В. Ю. Орлов, А. Д. Котов, Т. Н. Орлова, В. В. Ганжа

ИССЛЕДОВАНИЕ СТРОЕНИЯ 5-R-3-АРИЛ-2,1-БЕНЗИЗОКСАЗОЛОВ (АНТРАНИЛОВ) МЕТОДОМ СПЕКТРОСКОПИИ ЯМР ¹Н

Установлено, что особенностью спектров ЯМР ¹Н 5-R-3-арил-2,1-бензизоксазолов является сильное различие значений химических сдвигов протонов H(4), H(6) и H(7) 2,1-бензизоксазольной системы для каждого из соединений при сохранении общей картины спектра всего рассмотренного ряда. Показано, что влияние гетероцикла на арильный остаток в положении 3 эквивалентно влиянию электроноакцепторной группы средней силы.

Ключевые слова: антранилы, 2,1-бензизоксазолы, спектр ЯМР ¹Н, химический сдвиг.

Постоянно возрастающий интерес к гетероциклическим соединениям связан, в основном, с их повышенной биологической активностью, а также с тем, что они обеспечивают создаваемым на их основе новым материалам уникальные свойства. Одним из очень интересных и перспективных классов гетероциклов являются 2,1-бензизоксазолы, или антранилы [1]. Ранее нами сообщалось об особенностях синтеза гетероциклических соединений ряда 5-R-3-арил-2,1-бензизоксазолов [2–4]. Известно, что они служат исходными для получения гетероциклических продуктов других классов, а также являются промежуточными соединениями при синтезе мономеров [5, 6]. Однако строение и свойства 2,1-бензизоксазолов изучены явно недостаточно. В представленной работе проведено подробное исследование характеристик спектров ЯМР ¹Н ряда 5-R-3-арил-2,1-бензизоксазолов. Значения химических сдвигов и констант спин-спинового взаимодействия (КССВ) протонов для антранилов приведены в таблице.

1-6 $R^1 = Cl, R^2 = X = H; \mathbf{1} R = Cl, \mathbf{2} R = Br, \mathbf{3} R = I, \mathbf{4} R = CHO, \mathbf{5} R = 1,3-диоксолан-2-ил,$ **6**R = 2-метил-1,3-диоксолан-2-ил;**7** $<math>R^1 = Me, R^2 = X = H, R = Cl; \mathbf{8}-\mathbf{10} R^1 = OMe, R^2 = X = H; \mathbf{8} R = Cl, \mathbf{9} R = Br, \mathbf{10} R = 1,3-диоксолан-2-ил; \mathbf{11} R^1 = X = OMe, R^2 = H, R = Cl; \mathbf{12} R^1 = R^2 = H, X = R = Cl; \mathbf{13}-\mathbf{18} R^1 = R^2 = X = H; \mathbf{13} R = Cl, \mathbf{14} R = Br, \mathbf{15} R = I, \mathbf{16} R = COOH,$

17 R = 1,3-диоксолан-2-ил, 18 R = 2-метил-1,3-диоксолан-2-ил, 19 R = $R^2 = Cl$, $R^1 = X = H$,

20
$$R^1 = R^2 = X = H, R = \begin{pmatrix} \frac{5}{5} & 6' \\ \frac{4''}{3' 2''} \end{pmatrix} C = C$$

Анализ спектров ЯМР ¹Н 2,1-бензизоксазолов 1–10 позволяет не только подтвердить строение синтезированных соединений, но и сделать однозначное отнесение сигналов протонов. Отличительной особенностью этих соединений является наличие в положении 3 антраниловой системы 4-замещенного фенильного заместителя. Протоны этого бензольного ядра, содержащего в *пара*-положении атом хлора (соединения 1–6), метильную (соединение 7) или метоксигруппу (соединения 8–10), проявляются в виде двух дублетов с *орто*-константами.

Главной особенностью спектров ЯМР ¹Н изученных соединений **1–20** (см. таблицу) является сильное различие в значениях химических сдвигов протонов H(4), H(6) и H(7) 2,1-бензизоксазольной системы по сравнению с ароматическими протонами групп 4-R-C₆H₄ в положении 3.

