Л. И. Крывенко, О. В. Зволинский, А. Т. Солдатенков, А. И. Курбатова, Г. И. Дорофеева, Л. Н. Кулешова^a, В. Н. Хрусталев^a

СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ПРОИЗВОДНЫХ [2.2]ПАРАЦИКЛОФАНА

8*. α-ПИРИДИЛ([2.2]ПАРАЦИКЛОФАН-4-ИЛ)ФЕНИЛМЕТАНОЛ: СТРОЕНИЕ КОМПЛЕКСА С ХЛОРИДОМ МЕДИ(II) И ВНУТРИМОЛЕКУЛЯРНАЯ ГЕТЕРОЦИКЛИЗАЦИЯ

Взаимодействием 2-бензоилпиридина и 4-([2.2]парациклофанил)лития или 4-бензоил-[2.2]парациклофана и 2-пиридиллития получен α-пиридил-([2.2]парациклофан-4-ил)фенилметанол. Методом РСА изучена молекулярная и кристаллическая структура его комплекса с хлоридом меди(II). Установлено, что в кипящей муравьиной кислоте этот триарилзамещенный метанол претерпевает внутримолекулярную циклоконденсацию, в которой участвуют пиридиновое ядро и циклофановый заместитель. При гетероциклизации по *орто*-положению последнего образуется 10-фенил[2.2]парациклофано[4,5-*b*]индолизин, а при циклизации по *псевдо-гем*-положению – 1-фенил-1,1*a*-дегидро-6-аза-[3.2.2](1,2,5)-6H-циклофано[1,2-*a*]пиридин. Полученные соединения обладают люминесцентными свойствами.

Ключевые слова: α-пиридил([2.2]парациклофан-4-ил)фенилметанол, [2.2]парациклофано[4,5-*b*]индолизин, 1-фенил-1,1*a*-дегидро-6-аза[3.2.2](1,2,5)-6Н-циклофано[1,2-*a*]пиридин, комплекс с хлоридом меди(II), гетероциклизация, люминесцентные свойства.

Известно, что основным кислотно-катализируемым превращением 1-(парациклофан-4-ил)-1-(α-пиридил)этанола являются дегидратация, приводящая к соответствующему 1,1-диарилэтилену, и циклоконденсация по *орто*-положению парациклофана с образованием парациклофано[4,5-*b*]индолизина [2]. Продукт гетероциклизации трансаннулярного типа (по *псевдогем*-положению парациклофана) выделить в индивидуальном виде не удалось из-за малой степени хемиоселективности этой сложной реакции.

В случае перехода от изученного дизамещенного этанола к триарилзамещенному метанолу один из указанных маршрутов превращений не реализуется, а именно дегидратация с образованием алкена. Это позволяет ожидать увеличения выхода продукта трансаннулярной циклизации, достаточно значительного для его успешного выделения из реакционной смеси. С этой целью был синтезирован α -пиридил([2.2]парациклофан-4ил)фенилметанол (2), исходя из 2-бензоилпиридина и 4-([2.2]парациклофанил)лития (полученного из 4-бромпроизводного (1а) или из 2-пиридиллития и 4-бензоил[2.2]парациклофана (16), с выходом, соответственно, 8 и 62%.

^{*} Сообщение 7 см. [1].

Строение этого триарилзамещенного метанола 2 было подтверждено спектральными данными (см. экспериментальную часть) и PCA его комплекса 3 с хлоридом меди(II).

Рис. 1. Молекулярная структура соединения **3** с 30% вероятностными эллипсоидами анизотропных смещений (штриховыми линиями показаны водородные связи)

