстрации предлагаемого метода рассмотрим спектр 6-бромхиноксалин-N,N'-диоксида (1c). Сигналы атомов $C_{(5)}$, $C_{(7)}$ и $C_{(8)}$ (табл. 1) легко определяются по их относительно высокой интенсивности (эффект Оверхаузера) и их отнесение очевидно из спектра, снятого с селективным подавлением протона в положении 5 (δ 8.635 м. д., д. ² $J_{\rm H(5)-H(7)}$ = 2.07 Гц). Так же легко могут быть отнесены и сигналы атомов С(2) и С(3) - они имеют одинаковую форму в спектре, снятом без подавления ССВ с ядрами ¹Н, и не изменяются при подавлении протона в положении 5. Их взаимное расположение зависит от электронного эффекта заместителя в положении 6: при наличии электронодонорного заместителя сигнал атома С(2) находится в более сильном поле, а при наличии электроноакцепторного заместителя – в более слабом [9]. Отнесение остальных сигналов сделано на основании анализа спектра, снятого с подавлением протона в положении 5 (рисунок), в котором сигнал атома углерода в ипсо-положении представляет собой дублет дублетов (взаимодействие с протонами в положениях 7 и 8 с константами 7 и 4 Гц соответственно), сигналы атомов С₍₉₎ и С₍₁₀₎ представляют собой дублеты (взаимодействие с протоном в положениях 5 и 7 соответственно). При этом линии сигнала атома $C_{(9)}$ уширены из-за ССВ с протоном положения 8 ($J \approx 2$ Гц). Химические сдвиги атомов углерода 6-замещенных 1,2,3,4-тетрагидро-5,10-феназин-N,N'-диоксидов **1а-h** приведены в табл. 1.

Влияние нитрогруппы в бензольном кольце хиноксалин-N,N'-диоксидов на химические сдвиги ядер углерода определяли на основании спектров 2-ацетил-3-метилхиноксалин-N,N'-диоксида (**2a**) [10] и описанного нами ранее 2-ацетил-3-метил-6-нитрохиноксалин-N,N'-диоксида (**2b**) [11].

Соеди- нение	Химические сдвиги, б, м. д.								
	C(2)	C ₍₃₎	C(5)	C ₍₆₎	C ₍₇₎	C ₍₈₎	C ₍₉₎	C(10)	
1a	140.10	142.66	98.16	161.80	122.96	121.15	131.85	137.74	
1b	141.46	142.28	118.66	142.14	132.76	119.48	134.96	136.41	
1c	142.49	143.15	122.24	125.48	134.13	121.22	135.27	136.74	
1d	142.43	143.23	119.04	137.54	131.51	121.27	134.96	136.64	
1e	141.66	143.13	104.40	162.62	120.18	122.56	133.15	136.75	
1f	143.58	144.13	118.27	132.76	126.67	121.38	137.73	136.14	
1g	144.00	143.11	118.34	132.30	125.89	120.33	138.28	136.32	
1h	142.33	142.33	119.76	130.85	130.85	119.76	136.60	136.60	

Спектры ЯМР ¹³С соединений 1а-h

Таблица 2

Таблица 1

Инкременты заместителей (Дб ля) для расчета спектров ЯМР ¹³С 6-R-хиноксалин-N,N'-диоксидов

R									
	C(2)	C ₍₃₎	C(5)	C ₍₆₎	C ₍₇₎	C ₍₈₎	C ₍₉₎	C(10)	
OMe	-2.23	0.33	-21.60	30.95	-7.89	1.39	-4.75	1.14	
Me	-0.87	-0.05	-1.10	11.29	1.91	-0.28	-1.64	-0.19	
Br	0.16	0.82	2.48	-5.37	3.28	1.46	-1.33	0.14	
Cl	0.10	0.90	-0.72	6.69	0.66	1.51	-1.64	0.04	
F	-0.67	0.80	-15.36	31.77	-10.67	2.80	-3.45	0.15	
CF_3	1.25	1.80	-1.49	1.91	-4.18	1.62	1.13	-0.46	
COOMe	1.67	0.78	119.76	1.45	-130.85	0.57	1.68	-0.28	

1078

Фрагменты спектров ЯМР¹³С соединения **1с**, снятые без подавления ССВ с ядрами ¹H (A) и с селективным подавлением протона в положении 5 (Б)

Правильность определения положения заместителей в соединении **2b** подтверждается наличием ССВ между протонами метильной группы в положении 3 и атомами $C_{(5)}$ и $C_{(10)}$, что доказано с помощью импульсной последовательности СОLОС и спектра, снятого с селективным подавлением протонов метильной группы в положении 3. Значения инкрементов заместителей (табл. 2) рассчитывали по уравнению

$$\Delta \delta_{nR} = \delta_{nR} - \delta_{nH}$$

где $\Delta \delta_{nR}$ – инкремент заместителя R для положения *n*; δ_{nR} – химический сдвиг атома C_(n) 6-R-хиноксалин-N,N'-диоксида; δ_{nH} – химический сдвиг атома C_(n) 6-H-хиноксалин-N,N'-диоксида.