Сигнал, представляющий собой дублет с *мета*-константой, относится к протону H(4) [7] и находится в самом слабом поле для всех рассмотренных соединений. Сигнал протона H(6) представляет собой дублет дублетов с *орто*-константой (имеет наименьший химический сдвиг). Только для антранила **4** (см. таблицу) значения химических сдвигов протонов H(6) и H(7) совпадают из-за электронного влияния заместителя в положении 5 – альдегидной группы. Дублет с *орто*-константой в спектре ЯМР ¹Н принадлежит сигналу протона H(7) [7], и для соединений **1–10** химические сдвиги протона H(7) имеют практически одинаковые значения (7.54–7.72 м. д.), что соответствует промежуточному положению среди ароматических протонов антранилового цикла.

Следует отметить значительное влияние 2,1-бензизоксазольной системы на положение сигналов протонов бензольного ядра (Ar') – заместителя в положении 3 – оно эквивалентно влиянию электроноакцепторной группы средней силы [8]. Один из дублетов от протонов H(2') и H(6'), находящихся в *орто*-положении к 2,1-бензизоксазольному остатку, смещается в слабое поле; другой дублет от протонов H(3') и H(5') проявляется в более сильном поле. Влияние на положение сигналов этих протонов оказывает не только 2,1-бензизоксазольная система, но и заместитель в положении 5. Так, для соединения **4** значения химических сдвигов протонов (Ar') увеличены по сравнению с другими антранилами.

Узкие синглеты в спектрах ЯМР ¹Н исследованных соединений наблюдаются от алифатических групп для продуктов, содержащих диоксолановые кольца (б 3.8–4.12), метильную (б 1.63–2.45) и метоксигруппы (б 3.75–3.9 м. д.) (соединения **5–11**).

В соединении 11 сказывается влияние двух метоксигрупп в арильном заместителе на химические сдвиги ароматических протонов 2,1-бензизоксазольной системы таким образом, что величины δ протонов H(4), H(6), H(7) снижаются и разница в значениях химических сдвигов между ними тоже уменьшается. Введение двух заместителей в Ar' превращает спектр ЯМР ¹Н в трехспиновую систему ABC (таблица).

Мультиплетность сигналов ароматических протонов (Ar') увеличивается для продукта **12** в связи с тем, что атом хлора находится в *мета*-, а не в *пара*-положении к гетероатомному циклу.