Таблица 1

Атом	x	у	Z	$U_{_{ m ЭКВ}}$, Å 2
Cu(1)	874(1)	764(1)	-3(1)	21(1)
Cl(1)	1642(1)	238(1)	729(1)	32(1)
Cl(2)	-660(1)	729(1)	378(1)	25(1)
O(1)	761(3)	1333(3)	-761(2)	22(1)
N(1)	1028(3)	2190(3)	151(3)	21(2)
C(1)	886(3)	2362(4)	-859(3)	17(2)
C(2)	1046(3)	2791(4)	-283(3)	17(2)
C(3)	1190(4)	3789(4)	-212(3)	27(2)
C(4)	1325(4)	4152(4)	309(3)	28(2)
C(5)	1304(4)	3531(4)	763(3)	26(2)
C(6)	1156(4)	2555(5)	671(4)	28(2)
C(7)	54(3)	2829(4)	-1061(3)	19(2)
C(8)	-720(4)	2482(4)	-874(3)	24(2)
C(9)	-1467(4)	2937(5)	-1018(3)	31(2)
C(10)	-1452(4)	3757(5)	-1348(3)	32(2)
C(11)	-689(4)	4131(4)	-1531(3)	28(2)
C(12)	71(4)	3671(4)	-1388(3)	25(2)
C(1')	3643(5)	1676(6)	-624(4)	55(3)
C(2')	2845(4)	2369(5)	-538(3)	34(2)
C(3')	2465(4)	2685(4)	-1084(3)	19(2)
C(4')	1629(3)	2514(4)	-1257(3)	18(2)
C(5')	1481(4)	2376(4)	-1830(3)	26(2)
C(6')	2110(4)	2498(5)	-2218(3)	32(2)
C(7')	2849(4)	2963(4)	-2050(4)	30(2)
C(8')	3020(4)	3036(4)	-1498(4)	29(2)
C(9')	2073(5)	1988(6)	-2788(4)	45(2)
C(10')	2708(6)	1084(7)	-2818(4)	66(3)
C(11')	3105(5)	846(5)	-2291(4)	44(2)
C(12')	3901(5)	1160(5)	-2143(4)	52(3)
C(13')	4148(4)	1301(5)	-1577(4)	46(3)
C(14')	3571(5)	1113(5)	-1174(4)	46(2)
C(15')	2852(5)	566(4)	-1305(4)	40(2)
C(16')	2619(5)	451(5)	-1856(5)	52(3)
O(1s)	-185(3)	513(3)	-1533(2)	30(1)
C(1s)	218(5)	-205(6)	-1862(4)	53(2)
C(2s)	-372(6)	-1017(5)	-2037(4)	57(3)

Координаты (× 10⁴) и эквивалентные температурные параметры (× 10³) неводородных атомов соединения 3

На рис. 1 представлена структура комплекса в виде димера, реализующегося в кристалле за счет пентакоординированности ионов меди(II). Рентгеноструктурным исследованием установлено, что соединение **3** представляет центросимметричный димер, связанный двумя несимметричными [длины связей Cu(1)–Cl(2) 2.585(2) и Cu(1)–Cl(2a) 2.261(2) Å] μ^2 -мостиковыми атомами хлора. Атом меди имеет пентакоординацию, которую можно описать либо как искаженную тригонально-бипирамидальную (3+2) с атомами Cl(1), Cl(2) и O(1) в экваториальном положении и атомами Cl(2a) и N(1) в аксиальном положении, либо как искаженную тетрагонально-пирамидальную (4+1) с атомами Cl(1), Cl(2a), O(1) и N(1) в основании пирамиды и атомом Cl(2) в ее вершине.

Рис. 2. Кристаллическая упаковка Н-связанных ассоциатов **3** вдоль оси Y (штриховыми линиями показаны водородные связи)

Длины связей (d) в соединении 3

Т	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Связь	d, Å	Связь	d, Å	
Cu(1)–O(1)	1.980(6)	C(11)-C(12)	1.397(8)	
Cu(1)–N(1)	2.005(5)	C(1')-C(14')	1.529(12)	
Cu(1)–Cl(1)	2.2489(19)	C(1')–C(2')	1.589(9)	
Cu(1)-Cl(2)#1	2.2613(15)	C(2')–C(3')	1.502(9)	
Cu(1)–Cl(2)	2.5851(16)	C(3')–C(4')	1.401(8)	
Cl(2)–Cu(1)#1	2.2613(15)	C(3')–C(8')	1.406(9)	
O(1)–C(1)	1.445(6)	C(4')–C(5')	1.402(9)	
N(1)–C(2)	1.327(8)	C(5')–C(6')	1.369(9)	
N(1)–C(6)	1.357(8)	C(6')–C(7')	1.387(9)	
C(1)–C(2)	1.520(9)	C(6')–C(9')	1.534(11)	
C(1)-C(4')	1.524(8)	C(7')–C(8')	1.353(10)	
C(1)–C(7)	1.537(7)	C(9')–C(10')	1.594(10)	
C(2)–C(3)	1.398(7)	C(10')–C(11')	1.445(12)	
C(3)–C(4)	1.359(9)	C(11')–C(12')	1.372(11)	
C(4)–C(5)	1.381(9)	C(11')–C(16')	1.402(11)	
C(5)–C(6)	1.376(8)	C(12')–C(13')	1.422(12)	
C(7)–C(8)	1.384(8)	C(13')-C(14')	1.352(11)	
C(7)–C(12)	1.396(8)	C(14')–C(15')	1.395(10)	
C(8)–C(9)	1.375(8)	C(15')–C(16')	1.376(11)	
C(9)–C(10)	1.376(9)	O(1s)–C(1s)	1.410(9)	
C(10)–C(11)	1.378(9)	C(1s)–C(2s)	1.511(11)	

