Ю. Мельник, М. Ворона, Г. Вейнберг, Ю. Попелис, Л. Игнатович, Э. Лукевиц

СИНТЕЗ И СТЕРЕОИЗОМЕРИЯ 2-(1-АЛКОКСИИМИНО-2,2,2-ТРИФТОРЭТИЛ)-5-ТРИМЕТИЛ-СИЛИЛФУРАНОВ

Конденсацией 2-(трифторацетил)-5-триметилсилилфурана с алкоксиаминами синтезированы 2-(1-алкоксиимино-2,2,2-трифторэтил)-5-триметилсилилфураны. Согласно данным спектроскопии ЯМР ¹Н и ¹⁹F алкоксииминогруппа в *E*-изомерах сильнее, чем в *Z*-изомерах, дезэкранирует протоны H-3 и H-4 фуранового цикла, смещая их сигналы в более слабое поле. Атомы фтора α-трифторметильной группы в случае *Z*-изомера характеризуются более слабопольным сигналом по сравнению с таковым для *E*-изомера.

Ключевые слова: 2-(1-алкоксиимино-2,2,2-трифторэтил)-5-триметилсилилфураны, *син-*, *анти*-стереоизомерия, спектроскопия ЯМР ¹Н и ¹⁹F.

Наличие фурана в различных типах органических соединений является определящим фактором проявления ими биологической активности, эффективность которой зависит от строения заместителей в положениях 2 и 5 гетероцикла. В частности, эта тенденция была выявлена при сравнительном изучении токсичности синтезированых нами 5-алкил-, 5-триалкилгермил- и 5-триалкилсилил-2-трифторацетилфуранов [1].

С целью дальнейшего развития синтетической базы получения новых биологически активных веществ на основе 5-триметилсилил-2-(трифторацетил)фурана (1), нами реализована реакция алкоксиминирования этого соединения и изучена стереоизомерия образовавшихся продуктов.

2, **3** a R = Me, b R = Et, c R = *n*-Pr, d R = *i*-Pr, e R = *n*-Bu, f R = *n*-C₈H₁₇, g R = CH₂CH=CH₂, h R = CH₂Ph

Алкоксииминирование трифторацетильной группы в исходном фуране 1 солянокислыми алкоксиаминами 2a-h проводили в кипящем этаноле в присутствии ацетата натрия. Соединения 3a-h были выделены из реакционной смеси с помощью колоночной хроматографии с выходами 7–70%. Их хроматомасс-спектрометрический анализ свидетельстует о том, что, кроме метоксииминопроизводного **3a**, состоящего из двух изомеров, остальные алкоксииминопроизводные **3b**-**g** представлены практически только одной изомерной формой (табл. 1). Анализ спектров ЯМР ¹Н и ¹⁹F (табл. 2) показал, что трифтораце-

Анализ спектров ЯМР ¹Н и ¹⁹F (табл. 2) показал, что трифторацетильная группа в соединении **3а** размещается двояко по отношению к связи $C_{(2)}-C_{(6)}$. При этом каждому конформеру **A** и **B** соответствует фиксированное *анти-(E)*- или *син-(Z)*- расположение метоксигруппы.

Таблица 1

Физико-химические характеристики 2-(1-алкоксиимино-2,2,2-трифторэтил)-5-триметилсилилфуранов 3а-h

Соеди- нение	R_{f}^{*}	Е/Z изомеры	MS-GC, <i>m/z</i> (<i>I</i> _{0TH} ,%)	Выход, %
E- 3 a	0.23	93/7	265 [M ⁺] (25), 250 [M ⁺ -Me] (36), 123 (9), 89 (32), 77 (100)	7
Z-3a	0.23, 0.14**	20/80	265 [M ⁺] (27), 250 [M ⁺ -Me] (30), 123 (7), 89 (41), 77 (100)	63
E- 3b	0.28	>99/<1	279 [M ⁺] (62), 264 [M ⁺ –Me] (39), 236 (17), 103 (55), 77 (100)	58
Z-3b			279 [M ⁺] (33), 264 [M ⁺ –Me] (100), 236 (21), 150 (36), 73 (16)	
<i>E</i> -3c	0.36	>99/<1	251 [M ⁺ -C ₃ H ₆] (4), 236 [M ⁺ -Me] (33), 220 (48), 77 (35), 43 (100)	29
<i>E</i> -3d	0.26	100/0	251 [M ⁺ -C ₃ H ₆] (31), 236 [M ⁺ -Pr-Me] (76), 123 (10), 75 (100)	7
<i>E</i> -3e	0.38	98/2	307 [M ⁺] (14), 292 [M ⁺ –Me] (7), 236 (52), 220 (66), 123 (14), 77 (100)	23
<i>E</i> -3f	0.34	100/0	363 [M ⁺] (6), 348 [M ⁺ -Me] (4), 262 (35), 236 (47), 220 (98), 123 (16), 73 (67), 43 (100)	12
E- 3g	0.32	98/2	291 [M ⁺] (31), 276 [M ⁺ –Me] (3), 128 (22), 73 (100), 41 (63)	65
E- 3h	0.31	98/2	341 [M ⁺] (4), 326 [M ⁺ -Me] (3), 91 (100), 77 (11)	28

* Данные TCX, система этилацетат-петролейный эфир, 1:10.