Соеди- нение	Химические сдвиги протонов, б, м. д. (Ј, Гц)				
	Н(4), д	Н(6), д. д	Н(7), д	другие сигналы	
1	$8.1 \\ (J_{4-6} = 2.8, \ J_{4-7} = 1.2)$	$7.3 \\ (J_{6-4} = 2.8, J_{6-7} = 8.9)$	$7.7 (J_{7-4} = 1.2, J_{7-6} = 8.9)$	8.1 (2H, д, <i>J</i> _{2'3'} = 8.3, H-2',6'); 7.6 (2H, д, <i>J</i> _{5'6'} = 8.3, H-3',5')	
2	$8.30 (J_{4-6} = 2.1, J_{4-7} = 1.5)$	$7.4 (J_{6-4} = 2.1, J_{6-7} = 8.3)$	$7.6 (J_{7-4} = 1.5, J_{7-6} = 8.8)$	8.1 (2H, д, <i>J</i> _{2'.3} = 8.8, H-2',6'); 7.6 (2H, д, <i>J</i> _{5'.6'} = 8.8, H-3',5')	
3	$8.5 (J_{4-6} = 2.9, J_{4-7} = 1.4)$	$7.5 (J_{6-4} = 2.9, J_{6-7} = 8.3)$	$7.6 (J_{7-4} = 1.4, J_{7-6} = 8.3)$	8.1 (2H, д, <i>J</i> _{2'.3'} = 9.3, H-2',6'); 7.6 (2H, д, <i>J</i> _{5'.6'} = 9.3, H-3',5')	
4	$8.9 (J_{4-6} = 2.1, J_{4-7} = 1.2)$	$7.7 (J_{6-4} = 2.1, J_{6-7} = 8.7)$	$7.7 (J_{7-4} = 1.2, J_{7-6} = 8.7)$	8.2 (2H, д, <i>J</i> _{2'-3'} = 8.7, H-2',6'); 7.7 (2H, д, <i>J</i> _{5'-6'} = 8.7, H-3',5')	
5	$8.0 (J_{4-6} = 2.7, J_{4-7} = 1.4)$	$7.4 (J_{6-4} = 2.7, J_{6-7} = 9.5)$	$7.6 (J_{7-4} = 1.4, J_{7-6} = 9.5)$	8.1 (2H, д, <i>J</i> _{2'.3'} = 8.2, H-2',6'); 7.6 (2H, д, <i>J</i> _{5'.6'} = 8.2, H-3',5'); 5.8 (1H, с, CH); 4.0–4.1 (4H, м, CH ₂ O)	
6	$7.9 \\ (J_{4-6} = 2.7, J_{4-7} = 1.4)$	$7.4 (J_{6-4} = 2.7, J_{6-7} = 9.5)$	$7.6 (J_{7-4} = 1.4, J_{7-6} = 9.5)$	8.0 (2H, д, <i>J</i> _{2'-3'} = 8.2, H-2',6'); 7.6 (2H, д, <i>J</i> _{5'-6'} = 8.2, H-3',5'); 3.8–4.0 (4H, м, CH ₂ O); 1.63 (3H, с, CH ₃)	
7	$8.1 (J_{4-6} = 2.8, J_{4-7} = 1.3)$	$7.3 \\ (J_{6-4} = 2.8, J_{6-7} = 8.9)$	$7.7 (J_{7-4} = 1.3, J_{7-6} = 8.9)$	7.9 (2H, д, <i>J</i> _{2'-3'} = 8.3, H-2',6'); 7.4 (2H, д, <i>J</i> _{5'-6'} = 8.3, H-3',5'); 2.4 (3H, с, CH ₃)	
8	$7.9 \\ (J_{4-6} = 2.6, J_{4-7} = 1.0)$	$7.2 (J_{6-4} = 2.6, J_{6-7} = 10.4)$	$7.5 (J_{7-4} = 1.0, J_{7-6} = 10.4)$	7.9 (2H, д, <i>J</i> _{2'-3'} = 8.8, H-2',6'); 7.1 (2H, д, <i>J</i> _{5'-6'} = 8.8, H-3',5'); 3.7 (3H, с, OCH ₃)	
9	$8.2 \\ (J_{4-6} = 1.3, J_{4-7} = 1.0)$	$7.4 (J_{6-4} = 1.3, J_{6-7} = 8.5)$	$7.6 (J_{7-4} = 1.0, J_{7-6} = 8.5)$	8.0 (2H, д, <i>J</i> _{2'-3'} = 8.3, H-2',6'); 7.1 (2H, д, <i>J</i> _{5'-6'} = 8.3, H-3',5'); 3.9 (3H, с, OCH ₃)	

