Б. Б. Семенов, Ю. И. Смушкевич, И. И. Левина^а, Л. Н. Курковская^а, К. А. Лысенко^б, В. В. Качала^в

ДИАСТЕРЕОНАПРАВЛЕННОЕ АЛКИЛИРОВАНИЕ КЕТОНОВ И 1,3- ДИКЕТОНОВ N-[1H-ИНДОЛ-3-ИЛ(ФЕНИЛ)МЕТИЛ]-N-МЕТИЛАМИНОМ В РЕАКЦИИ МИХАЭЛЯ

Разработан метод введения 1Н-индол-3-ил(фенил)метильного остатка в положение 2 кетонов и 1,3-дикетонов. Продемонстрирован принцип наведения "управляемой" диастереоселективности на основе конфигурации интермедиатов.

Ключевые слова: грамин, СН-кислоты, α-фенил-*нор*-грамин, диастереоселективность в реакции Михаэля, РСА, ЯМР.

Настоящая работа посвящена изучению возможности алкилирования карбонильных соединений α-фенил-нор-грамином (1), в том числе диастереоспецифичного. Ранее мы показали возможность недиастереоселективного алкилирования нитроалканов N-[1H-индол-3-ил(фенил)метил]-N-метиламином (α-фенил-*нор*-грамином) (1) [1]. Известно также, что соединение 1 легко превращается в 2-(1-Н-индол-3-ил)-2-фенилацетонитрил при взаимодействии с КСN [2]. На основании этого мы предположили, что соединение 1 будет удобным реагентом для введения 1Н-индол-3-ил(фенил)метильного остатка в положение 2 кетонов и 1,3-дикетонов. В качестве модельных соединений были использованы циклогексанон (3а), циклопентанон (3b), 1,2-циклогександион (3c), 1,3циклогександион (3d), 5,5-диметил-1,3-циклогександион (димедон) (3e), эфиры 3-оксобутановой кислоты: метиловый (3f), этиловый (3g), изопропиловый (3h), бензиловый (3i), 1,3-индандион (3j), ацетон (3k), ацетофенон (31), эфиры 2-цианоуксусной кислоты: метиловый (3m), этиловый (3n), α-тетралон (3o).

Соединение 1 получено присоединением индола по двойной связи бензальметиламина по методу Пассерини [3].

Алкилирование карбонильных соединений **3** проводили в 90% водном 2-пропаноле или этаноле при использовании в качестве катализатора поташа. Выходы продуктов алкилирования **4** приведены в табл. 1. Повидимому, алкилирование протекает через промежуточное образование 3-[(*Z*)-фенилметилиден]-3H-индола (**2**) с последующим присоединением к нему по Михаэлю енолята CH-кислоты.

По литературным данным, 2-метил-3-[(*Z*)-фенилметилиден]-3H-индол [4] существует в виде одного изомера, по данным наших расчетов *ab initio*, интермедиат **2** также имеет *Z*-конфигурацию [5].

В случае соединений **3d,е,і–k** продукты алкилирования **4d,е,і–k** в данных условиях не образуются, а были получены полимерные продукты самоконденсации исходного соединения **1**. По-видимому, скорость полимеризации в этом случае выше, чем присоединение по Михаэлю енолятов карбонильных соединений. Для соединений **3d,е** значительные стерические препятствия, видимо, также препятствуют алкилированию.

В отличие от грамина [6–9] в нашем случае образуются только продукты моноалкилирования соединений **3а–с, f–h, l–o**, образования продуктов бисалкилирования не наблюдалось даже хроматографически.

Разработанный нами метод позволил исследовать стереохимию процесса алкилирования циклических кетонов **3а,b,o** α-фенил-*нор*-грамином (1). Ранее было высказано предположение, что соединение 1 при обработке основными катализаторами отщепляет метиламин и образует интермедиат 3-[(*Z*)-фенилметилиден]-3Н-индол (2), имеющий плоское строение [5].