** Хроматографически неразделимая смесь.

Таблица 2

Соеди-	Конфо-	Химические сдвиги б, м. д., КССВ (Ј, Гц)						
нение	мер	Н-3, д	Н-4, д	Si(CH ₃) ₃	R	CF ₃		
<i>E</i> -3a	А	7.34 (<i>J</i> = 3.4)	6.71 (<i>J</i> = 3.4)	0.28	4.14 (3H, c, OCH ₃)	-66.12		
Z-3a	В	6.75 (<i>J</i> = 3.4, 2.2*)	6.65 (J = 3.4)	0.29	4.12 (3H, c, OCH ₃)	-63.83		
<i>E</i> -3b	Α	7.34 (<i>J</i> = 3.4)	6.70 (<i>J</i> = 3.4)	0.28	1.37 (3H, т, <i>J</i> = 6.6, CH ₂ <u>CH</u> ₃); (2H, к, <i>J</i> = 6.6, <u>CH</u> ₂ CH ₃)	-66.10		
<i>E</i> -3 c	Α	7.34 (<i>J</i> = 3.4)	6.71 (J = 3.4)	0.28	0.91 (3H, т, <i>J</i> = 6.6, CH ₂ CH ₂ CH ₃); 1.70–1.87 (2H, м, CH ₂ CH ₂ CH ₃); 4.36 (2H, т, <i>J</i> = 6.6, OCH ₂)	-66.12		
<i>E</i> -3d	Α	7.33 (<i>J</i> = 3.5)	6.71 (<i>J</i> = 3.5)	0.28	1.36 (6H, д, <i>J</i> = 6.6, 2CH ₃); 4.47–4.65 (1H, м, OCH)	-66.43		
<i>E</i> -3e	Α	7.33 (<i>J</i> = 3.3)	6.71 (<i>J</i> = 3.3)	0.28	0.95 (3H, т, <i>J</i> = 7.2, CH ₂ CH ₂ CH ₂ CH ₃); 1.35–1.56 (2H, м, CH ₂ CH ₂ CH ₂ CH ₂ CH ₃); 1.68–1.85 (2H, м, CH ₂ CH ₂ CH ₂ CH ₃); 4.37 (2H, т, <i>J</i> = 7.2, OCH ₂)	-66.04		
<i>E</i> -3f	Α	7.33 (<i>J</i> = 3.5)	6.71 (<i>J</i> = 3.5)	0.28	0.87 (3H, т, <i>J</i> = 6.5, C ₇ H ₁₄ <u>CH</u> ₃); 1.22–1.47 (10H, м, CH ₂ CH ₂ (<u>CH</u> ₂) ₅ CH ₃); 1.70–1.85 (2H, м, CH ₂ <u>CH</u> ₂ C ₆ H ₁₃); 4.34(2H, т, <i>J</i> = 6.5, OCH ₂);	-66.06		
E- 3 g	Α	7.36 (<i>J</i> = 3.4)	6.71 (<i>J</i> = 3.4)	0.28	4.86(2H, д, <i>J</i> = 5.9, OCH ₂); 5.26–5.45 (2H, м, CH ₂ CH= <u>CH₂</u>); 5.97–6.18 (1H, м, CH ₂ <u>CH</u> =CH ₂)	-66.03		
<i>E</i> -3h	Α	7.35 (J = 3.5)	6.69 (J = 3.5)	0.28	5.43 (2H, с, CH ₂); 7.38–7.50 (6H, м, С ₆ H ₅)	-66.37		

Спектры ЯМР ¹Н и ¹⁹F 2-(1-алкоксиимино-2,2,2-трифторэтил)-5-триметилсилилфуранов 3а–h

* KCCB ${}^{5}J$ (H–CF₃).

836

На это указывает наличие в спектре конформера **В** дальней КССВ ядер протона H-3 и фтора (${}^{5}J_{\rm HF} = 1.7-2.2$ Гц), обусловленной W-конформацией расположенных между ними пяти химических связей, которая отсутствует в структуре конформера **A**.

Что касается оксииминогруппы в 2-(α -алкоксииминоэтил)фуранах, то известно, что в *Z*-изомерах она сильнее дезэкранирует протоны H-3 и H-4 фуранового цикла, чем в *E*-изомерах, обусловливая смещение их сигналов в более слабое поле. Аналогичный дезэкранирующий эффект метоксииминогруппа в *Z*-изомере проявляет и в отношении протонов α -метильной группы, смещая их сигналы в более слабое поле по сравнению с *E*-изомерами [2, 3].