Спектры ЯМР ¹Н антранилов в ДМСО-d₆

10	$7.9 (J_{4-6} = 2.7, J_{4-7} = 1.4)$	$7.3 \\ (J_{6.4} = 2.7, J_{6.7} = 10.0)$	$7.5 (J_{7.4} = 1.4, J_{7.6} = 10.0)$	7.9 (2H, д, <i>J</i> _{2'.3'} = 10.0, H-2',6'); 7.6 (2H, д, <i>J</i> _{5'.6'} = 10.0, H-3',5'); 5.7 (1H, c, CH); 3.9–4.1 (4H, м, CH ₂ O); 2.4 (3H, c, OCH ₃)
11	$7.9 \\ (J_{4-6} = 1.2, J_{4-7} = 0.6)$	$7.6 (J_{6-4} = 1.2, J_{6-7} = 8.3)$	$7.5 (J_{7-4} = 0.6, J_{7-6} = 8.3)$	7.4 (1H, μ , $J_{2^{\circ}-6^{\circ}} = 2.1$, $J_{2^{\circ}-5^{\circ}} = 0.6$, H-2'); 7.2 (1H, μ . μ , $J_{6^{\circ}-2^{\circ}} = 2.1$, $J_{6^{\circ}-5^{\circ}} = 8.3$, H-6'); 7.0 (1H, μ , $J_{5^{\circ}-2^{\circ}} = 0.6$, $J_{5^{\circ}-6^{\circ}} = 8.3$, H-5')
12	$8.2 (J_{4-6} = 3.0, J_{4-7} = 2.0)$	$7.4 (J_{6.4} = 3.0, J_{6.7} = 9.3)$	$7.7 (J_{7-4} = 2.0, J_{7-6} = 9.3)$	8.1 (2H, M, $J_{2'.6'} = J_{2'.4'} = 3.0$, $J_{5'.2'} = 1.0$, $J_{6'.5'} = 9.2$, $J_{6'.2'} = J_{6'.4'} = 3.0$, H-2',6'); 7.6 (2H, M, $J_{5'.4'} = 9.2$, $J_{5'.2'} = 1.0$, H-5',4')
13	$8.1 (J_{4-6} = 2.8, J_{4-7} = 1.3)$	$7.3 \\ (J_{6-4} = 2.8, J_{6-7} = 8.9)$	$7.7 (J_{7-4} = 1.3, J_{7-6} = 8.9)$	8.1 (2Н, д. д, <i>J</i> _{2'-3'} = 7.8, H-2',6'); 7.6 (3Н, м, <i>J</i> _{5'-6'} = <i>J</i> _{5'-4'} = 7.8, H-3',5',4')
14	$8.3 \\ (J_{4-6} = 2.2, J_{4-7} = 1.2)$	$7.4 \\ (J_{6-4} = 2.2, J_{6-7} = 8.3)$	$7.6 (J_{7-4} = 1.2, J_{7-6} = 8.3)$	8.1 (2Н, д. д, <i>J</i> _{2'-3'} = 8.9, H-2',6'); 7.6 (3Н, м, <i>J</i> _{5'-6'} = <i>J</i> _{5'-4'} = 8.9, H-3',5',4')
15	$8.5 (J_{4-6} = 2.7, J_{4-7} = 1.3)$	$7.5 (J_{6-4} = 2.7, J_{6-7} = 8.0)$	$7.6 (J_{7-4} = 1.3, J_{7-6} = 8.0)$	8.1 (2Н, д. д, <i>J</i> _{2'-3'} = 7.8, H-2',6'); 7.6 (3Н, м, <i>J</i> _{5'-6'} = <i>J</i> _{5'-4'} = 7.8, H-3',5',4')
16	$8.6 (J_{4-6} = 3.0, J_{4-7} = 1.2)$	$7.6 (J_{6-4} = 3.0, J_{6-7} = 9.0)$	$7.8 \\ (J_{7-4} = 1.2, J_{7-6} = 9.0)$	8.1 (2Н, д. д, <i>J</i> _{2'-3'} = 8.3, H-2',6'); 7.6 (3Н, м, <i>J</i> _{5'-6'} = <i>J</i> _{5'-4'} = 8.3, H-3',5',4'); 13.0 (1Н, с, СООН)
17	$8.0 (J_{4-6} = 3.0, J_{4-7} = 1.2)$	$7.4 (J_{6-4} = 3.0, J_{6-7} = 8.6)$	$7.6 (J_{7-4} = 1.2, J_{7-6} = 8.6)$	8.0 (2H, д. д, <i>J</i> _{2'-3'} = 8.4, H-2',6'); 7.6 (3H, м, <i>J</i> _{5'-6'} = <i>J</i> _{5'-4'} = 8.4, H-3',5',4'); 5.8 (1H, с, CH); 4.1–4.0 (4H, м, CH ₂ O)
18	$8.0 (J_{4-6} = 3.0, J_{4-7} = 1.2)$	$7.4 (J_{6-4} = 3.0, J_{6-7} = 8.6)$	$7.6 (J_{7-4} = 1.2, J_{7-6} = 8.6)$	8.0 (2H, д. д, <i>J</i> _{2'-3'} = 8.3, H-2',6'); 7.6 (3H, м, <i>J</i> _{5'-6'} = <i>J</i> _{5'-4'} = 8.3, H-3',5',4'); 1.6 (3H, с, CH ₃); 4.0–3.8 (4H, м, CH ₂ O)
19	8.4 $(J_{4.7} = 1.1)$	_	8.0 ($J_{7-4} = 1.1$)	8.1 (2H, д. д, <i>J</i> _{2'-3'} = 8.4, H-2',6'); 7.6 (3H, м, <i>J</i> _{5'-6'} = <i>J</i> _{5'-4'} = 8.4, H-3',5',4')
20	$8.3 (J_{4-6} = 2.2, J_{4-7} = 1.2)$	$7.6 (J_{6.4} = 2.2, J_{6.7} = 9.0)$	$7.4 (J_{7.4} = 1.2, J_{7.6} = 9.0)$	8.0 (2H, д. д, <i>J</i> _{2'-3'} = 8.4, H-2',6'); 7.6 (3H, м, <i>J</i> _{5'-6'} = <i>J</i> _{5'-4'} = 8.4, H-3',5',4'); 7.4–7.5 (5H, м, H-2'',3'',4'',5'',6'')