Таблица 1

Сое- ди- нение	\mathbf{R}^1	R ²	Выход, %	Сое- ди- нение	R^1	R ²	Выход, %
4 a	$R^1 = R^2 = (CH)$	2)4	60	4h	Me	COOPr-i	65
4b	$R^1 = R^2 = (CH_2)_3$		75	4j	$R^1 = R^2 = C_6 H_4 CO$		_
4c	$R^1 = R^2 = CO(CH_2)_3$		50	4k	Me	Н	_
4d	$R^1 = R^2 = CO(CH_2)_3$		-	41	Ph	Н	_
4 e	R ¹ =R ² =COCH ₂ CMe ₂ CH ₂		-	4m	OMe	CN	70
4f	Me	COOMe	65	4n	OEt	CN	65
4g	Me	COOEt	71	40	$R^1 = R^2 =$	CH ₂ C ₆ H ₄	25

Выходы продуктов алкилирования

Мы предположили, что если в реакции Михаэля в качестве второго 849

компонента использовать еноляты циклопентанона и α -тетралона, имеющие *E*-конфигурацию, то продукты алкилирования **4** будут иметь (R^* , S^*)-строение: вследствие координации катиона металла с атомом азота одного цикла и атомом кислорода другого цикла оба фрагмента располагаются друг к другу *Si* и *Re* сторонами, что соответствует *unlike* attack [10–13].

Мы установили, что для циклогексанона реакция идет недиастереоселективно (*de* 0%). В случае енолята α-тетралона, имеющего "плоскость жесткости" – 1,3-бутадиеновый фрагмент, реакция оказалась диастереоспецифичной (*de* 100%), а для енолята циклопентанона наблюдается достаточно высокая диастереоселективность (*de* 92%):

M = Li, K, Na; **3**, **4 a** X = (CH₂)₂; **b** X = CH₂; **o** X = C₆H₄ Соединение, выход, %; *de*,%; конфигурация: **4a**, 60, 0, *E*; **4b**, 75, 92, *E*; **4o**, 25, 100, *E*

Алкилирование карбонильных соединений **За,b,о** проводили в 90% водном 2-пропаноле или этаноле при использовании в качестве катализатора поташа. Использование различных растворителей, как было показано на примере получения соединения **4b**, не влияет на величину *de* и лишь незначительно влияет на выходы продуктов алкилирования: 75% в 90% водном изопропиловом спирте и 69% в 90% водном этаноле.

Соотношение диастереомеров в реакции образования соединения **4b** было установлено на основании сравнения интегральных интенсивностей дублетов протонов CH в спектрах ЯMP ¹H обоих диастереомеров.

Мы установили, что этот стереохимический результат не мог быть следствием разделения смеси диастереомеров в процессе перекристаллизации: если через 1 ч после начала реакции ее остановить добавлением воды, то, по данным спектроскопии ЯМР ¹Н, соотношение диастереомеров составляет 96:4. Следовательно, причиной диастереоселективности является либо кинетический, либо термодинамический контроль 850

(равновесная изомеризация одного диастереомера в другой через енольную форму кетона). Выбор между ними был осуществлен на основании следующего эксперимента. Если к чистому (R^*,S^*)-диастереомеру в CDCl₃ добавить 10 мол.% C₅D₅N, то образования второго диастереомера не наблюдается при комнатной температуре в течение 48 ч, не удается его обнаружить и при выдерживании (R^*,S^*)-диастереомера в чистом пиридине при комнатной температуре в течение 96 ч. На наш взгляд, это объясняется стерически более легкой возможностью образования енольной формы соединения **4b** с участием протонов метиленовой группы циклопентанонового цикла. Однако после выдерживания чистого (R^*,S^*)-диастереомера в 90% водном 2-пропаноле в присутствии поташа в течение 30 ч, нами была зарегистрирована смесь (R^*,S^*)- и (S^*,S^*)-изомеров в соотношении 75:25 (*de* 50%), а при использовании в качестве растворителя 90% водного этанола – 60:40 (*de* 20%).