Валентные углы (ω) в соединении 3

Угол	ω, град.	Угол	ω, град.
O(1)-Cu(1)-N(1)	78.2(2)	Cl(2)#1-Cu(1)-Cl(2)	89.05(5)
O(1)-Cu(1)-Cl(1)	152.62(15)	Cu(1)#1-Cl(2)-Cu(1)	90.95(5)
N(1)-Cu(1)-Cl(1)	95.95(17)	C(1)–O(1)–Cu(1)	121.4(4)
O(1)-Cu(1)-Cl(2)#1	88.91(14)	C(2)–N(1)–C(6)	119.0(5)
N(1)-Cu(1)-Cl(2)#1	167.11(18)	C(2)–N(1)–Cu(1)	117.7(5)
Cl(1)-Cu(1)-Cl(2)#1	95.65(6)	C(6)–N(1)–Cu(1)	123.2(4)
O(1)–Cu(1)–Cl(2)	104.23(14)	O(1)–C(1)–C(2)	104.7(5)
N(1)–Cu(1)–Cl(2)	93.82(14)	O(1)-C(1)-C(4')	109.9(5)
Cl(1)–Cu(1)–Cl(2)	102.84(7)	C(2)-C(1)-C(4')	112.7(5)
O(1)-C(1)-C(7)	110.0(4)	C(3')-C(4')-C(5')	117.9(6)
C(2)–C(1)–C(7)	105.4(5)	C(3')-C(4')-C(1)	124.1(6)
C(4')-C(1)-C(7)	113.7(5)	C(5')–C(4')–C(1)	117.7(5)
N(1)-C(2)-C(3)	121.2(6)	C(6')–C(5')–C(4')	121.8(6)
N(1)-C(2)-C(1)	117.8(5)	C(5')–C(6')–C(7')	117.9(7)
C(3)-C(2)-C(1)	121.0(6)	C(5')–C(6')–C(9')	121.3(7)
C(4)–C(3)–C(2)	119.7(6)	C(7')–C(6')–C(9')	120.0(6)
C(3)–C(4)–C(5)	119.5(6)	C(8')–C(7')–C(6')	119.0(6)
C(6)–C(5)–C(4)	118.6(7)	C(7')–C(8')–C(3')	122.5(6)
N(1)-C(6)-C(5)	122.1(7)	C(6')–C(9')–C(10')	111.7(7)
C(8)–C(7)–C(12)	118.8(5)	C(11')-C(10')-C(9')	114.2(7)
C(8)-C(7)-C(1)	120.5(5)	C(12')-C(11')-C(16')	115.5(9)
C(12)–C(7)–C(1)	120.3(5)	C(12')-C(11')-C(10')	123.3(9)
C(9)–C(8)–C(7)	121.2(6)	C(16')-C(11')-C(10')	119.9(8)
C(8)–C(9)–C(10)	120.0(6)	C(11')–C(12')–C(13')	122.5(8)
C(9)–C(10)–C(11)	120.2(6)	C(14')-C(13')-C(12')	118.0(8)
C(10)-C(11)-C(12)	120.1(6)	C(13')-C(14')-C(15')	119.2(9)
C(7)–C(12)–C(11)	119.7(5)	C(13')-C(14')-C(1')	117.9(8)
C(14')-C(1')-C(2')	110.8(6)	C(15')-C(14')-C(1')	121.7(8)
C(3')-C(2')-C(1')	112.0(6)	C(16')-C(15')-C(14')	119.7(8)
C(4')-C(3')-C(8')	115.8(6)	C(15')-C(16')-C(11')	121.3(8)
C(4')-C(3')-C(2')	125.8(6)	O(1s)-C(1s)-C(2s)	113.1(7)
C(8')–C(3')–C(2')	117.6(6)		