Применимость предложенной схемы подтверждена на примере расчета спектров хиноксалин-N,N'-диоксидов **3а**–**f**. Как видно из табл. 3, в целом наблюдается довольно хорошая сходимость экспериментальных и расчетных данных.

a
$$R^1 = OMe$$
, $R^2 = Me$, $R^3 = COMe$; **b** $R^1 = OMe$, $R^2 = NH_2$, $R^3 = CN$; **c** $R^1 = F$, $R^2 = Me$,
 $R^3 = COMe$; **d** $R^1 = F$, $R^2 = NH_2$, $R^3 = CN$; **e** $R^1 = Me$, $R^2 = NH_2$, $R^3 = CN$;
f $R^1 = Me$, $R^2 = CN$, $R^3 = NH_2$

Таблица З

Соеди-	Химические сдвиги, б, м. д. (расчет / эксперимент)							
нение	C(2)	C ₍₃₎	C(5)	C(6)	C ₍₇₎	C ₍₈₎	C ₍₉₎	C(10)
3a	<u>136.5</u> 137.0	<u>139.9</u> 140.6	<u>98.2</u> 99.2	<u>162.3</u> 162.4	<u>124.5</u> 124.7	<u>121.4</u> 122.1	<u>132.9</u> 133.5	<u>137.7</u> 138.3
3b	$\frac{143.5}{145.0}$	$\frac{108.8}{108.3}$	<u>97.9</u> 98.3	<u>158.3</u> 158.5	<u>126.1</u> 125.8	<u>119.2</u> 119.6	<u>131.9</u> 132.5	<u>132.7</u> 132.4
3c	<u>138.0</u> 137.8	$\frac{140.3}{140.1}$	$\frac{104.4}{104.7}$	<u>163.1</u> 162.9	<u>121.7</u> 121.8	<u>122.8</u> 122.9	<u>134.2</u> 134.7	<u>136.7</u> 137.3
3d	$\frac{145.0}{145.7}$	$\frac{109.3}{109.3}$	<u>104.1</u> 104.6	<u>159.1</u> 160.3	$\frac{123.3}{123.3}$	$\frac{120.6}{120.6}$	<u>133.2</u> 134.1	<u>131.7</u> 131.9
3e	<u>144.8</u> 145.4	<u>108.5</u> 108.5	<u>118.4</u> 118.3	<u>138.6</u> 138.1	<u>135.9</u> 136.4	<u>117.5</u> 117.8	<u>135.0</u> 135.2	<u>131.3</u> 131.5
3f	<u>107.6</u> 107.8	<u>145.7</u> 145.7	<u>116.7</u> 116.8	<u>145.3</u> 145.6	<u>129.3</u> 129.4	<u>119.2</u> 119.5	<u>129.9</u> 130.1	<u>136.5</u> 136.6

Спектры ЯМР ¹³С соединений За-f

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹³С сняты на приборе Bruker AM 500 (500 и 125 МГц). Химические сдвиги измерены относительно сигналов растворителя (77 для $CDCl_3$ и 39.43 м. д. для ДМСО-d₆) и приведены в δ -шкале.

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. Н. Падейская, Г. Н. Першин, К. А. Белозерова, Фарм. и токсикол., 702 (1966).
- 2. Е. Н. Падейская, А. С. Елина, Г. Н. Першин, Л. Г. Цырульникова, К. А. Белозерова, *Фарм. и токсикол.*, 617 (1967).
- A. Monge, J. A. Palop, A. Lopez de Cerain, V. Senador, F. J. Martinez-Crespo, Y. J. Sainz, J. Med. Chem., 38, 1786 (1995).
- 4. A. Monge, F. J. Martinez-Crespo, A. Lopez de Cerain, J. A. Palop, V. Senador, J. Med. Chem., 38, 4488 (1995).
- 5. A. Monge, J. A. Palop, M. Gonzales, F. J. Martinez-Crespo, A. Lopez de Cerain, Y. J. Sainz, *J. Heterocycl. Chem.*, **32**, 1213 (1995).
- 6. F. J. Martinez-Crespo, J. A. Palop, Y. J. Sainz, S. Narro, V. Senador, M. Gonzales, J. Heterocycl. Chem., 33, 1671 (1996).
- A. O. Ortega, M. J. Morancho, F. J. Martinez-Crespo, Y. J. Sainz, M. E. Montoya, A. Lopez de Cerain, A. Monge, *Eur. J. Med. Chem.*, 35, 21 (2000).
- 8. N. A. Mufarrij, M. J. Haddadin, C. H. Issidorides, J. W. McFarland, J. D. Johnson, J. Chem. Soc., Perkin Trans. 1, 965 (1972).
- 9. W. Kitching, M. Bullpit, D. Gartshore, J. Org. Chem., 42, 2411 (1977).
- 10. A. F. Kluge, M. L. Maddox, G. S. Lewis, J. Org. Chem., 45, 1909 (1980).
- 11. П. М. Панасюк, С. Ф. Мельникова, И. В. Целинский, *ЖОрХ*, **37**, 937 (2001).

Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург 190013, Россия e-mail: sfm@fromru.com Поступило в редакцию 25.06.2003 После доработки 01.04.2005

1080