При алкилировании соединения **3b** в безводном изопропиловом спирте получено соединение **4b**, причем отношение (R^*,S^*)- и (S^*,S^*)-диастереомеров составляло 75:25 (*de* 50%). При обработке этой смеси 20-кратным избытком гидразингидрата соотношение диастереомеров в образующемся гидразоне **5**, по данным спектроскопии ЯМР ¹H, не изменилось и в ней, по-видимому, также преобладает (R^* , S^*)-изомер. Такой стереохимический результат позволяет говорить о енолизации кетона **4b** в данных условиях в сторону наиболее гидрогенизированного атома углерода. Следовательно, причиной диастереоселективности является, видимо, кинетический контроль.

Конфигурация мажорного (R^* , S^*)-диастереомера соединения **4b** подтверждена данными спектров ЯМР ¹Н и ¹³С (табл. 2) и РСА (рис. 1).

Рис. 1. Общий вид молекулы соединения 4b

Все сигналы в спектрах ЯМР ¹Н и 13 С соединения **4b** были однозначно отнесены с использованием метода 13 С АРТ (Attached Proton Test) и

двухмерных гетероядерных методик HSQC и HMBC (табл. 2).

На основании данных РСА (R^*,S^*)-диастереомера соединения **4b** установлено, что в кристалле циклопентаноновый фрагмент имеет конформацию *конверта* с выходом атома C₍₁₇₎ на 0.55 Å из плоскости остальных атомов цикла. Диэдральный угол между фенильным и индолильным фрагментами составляет 99.6°. Анализ кристаллической упаковки показал, что молекулы объединяются межмолекулярными водородными связями N–H…O (N…O 2.874(3) Å) в спирали, направленные вдоль кристаллографической оси *с*. Спирали "сплетаются" друг с другом с образованием каналов диаметром ~4.60 Å.

Спектры ЯМР соединения 4b

Таблица 2

Нумерация	¹³ С, δ, м. д.		¹ Н, б, м. д.		
атомов	R*,S*	S*,S*	R*,S*	S*,S*	
1	41.6	42.1	5.05	4.95	
2	53.7	53.7	2.95	2.95	
3	26.4	27.6	2.30; 1.75	2.35; 1.90	
4	20.8	20.7	1.70	1.70	
5	38.8	38.8	2.30; 1.85	2.30; 1.85	
6	219.9	220.1	-	_	
2'	122.1	123.5	7.15	7.00	
3'	118.4	117.1	-	_	
3a'	127.1	127.1	-	_	
4'	119.4	120.1	7.20	7.25	
5'	119.3	119.3	6.95	6.95	
6'	121.5	121.8	7.15	7.10	
7'	110.9	111.0	7.35	7.35	
7a'	136.4	136.2	-	_	
1"	141.5	143.5	-	_	
2"	129.3	128.1	7.15	7.40	
3"	128.1	128.2	7.30	7.25	
4"	126.4	126.1	7.20	7.15	
		1			

При алкилировании циклогексанона в 90% спирте в присутствии в качестве катализатора поташа или NaOH была получена смесь

диастереомеров соединения **4a**, причем содержание каждого диастереомера, по данным спектров ЯМР ¹Н, составляло 50%. Этот стереохимический результат явился, по-видимому, следствием изомеризации одного диастереомера в другой через енольную форму кетона **4a**.

В случае α-тетралона **30** при использовании в качестве оснований ацетата натрия, поташа и пиридина была получена трудноидентифицируемая смесь полимерных соединений, а использование алкоголята натрия и димсилнатрия приводило к полному осмолению смеси. Однако применение LiOH, KOH и NaOH позволило получить соединение **40** с выходом 25%. По данным спектров ЯМР ¹H, соединение **40** существует только в виде одного диастереомера.