Тетраэдрическая геометрия центрального атома C(1) слегка искажена [диапазон значений валентных углов $104.7(5)-113.7(5)^{\circ}$], вероятно, вследствие стерических эффектов. Парациклофановый заместитель имеет обычное строение [3]. Димеры образуют устойчивые ассоциаты (рис. 1) с двумя молекулами этилового спирта за счет прочных водородных связей (O(1)-H(10)...O(1s) – O(1)...O(1s) 2.627(7), H(10)...O(1s) 2.01(6) Å, угол O(1)-H(10)...O(1s) 169(5)° и O(1s)-H(10s)...Cl(1a) – O(1s)...Cl(1a) 3.168(6), H(10s)...Cl(1a) 2.39(5) Å, угол O(1)-H(10)...O(1s) 163(5)°), из которых и состоит кристалл соединения **3** (рис. 2). Ассоциаты в кристалле расположены на ван-дер-ваальсовых расстояниях.

Согласно данным спектра ЯМР ¹Н метанола **2**, он выделен в виде смеси двух диастереомеров (т. пл. 123–126 °C) в соотношении 1:1. На это указывает наличие двух сигналов Н- α пиридинового ядра (при 8.7 и 8.5 м. д.), а также двух сигналов группы ОН (при 8.5 и 5.5 м. д.) с интегральной интенсивностью по 0.5 Н каждый.

