М. С. Новиков, А. А. Озеров, Ю. А. Орлова, Р. У. Букхайт^а

СИНТЕЗ И ПРОТИВОВИРУСНЫЕ СВОЙСТВА 1-{[2-(ФЕНОКСИ)ЭТОКСИ]МЕТИЛ}ПРОИЗВОДНЫХ УРАЦИЛА

Осуществлен синтез новых 1-{[2-(фенокси)этокси]метил} производных урацила, содержащих различные заместители в положениях 5 и 6 пиримидинового цикла. Показано, что алкилирование триметилсилильных производных урацила 2-(4-хлорфенокси)- и 2-(4-метилфенокси)этоксиметилхлоридом в условиях реакции Гилберта–Джонсона ведет к продуктам N₍₁₎-замещения. Найдено, что 1-{[2-(фенокси)этокси]метил} производные урацила обладают вирусингибирующими свойствами в отношении вируса иммунодефицита человека типа 1 *in vitro*. Наиболее активными соединениями являются производные 5-бром-6метилурацила, которые подавляют репродукцию вируса на 50% в концентрациях 7.2 и 7.8 мкмоль/л.

Ключевые слова: 1-{[2-(фенокси)этокси]метил}производные урацила, синтез, анти-ВИЧ-1 активность.

С момента открытия вируса иммунодефицита человека (ВИЧ) как этиологического агента синдрома приобретенного иммунодефицита (СПИД) [1, 2] до настоящего времени инфекция ВИЧ является серьезной клинической проблемой [3]. Применяемые в клинике препараты делятся на два основных класса: ингибиторы вирусной протеазы и обратной транскриптазы (ОТ). Их использование сопровождается серьезными побочными эффектами и возникновением резистентных штаммов ВИЧ [4]. Таким образом, поиск новых ингибиторов ВИЧ является чрезвычайно актуальной проблемой.

Большинство ненуклеозидных ингибиторов обратной транскриптазы, которые применяются в комбинированной терапии ВИЧ-инфекции и СПИД, согласно данным РСА, имеют бабочкообразную форму (рисунок). Они содержат в составе "крыла 1", находящегося в непосредственной близости к каталитическому сайту вирусного фермента, атомы азота, входящие в состав гетероцикла; в состав "крыла 2", находящегося в гидрофобном кармане фермента, входит ароматический фрагмент; нижняя часть "тела" бабочки соответствует липофильной области обратной транскриптазы [5–8]. Так, в производных НЕРТ (1-[(2-гидроксиэтокси)метил]-6-(фенилтио)тимина 1 и их 6-бензильных аналогах 2, обладающих высокой анти-ВИЧ-1 активностью, ароматический фрагмент, составляющий "крыло 2", связан с положением 6 урацила либо через атом серы, либо через метиленовую группу [9].

1 X = S, CH₂; **1**, **2** R = алкил C₁–C₃

Мы предположили, что при условии сохранения общей бабочкообразной структуры ингибитора обратной транскрипазы ВИЧ-1 его ароматический фрагмент может быть связан с остатком урацила не через положение 6, а через атом $N_{(1)}$. При этом оптимальная длина связующей цепи должна быть равна пяти-шести углеродным и кислородным фрагментам. В этом случае могут образовываться "геометрические" аналоги 6-(фенилтио)- и 6-бензилурацилов.

Наиболее близкими структурами, соответствующими этому критерию, являются 1-{[2-(фенокси)этокси]метил}урацилы, в состав цепи которых входят три метиленовые группы и два атома кислорода. Их синтез был осуществлен в соответствии с приведенной ниже схемой.

7, 10, 13, 16 $R^1 = H$; 8, 11, 14, 17 $R^1 = Br$; 9, 12, 15, 18 $R^1 = Me$; 19 $R^1 = Et$; 7–9, 13–15 $R^2 = H$; 10–12, 16–19 $R^2 = Me$; 3, 5, 7–12 $R^3 = Cl$; 4, 6, 13–19 $R^3 = Me$

Исходные 2-(4-хлорфенокси)этанол (**3**) или 2-(4-метилфенокси)этанол 727 (4) в условиях реакции Анри в присутствии параформа и газообразного хлористого водорода превращали в соответствующие 2-(4-хлорфенокси)- (5) или 2-(4-метилфенокси)этоксиметилхлориды (6), выход которых был равен 92 и 90% соответственно. Следующим этапом синтеза явилась конденсация полученных α -хлорэфиров 5 и 6 с 2,4-бис(триметилсилокси)-пиримидинами, которую проводили в растворе безводного метилен-хлорида при комнатной температуре. Целевые 1-{[2-(фенокси)этокси]-метил}урацилы 7–19 были получены с выходом 56–71 % после препаративной хроматографии. Основная стратегия синтеза подробно описана нами ранее [10].