Все сигналы в спектрах $\overline{\text{MMP}}^{1}$ Н и 13 С соединения **40** были однозначно отнесены с использованием метода 13 С АРТ и двухмерных гетероядерных методик HSQC и HMBC (табл. 3).

Спектры ЯМР ¹Н и ¹³С были расшифрованы при помощи двухмерных методик HSQC и HMBC в дейтерохлороформе при 30 $^{\circ}$ C (Bruker DRX-500).

Конфигурация асимметрических атомов углерода в соединении **40** была установлена на основании данных PCA (рис. 2). Основные геометрические параметры соединения **4b** близки соответствующим параметрам молекулы **4o**. Циклогексановый цикл имеет конформацию *кресло* с выходом атома $C_{(17)}$ на 0.68 Å. Диэдральный угол между фенильным и индолильным фрагментами фактически не меняется и равен в молекуле **4o** 95°. Отметим, что помимо молекулярной геометрии также остается неизменной и супрамолекулярная организация. Так, в соеди-нении **4o** молекулы объединяются межмолекулярными водородными связями N–H…O (N…O 2.995(3) Å) в спирали, которые "сплетаются" одна с другой, образуя *каналы* чуть меньшого диаметра (4.34 Å).

Рис. 2. Общий вид молекулы соединения 40

Попытки получить второй диастереомер при нагревании в 90% этаноле и изопропиловом спирте в присутствии щелочей не дали результата. Реакция образования соединения **40** подчиняется, по-видимому, кинети-853 ческому контролю.

Соединение **4g** [14] было выделено в виде смеси двух диастереомеров с преобладанием (R^*, R^*)-изомера (*de* 90%). Любопытным является тот факт, что соединение **4c** существует только в енольной форме; соединения **4a,f,h,m,n** были выделены в виде смеси диастереомеров, причем содержание каждого изомера составляло 50%.

При попытке проалкилировать бензиловый эфир 3-оксобутановой кислоты **3i** в 90% изопропиловом спирте мы неожиданно выделили соединение **3h**, что может быть следствием переэтерификации.

Предлагаемый нами метод позволяет получать соединения **4**, содержащие в α -положении к карбонильной группе индолилфенилметильный фрагмент с заведомым диастереомерным избытком, причем в случае Z/E образуются преимущественно (R^*,S^*)-диастереомеры. Введение "плоскости жесткости" позволяет проводить реакцию Михаэля с 100% *de*; в случае Z/Z образуются преимущественно (R^*,R^*)-диастереомеры.

Таблица З

Спектры ЯМР соединения 40

Нумерация атомов	¹³ С, δ, м. д.	¹Н, δ, м. д.	Нумерация атомов	¹³ С, б, м. д.	¹ Н, б, м. д.
1	40.9	5.22	1'	_	8.05
2	52.4	3.45	2'	121.6	7.26
3	26.5	2.30; 1.85	3'	117.8	_
4	28.3	3.10	3a'	127.0	_
5	126.8	_	4'	119.7	7.28
6	128.7	7.22	5'	119.3	6.95
7	126.7	7.25	6'	122.1	7.13
8	133.2	7.45	7'	111.0	7.33
9	127.9	7.96	7a'	135.8	_
10	143.1	_	1"	140.7	_
11	197.3	_	2"	129.2	7.36
			3"	128.2	7.24
			4"	126.3	7.16

Таблица 4

Основные кристаллографические параметры и характеристики уточнения соединений 4b и 40

	4b	40
Формула	C ₂₀ H ₁₉ NO	C ₂₅ H ₂₁ NO
М	308.28	351.43
Т, К	110	110
Пространственная группа	Fdd2	C2/c
<i>a</i> , Å	29.272(7)	23.555(7)
b, Å	33.235(8)	6.971(1)
<i>c</i> , Å	6.368(1)	23.488(7)
β, °	87.89(2)	108.79(2)
$V, \text{\AA}^3, Z$	6195(2)	3651(1), 8
<i>F</i> (000)	2464	1488
ρ_{calcd} , cm^{-3}	1.241	1.279
$2\theta_{\rm max}$, °	56	50
Количество отражений		
измеренных (R_{int})	10519 (0.0366)	4389 (0.0686)
независимых	3669	2895
наблюдаемых с $I > 2\sigma(I)$	2631	1209
R_I	0.0485	0.0815
WR_2	0.1091	0.1774
GOF	0.985	1.119