Таблица 4

Торсионные углы (τ) в соединении 3

Угол	τ, град.	Угол	τ, град.
O(1)-Cu(1)-Cl(2)-Cu(1)#1	88.63(15)	C(8)-C(9)-C(10)-C(11)	-0.7(11)
N(1)-Cu(1)-Cl(2)-Cu(1)#1	167.42(18)	C(9)-C(10)-C(11)-C(12)	0.8(11)
Cl(1)-Cu(1)-Cl(2)-Cu(1)#1	-95.58(7)	C(8)-C(7)-C(12)-C(11)	-1.6(10)
Cl(2)#1-Cu(1)-Cl(2)-Cu(1)#1	0.0	C(1)-C(7)-C(12)-C(11)	-174.9(6)
N(1)-Cu(1)-O(1)-C(1)	4.2(4)	C(10)-C(11)-C(12)-C(7)	0.4(10)
Cl(1)-Cu(1)-O(1)-C(1)	-75.8(5)	C(14')-C(1')-C(2')-C(3')	-28.0(8)
Cl(2)#1-Cu(1)-O(1)-C(1)	-176.0(4)	C(1')-C(2')-C(3')-C(4')	120.9(7)
Cl(2)-Cu(1)-O(1)-C(1)	95.2(4)	C(1')-C(2')-C(3')-C(8')	-47.7(7)
O(1)-Cu(1)-N(1)-C(2)	-4.5(4)	C(8')-C(3')-C(4')-C(5')	21.4(7)
Cl(1)-Cu(1)-N(1)-C(2)	148.4(4)	C(2')-C(3')-C(4')-C(5')	-147.3(6)
Cl(2)#1-Cu(1)-N(1)-C(2)	-5.7(9)	C(8')-C(3')-C(4')-C(1)	-165.3(5)
Cl(2)-Cu(1)-N(1)-C(2)	-108.3(4)	C(2')-C(3')-C(4')-C(1)	25.9(9)
O(1)-Cu(1)-N(1)-C(6)	178.9(5)	O(1)-C(1)-C(4')-C(3')	-93.9(6)
Cl(1)-Cu(1)-N(1)-C(6)	-28.2(5)	C(2)-C(1)-C(4')-C(3')	22.4(7)
Cl(2)#1-Cu(1)-N(1)-C(6)	177.7(4)	C(7)-C(1)-C(4')-C(3')	142.3(5)
Cl(2)-Cu(1)-N(1)-C(6)	75.1(4)	O(1)-C(1)-C(4')-C(5')	79.4(6)
Cu(1)-O(1)-C(1)-C(2)	-3.1(5)	C(2)-C(1)-C(4')-C(5')	-164.3(5)
Cu(1)-O(1)-C(1)-C(4')	118.2(5)	C(7)-C(1)-C(4')-C(5')	-44.4(7)
Cu(1)-O(1)-C(1)-C(7)	-115.9(5)	C(3')-C(4')-C(5')-C(6')	-6.5(8)
C(6)-N(1)-C(2)-C(3)	-0.3(8)	C(1)-C(4')-C(5')-C(6')	179.9(5)
Cu(1)–N(1)–C(2)–C(3)	-177.1(4)	C(4')-C(5')-C(6')-C(7')	-13.6(9)
C(6)-N(1)-C(2)-C(1)	-178.9(5)	C(4')-C(5')-C(6')-C(9')	155.9(6)
Cu(1)-N(1)-C(2)-C(1)	4.3(6)	C(5')-C(6')-C(7')-C(8')	17.9(9)
O(1)-C(1)-C(2)-N(1)	-0.9(6)	C(9')-C(6')-C(7')-C(8')	-151.8(6)
C(4')-C(1)-C(2)-N(1)	-120.2(5)	C(6')-C(7')-C(8')-C(3')	-2.1(9)
C(7)-C(1)-C(2)-N(1)	115.2(5)	C(4')-C(3')-C(8')-C(7')	-17.7(8)
O(1)-C(1)-C(2)-C(3)	-179.5(5)	C(2')-C(3')-C(8')-C(7')	152.0(6)
C(4')-C(1)-C(2)-C(3)	61.1(7)	C(5')-C(6')-C(9')-C(10')	-104.4(8)
C(7)-C(1)-C(2)-C(3)	-63.4(6)	C(7')-C(6')-C(9')-C(10')	64.9(9)
N(1)-C(2)-C(3)-C(4)	0.8(9)	C(6')-C(9')-C(10')-C(11')	7.6(10)
C(1)-C(2)-C(3)-C(4)	179.4(5)	C(9')-C(10')-C(11')-C(12')	-97.0(9)
C(2)-C(3)-C(4)-C(5)	-1.1(9)	C(9')-C(10')-C(11')-C(16')	69.3(10)
C(3)-C(4)-C(5)-C(6)	0.7(9)	C(16')-C(11')-C(12')-C(13')	-14.7(10)
C(2)-N(1)-C(6)-C(5)	0.0(9)	C(10')-C(11')-C(12')-C(13')	152.2(7)
Cu(1)-N(1)-C(6)-C(5)	176.6(5)	C(11')-C(12')-C(13')-C(14')	0.1(10)
C(4)-C(5)-C(6)-N(1)	-0.2(9)	C(12')-C(13')-C(14')-C(15')	16.2(9)
O(1)-C(1)-C(7)-C(8)	32.6(8)	C(12')-C(13')-C(14')-C(1')	-151.8(7)
C(2)-C(1)-C(7)-C(8)	-79.8(6)	C(2')-C(1')-C(14')-C(13')	114.7(7)
C(4')-C(1)-C(7)-C(8)	156.3(6)	C(2')-C(1')-C(14')-C(15')	-53.0(9)
O(1)-C(1)-C(7)-C(12)	-154.2(6)	C(13')-C(14')-C(15')-C(16')	-17.5(9)
C(2)-C(1)-C(7)-C(12)	93.5(7)	C(1')-C(14')-C(15')-C(16')	150.0(7)
C(4')-C(1)-C(7)-C(12)	-30.5(8)	C(14')-C(15')-C(16')-C(11')	2.1(9)
C(12)-C(7)-C(8)-C(9)	1.7(10)	C(12')-C(11')-C(16')-C(15')	13.4(9)
C(1)-C(7)-C(8)-C(9)	175.0(6)	C(10')-C(11')-C(16')-C(15')	-154.0(7)
C(7)-C(8)-C(9)-C(10)	-0.6(10)		

Циклоконденсацию спирта 2 проводили в растворе кипящей муравьиной кислоты в течение 2 ч. По данным TCX, реакционная смесь состояла из двух веществ с близкой хроматографической подвижностью.

Колоночной хроматографией на оксиде алюминия при элюировании гексаном удалось выделить в индивидуальном виде два продукта циклизации – циклофаноиндолизин 4, который, по-видимому, образуется через катионы **A** и **B**, и азациклофанопиридин **5**, образующийся в результате внутримолекулярной трансаннулярной атаки нуклеофильного типа в катионе **C**.

Оба вещества 4 и 5 получены в виде высокоплавких ярко-желтых кристаллов (т. пл. 174–175 и 218–221 °С, соответственно; выход составил 25 и 35% соответственно). Строение изомерных соединений 4 и 5 установлено, прежде всего, на основе анализа их УФ спектров. Так, в спектре менее высокоплавкого вещества 4 наблюдается несколько полос максимумов поглощения в длинноволновой области, что характерно для бензоиндолизиновых систем подобного типа (λ_{max} при 420, 430, 440 и 480 нм) [4, 5]. В УФ спектре продукты трансаннулярной циклизации 5 имеют в этой области лишь одну полосу поглощения (при 420 нм).