В соответствии с упомянутыми данными, химические сдвиги протонов H-3 фуранового цикла в конформере **A** соединения **3a** (7.34 м. д.) (табл. 2) однозначно свидетельствуют об *E*-геометрии метоксииминогруппы и ее *Z*-геометрии в конформере **B** (6.75 м. д.). (При одинаковой пространственной ориентации изомерных алкоксииминов как в синтезированных нами соединениях, так и в описанных в [2, 3], их номенклатурные обозначения в случае **3а–g** меняются на противоположные, поскольку замена атомов водорода на атомы фтора меняет старшинство трифторметильной группы.) Противоположная тенденция просматривается в случае атомов фтора α -трифторметильной группы, которые, в отличие от протонов α -метильной группы, в случае *Z*-изомера характеризуются более слабопольным сигналом (-63.83 м. д.) по сравнению с таковым для *E*-изомера (-66.12 м. д).

Химические сдвиги протонов H-3 остальных алкоксииминопроизводных фурана **3b-h** в области 7.33–7.36 м. д. свидетельствуют о том, что все они представлены практически только одним **A** конформером с *E*-геометрией алкоксииминогруппы (табл. 2).

Определение цитотоксических свойств синтезированных веществ *in vitro* согласно стандартной методике [4] показало, что только соединения **3a**,**d** в концентрациях 50–100 мкг/мл вызывали гибель 50% монослойных опухолевых клеток линии HT-1080 (фибросаркома человека). Соединения **3c**,**d**,**h** не проявили цитотоксических свойств.

Проведенное исследование позволило синтезировать малотоксичные алкоксииминопроизводные 2-(трифторацетил)-5-триметилсилилфурана **3а–h**, а также идентифицировать пространственное расположение алкокси- и трифторметильной групп на основании данных спектроскопии ЯМР ¹H и ¹⁹F.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР зарегестрированы на спектрометре Varian 200 Mercury (200 МГц для ¹H, внутренний стандарт ТМС, и 188 МГц для ¹⁹F, внешний стандарт CFCl₃) в CDCl₃. Массспектры получены на хроматомасс-спектрометре GC-MS HP6890 (70 эВ). Контроль за ходом реакции осуществлялся методом TCX на пластинках Merck Kieselgel проявлением в УФ свете. Для препаративной колоночной хроматографии применялся силикагель марки Merck Kieselgel (0.063–0.230 мм). В экспериментах использовались реагенты и материалы фирмы Acros. Гидрохлориды алкоксиаминов **2а–h** синтезированы О-алкилированием N-гидроксисукцинимида соответствующими алкилгалогенидами с последующим гидролизом полученных N-алкоксисукцинимидов разбавленной соляной кислотой. **Получение 2-(1-алкоксиимино-2,2,2-трифторэтил)-5-триметилсилилфуранов За-h** (типовая методика). К раствору 450 мг (1.90 ммоль) 5-триметилсилил-2-трифторацетилфурана в 15 мл этанола добавляют 463 мг (5.71 ммоль) ацетата натрия и 3.17 ммоль гидрохлорида алкоксиамина **2а–h**. Полученную смесь кипятят 4 ч и растворитель упаривают в вакууме. Остаток хроматографируют на колонке с силикагелем в системе этилацетат– петролейный эфир, 1:10. В случае вещества **3а** ($\mathbf{R} = \mathbf{Me}$) *E*-изомер был выделен из фракции с $R_f 0.23$, а смесь *E*/*Z*-изомеров, соответственно, из неразделимой смеси фракций с $R_f 0.23$ и $R_f 0.14$. Фракции, из которых были получены остальные вещества **3b–h**, характеризовались наличием в них практически только одного стереоизомера.

СПИСОК ЛИТЕРАТУРЫ

- 1. L. Ignatovich, D. Zarina, I. Shestakova, S. Germane, E. Lukevics, *Metal-Based Drugs*, **8**, 211 (2002).
- 2. Э. Абеле, Ю. Попелис, Э. Лукевиц, М. Шиманска, Ю. Гольдберг, ХГС, 18 (1994).
- 3. A. S. Demir, O. Sesenoglu, D. Ulku, C. Arici, Helv. Chim. Acta, 86, 91 (2003).
- G. A. Veinberg, I. Shestakova, N. Grigan, D. Musel, I. Kanepe, I. Domrachova, V. Grigoryeva, O. Zharkova, I. Turovskis, I. Kalvinsh, A. Strakovs, E. Lukevics, *Eur. J. Med. Chem.*, 33, 755 (1998).

Латвийский институт органического синтеза, Рига LV-1006

Поступило в редакцию 07.12.2004

e-mail: veinberg@osi.lv