Чистоту полученных соединений 7–19 определяли методом TCX, состав доказан элементным анализом, строение – спектроскопией ЯМР ¹Н и масс-спектрометрией. Физико-химические свойства соединений 7–19 представлены в табл. 1.

Противовирусные свойства синтезированных соединений *in vitro* в отношении ВИЧ-1 были исследованы в TherImmune Research Corporation (Мериленд, США) в культуре CEM-SS клеток. Результаты скрининга показали, что некоторые из производных урацила 7–19 проявляют заметную противовирусную активность. Наиболее активными соединениями этого

Таблица 1

Соеди-	Брутто-	<u>Н</u> Вь	Іайдено, 9 ачислено,	<u>%</u>	Т. пл., °С	R_{f}	Выход,
нение	формула	С	Н	Ν	C	*	/0
7	C ₁₃ H ₁₃ ClN ₂ O ₄	<u>52.45</u> 52.62	<u>4.57</u> 4.42	<u>9.53</u> 9.44	126–127	0.16	60
8	C ₁₃ H ₁₂ BrClN ₂ O ₄	<u>41.88</u> 41.57	<u>3.61</u> 3.22	<u>7.70</u> 7.46	155–156	0.38	56
9	$C_{14}H_{15}ClN_2O_4$	<u>53.97</u> 54.11	<u>5.04</u> 4.87	<u>8.72</u> 9.02	121–123	0.22	71
10	$C_{14}H_{15}ClN_2O_4$	<u>54.03</u> 54.11	<u>5.06</u> 4.87	<u>9.24</u> 9.02	146–148	0.20	64
11	$C_{14}H_{14}BrClN_2O_4$	<u>43.34</u> 43.16	<u>3.88</u> 3.62	<u>7.05</u> 7.19	157–159	0.39	63
12	$C_{15}H_{17}ClN_2O_4$	<u>55.21</u> 55.48	<u>5.07</u> 5.28	<u>8.39</u> 8.63	167–168	0.31	57
13	$C_{14}H_{16}N_2O_4$	<u>60.95</u> 60.86	<u>5.63</u> 5.84	<u>9.99</u> 10.14	139–140	0.28	63
14	$C_{14}H_{15}BrN_2O_4$	<u>47.50</u> 47.34	<u>4.41</u> 4.26	<u>7.78</u> 7.89	70–73	0.49	70
15	$C_{15}H_{18}N_2O_4$	<u>61.91</u> 62.06	<u>6.12</u> 6.25	<u>9.44</u> 9.65	143–144	0.34	64
16	$C_{15}H_{18}N_2O_4$	<u>62.18</u> 62.06	<u>6.13</u> 6.25	<u>9.46</u> 9.65	140–143	0.32	59
17	$C_{15}H_{17}BrN_2O_4$	<u>48.97</u> 48.80	<u>4.79</u> 4.64	<u>7.40</u> 7.59	149–150	0.51	58
18	$C_{16}H_{20}N_2O_4$	<u>62.95</u> 63.14	<u>6.51</u> 6.62	<u>9.03</u> 9.20	141–143	0.43	56
19	$C_{17}H_{22}N_2O_4$	<u>62.96</u> 63.13	<u>6.82</u> 6.97	<u>9.23</u> 8.80	120–121	0.48	71

Характеристики синтезированных соединений

ряда оказались 1-{[2-(4-хлорфенокси)этокси]метил}- (11) и 1-{[2-(4-метилфенокси)этокси]метил}- (17) производные 5-бром-6-метилурацила, 728

которые ингибировали репродукцию ВИЧ-1 на 50 % в концентрации 7.2 и 7.8 мкмоль/л соответственно. Однако за счет относительно высокой токсичности их индекс селективности был равен 4.3 и 7.7. На порядок менее активными были производные урацила: $1-\{[2-(4-хлорфенокси)-этокси]метил\}-(7)$ и $1-\{[2-(4-метилфенокси)этокси]метил\}урацил (13), имеющие <math>EC_{50}$ 23.7 и 16.1 мкмоль/л, соответственно, но вследствие более низкой токсичности индекс селективности этих соединений сопоставим с индексом соединений 11 и 17. Остальные соединения оказались либо неактивными в отношении ВИЧ-1, либо показали слабое вирусинги-бирующее действие (табл. 2).