В спектре ЯМР ¹Н циклофаноиндолизина **4** протоны дегидропиридинового фрагмента регистрируются при 6.60 (H-3) и 6.90 (H-2) в виде мультиплетов и при 7.40 (H-1) и 8.45 м. д. (H-4) в виде дублетов (J = 7.8и 7.7 Гц соответственно). Шесть ароматических протонов парациклофанового фрагмента дают четыре дублетных сигнала с интегральной интенсивностью 1Н каждый (с J = 8.1-8.3 Гц) и один уширенный сигнал в две протонных единицы, ширина которого, измеренная на полувысоте сигнала ($J_{1/2}$), составляет 6.7 Гц, что свидетельствует о наличии одного тетразамещенного и одного *пара*-замещенного бензольного ядра в молекуле **4**. В то же время в спектре ЯМР ¹Н продукта трансаннулярной циклизации **5** два ароматических протона парациклофановых H-17 и -12 резонируют в виде двух узких синглетов при 6.08 и 7.10 м. д., соответственно, причем протон H-12 резонирует в более слабом поле ($\Delta \delta = 1.02$ м. д.) за счет дезэкранирующего влияния атома азота. Остальные четыре протона этого фрагмента вместо ожидаемых дублетных сигналов проявляются в виде одного уширенного сигнала при 6.70 м. д. с $J_{1/2} = 7.0$ Гц.

Масс-спектрометрическое поведение соединений 4 и 5 также подтверждает их строение. Под действием электронного удара циклофаноиндолизин 4 малоустойчив. Пик его молекулярного иона M^+ с m/z 373 имеет низкую интенсивность (20%) и легко отщепляет параксилиленовый фрагмент (m/z 104), что приводит к появлению иона $[M-104]^+$ с m/z 269, пик которого имеет максимальную интенсивность. В то же время соединение 5, в котором оба бензольных ядра парациклофановой части связаны уже тремя мостиками, дает масс-спектр, в котором максимальным по интенсивности пиком является молекулярный ион M^+ .

Кроме того, изучение люминесцентных свойств соединений 2, 4 и 5 показало, что все они обладают интенсивной флуоресценцией с λ_{max} 358 (спирт 2), 408 и 528 (циклофаноиндолизин 4) и 396 нм (азациклофанопиридин 5). Появление у соединения 4 второй полосы флуоресценции (при 528 нм) подтверждает образование бензоиндолизинового фрагмента, так как наличие подобной полосы характерно для бензоиндолизиновых структур [6]. Отсутствие аналогичной полосы флуоресценции в спектре соединения 5 свидетельствует об образовании иной каркасной структуры, в которой π -сопряжение между циклофановой и пиридиновой частями нарушается вследствие их ортогональности (следствие трансаннулярной циклизации). Таким образом, спектры флуоресценции также могут служить для установления строения продуктов циклизации рассмотренного типа, содержащих парациклофановый фрагмент, которые оказываются перспективными в качестве потенциальных люминофоров [7].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометрах Bruker AM-300 (300 МГц) в CDCl₃, внутренний стандарт ТМС. ИК спектры записаны на приборе Specord IR-75 в таблетках КВг. УФ спектры получены на спектрометре Specord M-40 в этаноле. Спектры возбуждения и флуоресценции измерены на спектрофлуорометре Shimadzu RF-540 в гексане. Масс-спектры получены на приборе MX-1303 при энергии ионизирующих электронов 70 эВ. Контроль за ходом реакций и индивидуальностью полученных соединений осуществляли методом TCX на пластинках Silufol UV-254 в системе растворителей гексан–этилацетат, 3:1.

Рентгеноструктурный анализ соединения 3. Кристаллы соединения 3 ($C_{56}H_{40}Cl_4Cu_2N_2O_2 \cdot 2C_2H_5OH$, M = 1144.00) ромбические, пространственная группа *Pbca*, при T = 163 K: *a* = 15.763(3), *b* = 13.718(3), *c* = 23.921(5) Å, *V* = 5172.7(18) Å³, *Z* = 4, *d*_c = 1.469 мг/см³, *F*(000) = 2376, μ = 1.08 мм⁻¹. Параметры элементарной ячейки и интен-