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на приборе Bruker WP-200 (200 МГц) в ацетонитриле-d₃ (4a,f,h, 5), дейтерохлороформе (4c), пиридине-d₅ (4m), ДМСО-d₆ (4n), внутренний стандарт ТМС. Спектры ЯМР ¹Н и ¹³С соединения 4b,о зарегистрированы на приборе BRX-500 (500 и 125 МГц соответственно) в дейтерохлороформе при 30 °С. Все эксперименты поставлены по стандартным методикам фирмы Bruker. Двухмерные спектры HSQC и HMBC получены с применением градиентной методики. Спектр ¹³С зарегистрирован в режиме APT, число накоплений 34 000, масс-спектры – на спектрометре SSQ-710 (Finnigan MAT) при энергии ионизирующего излучения 70 эВ. Анализ методом TCX проводили на пластинках Silufol UV-254, рентгенодифракционные исследования – на дифрактометре Smart CCD (Мо*К* α -излучение, графитовый монохроматор, ω -сканирование). Основные кристаллографические параметры и характеристики уточнения приведены в табл. 4. Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропно-анизотропном приближении по *F*². Все расчеты проводились по комплексу программ SHELXTL PLUS. Ver. 5.1.

α-Фенил-*нор*-грамин (1). К 106 г (1 моль) бензальдегида в течение 20 мин прибавляют 150 г (1.59 моль) 33% раствора метиламина. Реакция протекает со значительным выделением тепла. Для завершения реакции смесь оставляют на 12 ч при ~20 °C. Затем насыщают смесь раствором поваренной соли и экстрагируют эфиром. Эфирный экстракт сушат MgSO₄, отгоняют эфир. Остаток перегоняют. Получают 83 г (70%) бензальметиламина. Т. кип. 183–185 °C (т. кип. 92–93 °C (34 мм) [15]).

Раствор 30 г (0.26 моль) индола в 36 г (0.30 моль) бензальметиламина нагревают 40 ч при 70 °С. Выдерживают при комнатной температуре до полной кристаллизации. Образовавшийся осадок отфильтровывают. После перекристаллизации из бензола получают белое кристаллическое вещество, розовеющее на воздухе. Выход 49 г (65%). Т. пл. 139–141 °С (т. пл. 139–141 °С [16]).

Получение соединений 4 (общая методика). К кипящему раствору 1.0 г (0.42 ммоль)

 α -фенил-*нор*-грамина **1** в 10 мл 90% спирта добавляют раствор 0.1 г карбоната калия в 1 мл воды и 0.625 ммоль СН-кислоты **3**, кипятят в токе инертного газа до исчезновения исходного соединения. Контроль по TCX (Silufol UV-254, система этилацетат–CCl₄, 1:4). Реакционную смесь охлаждают до комнатной температуры. Соединения **4а–с,f–h,о** кристаллизуют из водного спирта, **4m–n** – из водной уксусной кислоты.

2-[1Н-Индол-3-ил(фенил)метил]циклогексанон (4а). Белые кристаллы, т. пл. 118–119 °С (водный 2-пропанол). Спектр ЯМР ¹Н, δ, м. д.: 1.7–2.37 (8Н, м, циклогексан); 3.38–3.58 (1Н, м, IndCHPhC<u>H</u>); 4.57–4.59 (1Н, м, IndC<u>H</u>Ph); 6.9–7.3 (9Н, м, Ind и Ph); 7.18 (1Н, м, H-2_{Ind}); 9.09–9.15 (1Н, уш. с, NH). Масс-спектр, *m/z* (*I*_{0тн}, %): 303 [M]⁺ (11), 206 [IndCHPh]⁺ (100). Найдено, %: С 83.43; Н 7.04; N 4.32. С₂₁Н₂₁NO. Вычислено, %: С 83.13; Н 6.98; N 4.62.