Таблица 2

Соеди- нение	<i>EC</i> ₅₀ , <i>TC</i> ₅₀ , <i>мкмоль/л*</i>		Индекс селективности, <i>TC</i> ₅₀ / <i>EC</i> ₅₀	
7	23.7	>100.0	> 4.2	
8	>100.0	48.2	_	
9	50.9	>100.0	> 2.0	
10	>100.0	>100.0	-	
11	>100.0	96.3	-	
12	7.2	31.1	4.3	
13	16.1	>100.0	> 6.2	
14	69.1	>100.0	> 1.5	
15	>100.0	>100.0	_	
16	>100.0	>100.0	-	
17	76.8	>100.0	> 1.3	
18	7.8	60.0	7.7	
19	>100.0	19.8	-	

Анти-ВИЧ-1 активность синтезированных соединений in vitro

* *EC*₅₀ – эффективная концентрация, обеспечивающая защиту клеток от цитопатического эффекта вируса на 50 %.

** TC_{50} – цитотоксическая концентрация, снижающая выживаемость неинфицированных клеток на 50 %.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на спектрометре Bruker DRX-500 (500 МГц) в CCl₄ (соединения **5** и **6**) и ДМСО-d₆ (соединения **7–19**), внутренний стандарт ТМС. Интерпретацию спектров осуществляли с помощью лицензионной программы ACD/HNMR Predictor Pro 3.0 фирмы Advanced Chemistry Development (Канада). Масс-спектры регистрировали на спектрометре Varian MAT-111 (прямой ввод, ионизация методом ЭУ, 70 эВ). ТСХ выполняли на пластинах Silufol UV-254 в системе этилацетат–хлороформ, 1:1, проявление в парах иода. Температуры плавления измеряли в стеклянных капиллярах на приборе Mel-Temp 3.0 (Laboratory Devices Inc., США).

2-(4-Хлорфенокси)этоксиметилхлорид (5). Через перемешиваемую смесь 19.1 г (0.111 моль) 2-(4-хлорфенокси)этанола (3) и 3.5 г (0.117 моль) параформа в 100 мл

безводного метиленхлорида при 0–5 °C в течение 2 ч пропускают ток сухого хлористого водорода. Органический слой отделяют, сушат CaCl₂, фильтруют, фильтрат упаривают в вакууме и получают 22.6 г (92%) соединения **5** в виде вязкой жидкости, которую далее используют без дополнительной очистки. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 3.66 (2H, т, *J* = 7, CH₂O); 3.96 (2H, т, *J* = 7, CH₂OAr); 5.41 (2H, c, CH₂Cl); 6.96–7.31 (4H, м, аром. H).

2-(4-Метилфенокси)этоксиметилхлорид (6) получают аналогично, выход 90%. Спектр ЯМР ¹Н , δ, м. д. (*J*, Гц): 2.11 (3H, с, 4-CH₃); 3.72 (2H, т, *J* = 7, CH₂O); 4.10 (2H, т, *J* = 7, CH₂OAr); 5.51 (2H, с, CH₂Cl); 6.66–6.98 (4H, м, аром. Н).

1-{[2-(4-Хлорфенокси)этокси]метил}урацил (7). К раствору 2.75 г (10.72 ммоль) 2,4-бис(триметилсилокси)пиримидина в 30 мл безводного метиленхлорида добавляют раствор 2.4 г (10.86 ммоль) хлорэфира 5 в 20 мл метиленхлорида и перемешивают 1 сут при ~20 °С. Добавляют 10 мл 95% этанола, перемешивают 30 мин, фильтруют, фильтрат упаривают в вакууме досуха. Полученный твердый остаток хроматографируют на колонке с силикагелем (2 × 35 см), элюируют смесью хлороформ-метанол, 10 : 1. Фракции, содержащие целевое соединение, объединяют и упаривают в вакууме, остаток перекристаллизовывают из этилацетата и получают 1.9 г (60%) соединения 7 в виде белого мелкокристаллического вещества, т. пл. 126–127 °С, R_f 0.16 (этилацетат–хлороформ, 1 : 1). Спектр ЯМР ¹Н, δ , м. д. (J, Гц): 3.81 (2H, т, J = 6, <u>СН</u>₂СН₂ОАг); 4.08 (2H, т, J = 6, CH₂OAr); 5.14 (2H, с, NCH₂); 5.60 (1H, д, J = 8, H-5); 6.92–7.32 (4H, м, аром. H); 7.66 (1H, д, J = 8, H-6); 11.06 (1H, уш. с, NH). Масс-спектр, m/z: 296 [M]⁺.

Соединения 8–19 получают аналогично.