Соединения 13–20 содержат в положении 3 фенильный заместитель. Это несколько усложняет спектр ЯМР ¹Н, так как вместо двух дублетов с *орто*-константами наблюдается более сложная система сигналов от ароматических протонов (Ar').

Электронное влияние 2,1-бензизоксазольной системы на положение сигналов протонов арильного заместителя в положении 3 сохраняется для всех изученных антранилов.

Таким образом, изучив характеристики спектров ЯМР ¹Н соединений 1–20, можно сделать вывод, что структурные изменения приводят к значительному (до 1.15 м. д.) различию химических сдвигов сигналов протонов. Информативные спектры ЯМР ¹Н исследованных антранилов имеют общие черты: в слабом поле с наибольшим значением химического сдвига проявляется протон H(4) – дублет дублетов с *мета*-константой, с наименьшим значением – дублет дублетов H(6) с *орто*-константой, а промежуточное положение среди ароматических протонов 2,1-бензизоксазольной системы характерно для дублета с *орто*-константой – протона H(7). Влияние антранильной системы эквивалентно влиянию электроноакцепторной группы средней силы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2,1-Бензизоксазолы (антранилы) получены по методике работы [2]. Спектры ЯМР 1 Н сняты на спектрометре Bruker AC-300 (300 МГц) в ДМСО-d₆ относительно ГМДС.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Г. Граник, В. М. Печенина, Н. А. Мухина, Хим.-фарм. журн., 25, № 1, 57 (1991).
- В. Ю. Орлов, А. Д. Котов, Е. Б. Быстрякова, В. В. Копейкин, Г. С. Миронов, *ЖОрХ*, 30, 1407 (1994).
- 3. В. Ю. Орлов, А. Д. Котов, Я. В. Соковиков, А. А. Стариков, *ЖОрХ*, **36**, 1788 (2000).
- 4. В. Ю. Орлов, А. Д. Котов, Я. В. Соковиков, *ЖОрХ*, **38**, 108 (2002).
- 5. P. D. Sybert, W. H. Beever, J. K. Stille, Macromolecules, 14, 493 (1981).
- 6. J. K. Stille, R. M. Harris, S. M. Padaki, *Macromolecules*, 14, 486 (1981).
- 7. Х. Гюнтер, Введение в курс спектроскопии ЯМР, Мир, Москва, 1984, 478 с.
- 8. J. Beeby, S. Sternhell, Hoffmann-Ostenhof, E. Pretsch, W. Simon, *Anal. Chem.*, **45**, 1572 (1973).

Ярославский государственный университет им. П. Г. Демидова, Ярославль 150000, Россия e-mail: orl@bio.uniyar.ac.ru Поступило в редакцию 20.12.2002