2-[1Н-Индол-3-ил(фенил)метил]циклопентанон (4b) (R^* , S^*). Белые кристаллы, т. пл. 182–184 °С (водный 2-пропанол). Спектр ЯМР ¹Н, δ , м. д. (J, Гц): 1.6–1.9 (6H, м, (CH₂)₃); 3.02 (1H, м, C<u>H</u>CHPh); 4.72 (1H, д, J = 5.37, C<u>H</u>Ph); 6.86 (1H, м, H-5_{Ind}); 7.06 (1H, м, H-6_{Ind}); 7.1–7.2 (6H, м, Ph и Ind); 7.29 (1H, д, J = 2.19, H-2_{Ind}); 7.36 (1H, м, H-7_{Ind}); 10.77 (1H, с, NH). Спектр ЯМР ¹Н (C₅D₅N), δ , м. д. (J, Гц): 1.5–2.2 (6H, м, (CH₂)₃); 3.12 (1H, м, C<u>H</u>CHPh); 5.28 (1H, д, J = 3.97, C<u>H</u>Ph); 7.05 (1H, м, H-5_{Ind}); 7.25 (3H, м, H_{Ph}); 7.25 (1H, м, H-6_{Ind}); 7.43 (2H, м, *o*-H_{Ph}); 7.48 (1H, м, H-4_{Ind}); 7.55 (1H, м, H-7_{Ind}); 7.62 (1H, д. J = 2.45, J = 0.6, H-2_{Ind}); 11.97 (1H, с, NH). Характеристический сигнал (R^* , R^*)-изомера в спектре ЯМР ¹H (C₅D₅N), δ , м. д.: 5.14 (1H, д. J = 3.97, C<u>H</u>Ph). Масс-спектр, m/z (I_{OTH} , %): 289 [M]⁺ (22), 205 [IndCHPh]⁺ (100). Найдено, %: C 83.2; H 6.73; N 4.41. C₂₀H₁₉NO. Вычислено, %: C 83.01; H 6.62; N 4.84.

2-Гидрокси-3-[1Н-индол-3-ил(фенил)метил]-2-циклогексен-1-он (**4c**). Белые кристаллы, т. пл. 121–123 °С (водн. 2-пропанол). Спектр ЯМР ¹Н, 8, м. д. (*J*, Гц): 1.92–2.50 (6Н, м, циклогексан); 5.9 (1H, с, IndCHPh); 6.32 (1H, с, OH); 6.86 (1H, д, *J* = 7.2, H-2_{Ind}); 7.05 (1H, м, H-5_{Ind}); 7.2–7.3 (7H, м, Ind и Ph); 7.37 (1H, м, H-4_{Ind}); 7.57 (1H, м, H-7_{Ind}); 8.08 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 317 [M]⁺ (20), 206 [IndCHPh]⁺ (100). Найдено, %: С 80.2; H 6.43; N 4.21. C₂₁H₁9NO₂. Вычислено, %: С 79.47; Н 6.03; N 4.41.

Метиловый эфир 2-[1H-индол-3-ил(фенил)метил]-3-оксобутановой кислоты (4f). Белые кристаллы, т. пл. 147–149 °С (водный 2-пропанол). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.07–2.16 (3H, м, COCH₃); 3.51–3.55 (3H, м, OCH₃); 4.64–4.73 (1H, м, IndCHPhC<u>H</u>); 5.01– 5.03 (1H, м, IndC<u>H</u>Ph); 7.01 (1H, м, H-5_{Ind}); 7.11 (1H, м, H-6_{Ind}); 7.17 (1H, м, *p*-H_{ph}); 7.27 (2H, м, *m*-H_{ph}); 7.29 (1H, м, H-2_{Ind}); 7.37 (1H, м, H-7_{Ind}); 7.42 (2H, м, *o*-H_{ph}); 7.57 (1H, м, H-4_{Ind}); 9.02 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{0тн}, %): 321 [M]⁺ (24), 206 [IndCHPh]⁺ (100). Найдено, %: С 74.95; Н 6.07; N 4.26. С₂₀Н₁₉NO₃. Вычислено, %: С 74.75; Н 5.96; N 4.36.