5-Бром-1-{[2-(4-хлорфенокси)этокси]метил}урацил (8). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 3.82 (2H, т, *J* = 6, <u>CH</u>₂CH₂OAr); 4.09 (2H, т, *J* = 6, CH₂OAr); 5.14 (2H, с, NCH₂); 6.91–7.32 (4H, м, аром. Н); 8.20 (1H, с, H-6); 11.64 (1H, уш. с, NH). Масс-спектр, *m/z*: 375 [M]⁺.

1-{[2-(4-Хлорфенокси)этокси]метил}тимин (9). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.78 (3H, с, CH₃); 3.81 (2H, т, *J* = 6, <u>CH</u>₂CH₂OAr); 4.08 (2H, т, *J* = 6, CH₂OAr); 5.12 (2H, с, NCH₂); 6.90–7.31 (4H, м, аром. Н), 7.56 (1H, с, H-6); 11.26 (1H, уш. с, NH). Масс-спектр, *m/z*: 310 [М]⁺.

6-Метил-1-{[2-(4-хлорфенокси)этокси]метил}урацил (10). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.27 (3H, с, 6-СН₃); 3.81 (2H, т, *J* = 6, <u>CH</u>₂CH₂OAr); 4.09 (2H, т, *J* = 6, CH₂OAr); 5.30 (2H, с, NCH₂); 5.53 (1H, с, H-5); 6.91–7.33 (4H, м, C₆H₄); 11.18 (1H, уш. с, 3-NH). Масс-спектр, *m/z*: 310 [M]⁺.

5-Бром-6-метил-1-{[2-(4-хлорфенокси)этокси]метил}урацил (11). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.36 (3H, с, CH₃); 3.82 (2H, т, *J* = 6, <u>CH₂CH₂OAr</u>); 4.10 (2H, т, *J* = 6, CH₂OAr); 5.31 (2H, с, NCH₂); 6.90–7.32 (4H, м, аром. H); 11.49 (1H, уш. с, NH). Масс-спектр, *m/z*: 389 [M]⁺.

5,6-Диметил-1-{[2-(4-хлорфенокси)этокси]метил}урацил (12). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.81 (3H, с, 5-CH₃); 2.26 (3H, с, 6-CH₃); 3.81 (2H, т, *J* = 6, <u>CH₂CH₂OAr</u>); 4.09 (2H, т, *J* = 6, CH₂OAr); 5.32 (2H, с, NCH₂); 6.90–7.32 (4H, м, C₆H₄); 11.21 (1H, уш. с, 3-NH). Масс-спектр, *m/z*: 324 [M]⁺.

1-{[2-(4-Метилфенокси)этокси]метил}урацил (13). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.22 (3H, с, CH₃); 3.81 (2H, т, *J* = 6, <u>CH₂CH₂OAr</u>); 4.04 (2H, т, *J* = 6, <u>CH₂OAr</u>); 5.12 (2H, с, NCH₂); 5.58 (1H, д, *J* = 8, H-5); 6.77–7.05 (4H, м, аром. Н); 7.68 (1H, с, H-6); 11.14 (1H, уш. с, NH). Масс-спектр, *m/z*: 276 [M]⁺.

5-Бром-1-{[2-(4-метилфенокси)этокси]метил}урацил (14). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.21 (3H, с, 4-CH₃); 3.84 (2H, т, *J* = 6, <u>CH₂CH₂OAr</u>); 4.04 (2H, т, *J* = 6, CH₂OAr); 5.15 (2H, с, NCH₂); 6.78–7.09 (4H, м, C₆H₄); 8.25 (1H, с, H-6); 11.76 (1H, уш. с, 3-NH). Массспектр, *m/z*: 354 [M]⁺.

1-{[2-(4-Метилфенокси)этокси]метил}тимин (**15**). Спектр ЯМР ¹H, δ, м. д.: 1.77 (3H, c, 5-CH₃); 2.22 (3H, c, 4-CH₃); 3.81 (2H, т, *J* = 6, <u>CH</u>₂CH₂OAr); 4.04 (2H, т, *J* = 6, CH₂OAr); 5.11 (2H, c, NCH₂); 6.78–7.07 (4H, м, аром. H); 7.54 (1H, c, H-6); 11.22 (1H, уш. c, 3-NH). Масс-спектр, *m/z*: 290 [М]⁺.

6-Метил-1-{[2-(4-метилфенокси)этокси]метил}урацил (16). Спектр ЯМР ¹Н, δ, м. д.: 2.22 (3H, с, 4-CH₃); 2.28 (3H, с, 6-CH₃); 3.80 (2H, т, *J* = 6, <u>CH₂CH₂OAr</u>); 4.05 (2H, т, *J* = 6, CH₂OAr); 5.30 (2H, с, NCH₂); 5.52 (1H, с, H-5); 6.80–7.06 (4H, м, аром. Н); 11.15 (1H, уш. с, 3-NH). Масс-спектр, *m/z*: 290 [M]⁺.