сивности 4551 отражения измерены на автоматическом четырехкружном дифрактометре Syntex P2₁ (T = 163 K, λ MoK α -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{max} = 28^{\circ}$). Структура определена прямым методом и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов. В разностных фурье-синтезах выявлена сольватная молекула этанола. Атомы водорода гидроксильных групп локализованы объективно разностными фурье-синтезами и уточнены в изотропном приближении с фиксированными позиционными (модель "наездника") и тепловыми [$U_{изo}$ (H) = 1.5 $U_{экв}$ (C) для групп CH₃ и $U_{изo}$ (H) = 1.2 $U_{экв}$ (C) для всех остальных групп] параметрами. Окончательные факторы расходимости $R_1 = 0.074$ для 3292 независимых отражений с $I > 2\sigma(I)$ и $wR_2 = 0.1592$ для всех 4551 независимого отражения. Все расчеты проведены с использованием комплекса программ SHELXTL PLUS (Version 5.10) [8]. В табл. 1–3 представлены данные о координатах атомов, длинах связей, валентных и торсионных углах и анизотропных температурных параметрах для соединения **3**.

 α -Пиридил([2.2]парациклофан-4-ил)фенилметанол (2). А. К бензольному раствору 4-литий[2.2]парациклофана, приготовленному из 17 ммоль бутиллития и 4 г (14 ммоль) 4бромпарациклофана 1а добавляют раствор 2.56 г (14 ммоль) 2-бензоилпиридина в 5 мл бензола и смесь нагревают при перемешивании 6 ч. После охлаждения реакционную смесь обрабатывают насыщенным раствором хлористого аммония. Органический слой отделяют, водный экстрагируют эфиром (3 × 50 мл). Объединенные экстракты сушат MgSO₄. Эфир упаривают, соединения 2 выделяют хроматографически на колонке с Al₂O₃ (элюент гексан–этилацетат, 30:1), выход 0.44 г (8%).

Б. К раствору 2-литийпиридина в 50 мл абсолютного эфира, приготовленного из 26 ммоль бутиллития и 1.3 мл (13 ммоль) 2-бромпиридина при –80 °С добавляют 4 г (13 ммоль) 4-бензоил[2.2]парациклофана 1b, смесь перемешивают 1 ч при –40 – –30 °С. Спирт 2 выделяют аналогично методу A с выходом 3.19 г (62%) в виде бесцветных кристаллов. Т. пл. 123 °С (из этилацетата). R_f 0.63. Масс-спектр, m/z (I, %): M⁺ 391 (37), $[M-C_5H_5N]^+ = \Phi_1$ 312 (48), $[\Phi_1-OH]^+$ 295 (42), $[M-104]^+$ 287 (51). ИК спектр, v, см⁻¹: 3335 (OH). УФ спектр, λ_{max} , нм (1g ε): 207 (4.77), 216 (4.7), 228 пл (4.57), 230 пл (4.29), 300 (3.4), 310 (3.36). Спектр ЯМР ¹H, δ , м. д. (смесь диастереомеров в соотношении 1:1): 8.7 и 8.5 (0.5H каждый, оба уш. д, J = 4.9 Гц, H- α Руг); 7.60–7.05 (8H, м, 5H Ph и 3H Pyr); 6.85–6.20 (6H, м, H аром. парацикл.); 6.2 (1H, с, H-5 аром. парацикл.); 5.98 и 5.5 (0.5H каждый, оба с, OH); 3.4–2.5 (8H, м, H алиф.). Спектр флуоресценции, λ_{max} , нм: 358. Найдено, %: С 85.7; H 6.42; N 3.61. С₂₈H₂₅NO. Вычислено, %: С 85.9; H 6.39; N 3.58. М 391.

Хлорид α-**пиридил**([2.2]парациклофан-4-ил)фенилметанол меди(II) (3). К раствору 2.3 г (0.53 ммоль) спирта 2 в 20 мл этанола добавляют раствор 0.2 г (1.17 ммоль) CuCl₂·2H₂O в 10 мл этанола, смесь кипятят при перемешивании 3 ч. Реакционную массу охлаждают и оставляют на 1 сут. Выпавший осадок отфильтровывают, промывают этанолом (3 × 10 мл) и сушат на воздухе. Получают 1.32 г (93%) комплекса 3 в виде призматических кристаллов изумрудного цвета. Т. пл. 169–170 °С (разл.) (см. данные PCA соединения 3).