Изопропиловый эфир 2-[1H-индол-3-ил(фенил)метил]-3-оксобутановой кислоты (**4h**). Белые кристаллы, т. пл. 111–119 °С (водный 2-пропанол). Спектр ЯМР ¹Н, б, м. д. (*J*, Гп): 0.94–1.11 (6H, м, (CH₃)₂); 2.10–2.18 (3H, м, COCH₃); 4.79 (1H, м, OCH); 4.58–4.68 (1H, м, IndCHPhC<u>H</u>); 4.99–5.01 (1H, м, IndC<u>H</u>Ph); 7.00 (1H, м, H-5_{Ind}); 7.11 (1H, м, H-6_{Ind}); 7.16 (1H, м, *p*-H_{Ph}); 7.27 (2H, м, *m*-H_{Ph}); 7.31 (1H, м, H-2_{Ind}); 7.37 (1H, м, H-7_{Ind}); 7.43 (2H, м, *o*-H_{Ph}); 7.59 (1H, м, H-4_{Ind}); 9.21 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{0TH}, %): 349 [M]⁺ (18), 206 [IndCHPh]⁺ (100). Найдено, %: С 75.82; Н 6.83; N 3.93. С₂₂H₂₃NO₃. Вычислено, %: С 75.62; Н 6.63; N 4.01.

Метиловый эфир 2-циано-3-(1Н-индол-3-ил)-3-фенилпропановой кислоты (4m). Белые кристаллы, т. пл. 146–147 °С (водный АсОН). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 3.56 (3H, с, СН₃); 5.25 (1H, д, *J* = 7.2, CNC<u>H</u>COCH₃); 5.57 (1H, д, *J* = 7.2, IndC<u>H</u>Ph); 7.1–7.8 (9H, м. Ind и Ph); 8.11 (1H, м. H-2_{Ind}); 12.36 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{0тн}, %): 304 [M]⁺ (14), 206 [IndCHPh]⁺ (90). Найдено, %: С 75.01; Н 5.2; N 9.15. С₁₉Н₁₆N₂O₂. Вычислено, %: С 74.98; Н 5.3; N 9.2.

Этиловый эфир 2-циано-3-(1Н-индол-3-ил)-3-фенилпропановой кислоты (4n). Белые кристаллы, т. пл. 91–93 °С (водный AcOH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 0.97– 1.00 (3H, м, CH₂CH₃); 4.02–4.05 (2H, м, CH₂CH₃); 4.92–4.95 (1H, м, CNC<u>H</u>COEt); 5.00–5.09 (1H, м, IndC<u>H</u>Ph); 7.1–7.8 (10H, м, Ind и Ph); 10.97 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{0тн}, %): 318 [M]⁺ (8), 206 [IndCHPh]⁺ (90). Найдено, %: С 75.57; Н 5.58; N 8.70. С₂₀H₁₈N₂O₂. Вычислено, %: С 75.45; Н 5.70; N 8.80.