5-Бром-6-метил-1-{[2-(4-метилфенокси)этокси]метил}урацил (17). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.21 (3H, с, CH₃); 2.35 (3H, с, 6-CH₃); 3.81 (2H, т, *J* = 6, <u>CH₂CH₂OAr</u>); 4.07 (2H, т, *J* = 6, CH₂OAr); 5.30 (2H, с, NCH₂); 6.81–7.07 (4H, м, аром. H); 11.29 (1H, уш. с, NH). 730 Масс-спектр, *m/z*: 369 [M]⁺.

5,6-Диметил-1-{[2-(4-метилфенокси)этокси]метил}урацил (**18**). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.82 (3H, с, 5-CH₃); 2.22 (3H, с, 4-CH₃); 2.28 (3H, с, 6-CH₃); 3.79 (2H, т, *J* = 6, <u>CH₂CH₂OAr</u>); 4.03 (2H, т, *J* = 6, CH₂OAr); 5.32 (2H, с, NCH₂); 6.75–7.06 (4H, м, аром. H); 11.21 (1H, уш. с, 3-NH). Масс-спектр, *m/z*: 304 [M]⁺.

6-Метил-1-{[2-(4-метилфенокси)этокси]метил}-5-этилурацил (19). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.09 (3H, т, *J* = 7, CH₃); 2.34 (3H, c, CH₃); 2.50 (3H, c, 6-CH₃); 2.58 (2H, к, *J* = 7, CH₂); 3.81 (2H, т, *J* = 6, <u>CH₂CH₂OAr</u>); 3.94 (2H, т, *J* = 6, CH₂OAr); 5.31 (2H, c, NCH₂); 6.80–7.05 (4H, м, аром. H); 11.27 (1H, уш. с, NH). Масс-спектр, *m/z*: 318 [M]⁺.

СПИСОК ЛИТЕРАТУРЫ

- F. Barre-Sinoussi, J. C. Chermann, F. Rey, M. T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vezinet-Brun, C. Rouzioux, W. Rozenbaum, L. Montagnier, *Science*, 220, 868 (1983).
- R. S. Gallo, S. Z. Salahuddin, M. Popovic, G. M. Shearer, M. Kaplan, B. F. Haynes, T. J. Palker, R. Redfield, J. Oleske, B. Safai, G. White, P. Foster, P. D. Markham, *Science*, 224, 500 (1984).
- 3. H. A. J. Jonckheere, E. De Clercq, Med. Res. Rev., 20, 129 (2000).
- 4. M. S. Hirsch, Antiviral Ther., 2, Suppl. 4, 1423 (1997).
- J. Ren, R. Esnouf, E. Garman, D. Somers, C. Ross, I. Kirby, J. Keeling, G. Darby, Y. Jones, D. Stuart, D. Stammers, *Struct. Biol.*, 2, 293 (1995).
- 6. J. Ren, R. Esnouf, A. L. Hopkins, C. Ross, Y. Jones, D. Stammers, D. Stuart, *Structure*, **3**, 915 (1995).
- J. Ding, K. Das, H. Moereels, L. Koymans, K. Andries, P. A. J. Janssen, S. H. Hughes, E. Arnold, Struct. Biol., 2, 407 (1995).
- J. Ding, K. Das, C. Tantillo, W. Zhang, A. D. Clark, S. Jesser, X. Lu, Y. Hsiou, A. Jacobo-Molina, K. Andries, R. Pauwels, H. Moereels, L. Koymans, P. A. J. Janssen, R. H. Smith, K. M. Kroeger, C. J. Michejda, S. H. Hughes, E. Arnold, *Structure*, **3**, 365 (1995).
- A. L. Hopkins, J. Ren, R. Esnouf, B. E. Willcox, Y. Jones, C. Ross, T. Miyasaka, R. T. Walker, H. Tanaka, D. Stammers, D. Stuart, J. Med. Chem., 39, 1589 (1996).
- М. С. Новиков, А. А. Озеров, А. К. Брель, Г. Н. Солодунова, Т. П. Озерова, XTC, 380 (1996).

Научно-исследовательский институт фармакологии Волгоградского государственного медицинского университета, Волгоград 400131, Россия e-mail: ozerov@vlink.ru Поступило в редакцию 24.09.2003

^aTherImmune Research Corp., Meriland, USA