Циклоконденсация триарилметанола 2. Кипятят 0.4 г (1 ммоль) соединения 2 в муравьиной кислоте по методу, описанному в работе [1]. Разделяют колоночной хроматографией на Al₂O₃ (элюент гексан). Сначала выделяют 0.13 г (35%) 1-фенил-6-аза-[3.2.2](1.2.5)-1,1*а*-дегидро-6Н-циклофано[1,2-*а*]пиридина (5) в виде ярко-желтых кристаллов с т. пл. 218–221 °C (из гексана). R_f 0.66. Масс-спектр, m/z (I, %): M⁺ 373 (100), [M–104]⁺ 269 (65), 104 (7), 43 (23). УФ спектр, λ_{max} , нм (lg ε): 208 (4.26), 230 пл (4.15), 260 пл (4.12), 278 пл (4.06), 330 пл (3.16), 350 пл (3.02), 420 (2.88). Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 2.75– 3.33 (8H, м, 4CH₂), 6.08 (1H, с, H-17), 6.43 (1H, уш. т, J = 6.7 и J = 7.1, H-4), 6.70 (2H, уш. с, $J_{1/2} = 7.0$, H-19 и 20), 6.90 (1H, уш. т, J = 6.7 и J = 8.3, H-3), 7.10 (1H, с, H-12), 7.60 (1H, д, J = 8.3, H-2), 7.41–7.71 (5H, м, C₆H₅), 8.28 (1H, д, J = 7.1, H-5). Спектр флуоресценции, λ_{max} , нм: 408, 528. Найдено, %: N 3.68. C₂₈H₂₃N. Вычислено, %: N 3.75. M 373.

Затем получают 0.09 г (25%) 10-фенил-[2.2]парациклофано[4,5-*b*]-индолизина (4) в виде ярко-желтых кристаллов с т. пл. 174–175 °С (из гексана). *R_f* 0.65. Масс-спектр, *m/z* (*I*, %): М⁺ 373 (20), [М–104]⁺⁺ 269 (100), 104(15). УФ спектр, λ_{max} , нм (lg ϵ): 208 (5.22), 234 (5.12),

296 (4.34), 320 пл (4.1), 340 (3.32), 350 (3.16), 400 пл (2.25), 420 (2.94), 430 пл (2.83), 440 (2.82), 480 пл (2.15). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.80 (2H, м, H-11), 3.11–3.30 (4H, м, H-12 и 19), 3.90 (2H, м, H-20), 5.40 и 5.90 (оба по 1H, д, *J* = 8.1, H-14 и 15), 6.33 и 6.43 (оба по 1H, д, *J* = 8.3, H-7 и 8), 6.60 (1H, м, H-3), 6.65 (2H, уш. с, *J*_{1/2} = 6.7, H-17 и 18), 6.90 (1H, м, H-2), 7.40 (1H, д, *J* = 7.8, H-1), 7.50–7.60 (5H, м, C₆H₅), 8.45 (1H, д, *J* = 7.7, H-4). Спектр флуоресценции, λ_{max} , нм: 396. Найдено, %: N 3.8. C₂₈H₂₃N. Вычислено, %: N 3.75. М 373.

СПИСОК ЛИТЕРАТУРЫ

- Л. И. Крывенко, С. А.Солдатова, О. В. Зволинский, Э. Э. Романенко, М. И. Стручкова, А. Т. Солдатенков, XTC, 1069 (1997).
- Л. И. Крывенко, А. Т. Солдатенков, О. В. Зволинский, Л. Н. Кулешова, В. Н. Хрусталев, В. Н. Гурышев, С. А. Солдатова, XTC, 793 (1997).
- 3. Cambridge Crystallographic Database, Release 2001, Cambridge.
- 4. H. H. Wasserman, W. R. Waterfield. Chem. Ind., 1220 (1961).
- 5. Х. А. Р. Аларкон, А. Т. Солдатенков, С. А. Солдатова, А. У. Самальоа, Х. У. Обандо, Н. С. Простаков, *XIC*, 1223 (1993).
- 6. Е. Н. Смирнова, Канд. диссертация, УДН, М., 1988.
- O. Reiser, B. König, K. Meerholz, J. Heinze, T. Wellauer, F. Gerson, R. Frim, M. Rabinovitz, A. de Meijere, J. Am. Chem. Soc., 115, 3511 (1993).
- 8. G. M. Sheldrick, SHELXTL, V5.10, Bruker AXS Inc., Madison, WI-53719, USA, 1997.

Российский университет дружбы народов, Москва 117198 Поступило в редакцию 05.04.2002

^аИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 117813

e-mail: asoldatenkov@sci.pfu.edu.ru