(2*S**)-2-[(*R**)-1Н-Индол-3-ил(фенил)метил]-3,4-дигидро-1(2Н)-нафталенон (40). Белые кристаллы, т. пл. 138–139 °С (водный 2-пропанол). Масс-спектр, *m/z* (*I*_{отн}, %): 351 [M]⁺ (17), 206 [IndCHPh]⁺ (100). Найдено, %: С 85.63; Н 6.04; N 3.87. С₂₅H₂₁NO. Вычислено, %: С 85.44; Н 6.02; N 3.99. Гидразон 2-[1Н-индол-3-ил(фенил)метил]циклопентанона (5). Смешивают 0.303 г (0.1 ммоль) соединения 4b и 0.64 г (20 ммоль) безводного гидразингидрата в 5 мл спирта. Оставляют при комнатной температуре до исчезновения исходного соединения. Контроль по TCX (Silufol UV-254, система этилацетат–CCl₄, 1:4). Реакционную смесь выливают в воду. Отфильтровывают белые кристаллы, т. пл. 162–163 °С (водный 2-пропанол). Спектр ЯМР ¹Н, δ , м. д.: 1.65–2.4 (6H, м, циклопропил); 3.35–3.6 (1H, м, IndCHPhCH); 4.57–4.59 (1H, м, IndCHPh); 6.9–7.3 (9H, м, Ind and Ph); 7.2 (1H, м, H-2_{Ind}); 9.1–9.18 (1H, уш. с, NH). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 303 [M]⁺ (25), 206 [IndCHPh]⁺ (100). Найдено, %: С 80.03; H 7.04; N 12.93. C₂₀H₂₁N₃. Вычислено, %: С 79.17; H 6.98; N 13.85.

СПИСОК ЛИТЕРАТУРЫ

- 1. Б. Б. Семенов, Ю. И. Смушкевич, Изв. АН, Сер. хим., 334 (2002).
- 2. В. Н. Русинова, Ю. И. Смушкевич, О. В. Теленкова, М. В. Васин, Н. Н. Суворов, *XTC*, 211 (1974).
- 3. M. Passerini, Gazz. Chim. Ital., 65, 933 (1935).
- 4. T. Moriya, K. Hagio, N. Yoneda, Chem. Pharm. Bull., 28, 1711 (1980).
- 5. Б. Б. Семенов, Автореф. дис. канд. хим. наук, Москва, 2002.
- 6. H. Snyder, C. Smith, J. Stewart, J. Am. Chem. Soc., 66, 200 (1944).
- 7. A. Kamal, A. A. Qureshi, I. Ahmad, Tetrahedron, 19, 681 (1963).
- M. Suzuki, T. Miyahara, R. Yoshioka, M. Miyoshii, K. Matsumoto, Agric. Biol. Chem., 38, 1709 (1974).
- 9. Б. Б. Семенов, В. Г. Граник, *Хим.-фарм. журн.*, **38**, № 6, 3 (2004).
- 10. R. Aitken, S. N. Kilenyi, Asymmetric Synthesis, Chapman & Hall, New York, 1992.
- 11. V. Prelog, G. Helmchen, Angew. Chem., Int. Ed. Eng., 94, 614 (1982).
- 12. D. Seebach, V. Prelog, Angew. Chem., Int. Ed. Eng., 94, 696 (1982).
- 13. K. Mislow, J. Siegel, J. Am. Chem. Soc., 106, 3319 (1984).
- 14. Б. Б. Семенов, Ю. И. Смушкевич, Г. В. Гринцелев-Князев, М. Ю. Антипин, *Изв. АН*, *Сер. хим.*, 543 (2001).
- 15. Синтезы органических препаратов, Изд-во иностр. лит., Москва, 1956, 6, 50.
- 16. В. Н. Борисова, Е. Н. Гордеев, Н. Н. Суворов, ХГС, 357 (1976).

Российский химико-технологический университет им. Д. И. Менделеева, Москва 125190 e-mail: semenovb@mail.ru e-mail:mu@muctr.edu.ru Поступило в редакцию 28.10.2003 После переработки 22.03.2005

^аИнститут биохимической физики им. Н. М. Эмануэля РАН, Москва 117977

⁶Институт элементоорганических соединений, Москва 117813, Россия e-mail: kostya@xrlab.ineos.ac.ru

^вИнститут органической химии им. Н. Д. Зелинского РАН, Москва 117913 e-mail: kachala@ioc.ac.ru