В. А. Глушков, В. И. Карманов, Ю. В. Шкляев

СИММЕТРИЧНЫЕ И НЕСИММЕТРИЧНЫЕ ЗАМЕЩЕННЫЕ БИ-1,1'-(3,4-ДИГИДРОИЗОХИНОЛИНЫ)

3,3-Диалкил-1-циано-3,4-дигидроизохинолины, полученные дефрагментацией по Бекману этиловых эфиров α-(3,3-диалкил-3,4-дигидроизохинолил-1)-α-оксиминоуксусных кислот, вступают в реакцию Риттера с образованием замещенных би-1,1'-(3,4-дигидроизохинолинов).

Ключевые слова: би-1,1'-изохинолины, изохинолин, нитрилы, оксимы, перегруппировка Бекмана, реакция Риттера.

Би-1,1'-изохинолины как гетероциклические аналоги 1,1'-бинафтильных систем являются перспективными лигандами для получения металлокомплексных катализаторов, поскольку у них имеется возможность координации с металлом по атомам азота [1]. Известен способ получения би-1,1'-изохинолинов по Ульману [2], причем 3,4-дигидропроизводные в этих условиях не образуются и являются сравнительно труднодоступными соединениями. Незамещенные по положению 3 би-1,1'-(3,4-дигидроизохинолины) были получены ранее по реакции Бишлера–Напиральского при действии на соответствующий оксамид POCl₃ в ацетонитриле [3] или Tf₂O в присутствии 4-N,N-диметиламинопиридина [4]. В данной работе предлагается подход к би-1,1'-(3,4дигидроизохинолинам), основанный на реакции Риттера [5, 6].

Из этиловых эфиров α -(3,3-диалкил-3,4-дигидроизохинолил-1)- α -оксиминоуксусных кислот **1а**-**с** перегруппировкой Бекмана второго рода [7, 8] по методике [9, 10] были получены нитрилы **2а**-**с**. Несмотря на простоту, следует отметить недостаточную воспроизводимость указанной методики в нашем случае: выходы продуктов **2** сильно различались от опыта к опыту.

Нитрил **2a** был получен также дегидратацией 3,3-диметил-3,4дигидроизохинолилальдоксима **3** [11] в кипящем ксилоле по известному методу [12] (см. экспериментальную часть, гидрохлорид **3**[•]HCl описан в работе [13]).

Из нитрилов **2а-с** и карбинолов **4а-с** по реакции Риттера (перемешивание реагентов в смеси толуола и конц. H₂SO₄ при 20 °C) с выходами 42–71% были синтезированы соединения **5а-е** (табл. 1 и 2). Согласно схеме, возможна любая комбинация нитрила и карбинола, что приводит

1, 2 a
$$R^1 = H$$
, $R^2 = Me$; **b** $R^1 = OMe$, $R^2 = Me$; **c** $R^1 = H$, $R^2 + R^2 = (CH_2)_5$;
4 a $R^3 = Me$, $R^4 = H$; **b** $R^3 = Me$, $R^4 = OMe$, **c** $R^3 + R^3 = (CH_2)_5$, $R^4 = H$;
5 a $R^1 = R^4 = H$, $R^2 = R^3 = Me$; **b** $R^1 = H$, $R^2 = R^3 = Me$, $R^4 = OMe$;
c $R^1 = R^4 = OMe$, $R^2 = R^3 = Me$; **d** $R^1 = R^4 = H$, $R^2 = Me$, $R^3 + R^3 = (CH_2)_5$;
e $R^1 = OMe$, $R^2 = Me$, $R^3 + R^3 = (CH_2)_5$, $R^4 = H$

как к симметричным, так и несимметричным замещенным би-1,1'-(3,4дигидроизохинолинам) **5**. Соединение **5с** было также получено с несколько меньшим выходом (37%) конденсацией нитрила **2b** с вератролом и оксидом изобутилена по методике [14].

Особенностью спектра ЯМР ¹Н соединения **5b** является незначительный сдвиг сигнала H-8 6,7-диметоксизамещенного цикла в сильное поле на ~0.2 м. д. по сравнению с сигналом H-8 1-метил-6,7-диметокси-3,3-диметил-3,4-дигидроизохинолина [14], обусловленный анизотропным влиянием соседнего 3,4-дигидроизохинолинового фрагмента. Подобный сильнопольный сдвиг под действием бензольного ядра ранее наблюдался нами в случае 1-фенил-6,7-диметокси-3,3-диметил-3,4-дигидроизохинолина [14].

Соеди-	Брутто-]	<u>Найдено,</u> % Вычислено, %	0	Т. пл., °С (растворитель	Выход,
нение	формула	С	Н	Ν	для кристаллизации)	(метод)
2a	$C_{12}H_{12}N_2$	<u>78.37</u> 78.23	<u>6.64</u> 6.56	<u>15.03</u> 15.20	56–58 (ДМФА-вода)	76 (А) 36 (Б)
2b	$C_{14}H_{16}N_2O_2$	<u>68.91</u> 68.83	<u>6.56</u> 6.60	<u>11.30</u> 11.47	85–86 (гексан)	96
2c	$C_{15}H_{16}N_2$	<u>80.70</u> 80.32	<u>7.22</u> 7.19	<u>12.65</u> 12.49	53–55 (петролейный эфир)	88
5a	$C_{22}H_{24}N_2$	<u>83.79</u> 83.50	<u>7.82</u> 7.64	<u>9.07</u> 8.85	119–121 (МеОН–вода)	49
5b	$C_{24}H_{28}N_2O_2$	<u>75.52</u> 75.56	<u>7.55</u> 7.50	<u>7.47</u> 7.44	157–158 (МеОН–вода)	59
5c	$C_{26}H_{32}N_2O_4$	<u>72.03</u> 71.53	<u>6.55</u> 6.47	<u>6.70</u> 6.41	189–190 (ЕtOH–вода)	60 (А) 37 (Б)
5d	$C_{25}H_{28}N_2$	<u>84.04</u> 84.22	<u>7.88</u> 7.92	<u>7.91</u> 7.86	131–132 (МеОН–вода)	71
5e	$C_{27}H_{32}N_2O_2$	<u>77.91</u> 77.85	<u>7.60</u> 7.74	<u>6.83</u> 6.72	125–127 (гексан)	32

Характеристики соединений 2а-с, 5а-е

Вследствие трансаннулярного взаимодействия между протонами H-8 и H-8' молекула би-1,1'-изохинолина в целом не плоская, хотя барьер вращения ее бициклических фрагментов недостаточен для того, чтобы можно было выделить атропоизомеры [15]. Зафиксировать последние позволяет комплексообразование с Ru(II) или Os(II) [16, 17]. Введение заместителей в положение 8 повышает энергетический барьер вращения, и поэтому у 8,8'-диалкил-1,1'-биизохинолинов также удается зафиксировать атропоизомеры [18–20].

Для выяснения вопроса о пространственном строении замещенных биизохинолинов 5а-е мы провели квантово-механические расчеты и РСА кристалла соединения 5а. Оптимизация геометрии по метолу молекулярной механики MM2 с последующей минимизацией энергии полуэмпирическим методом AM1 (пакет Hyperchem 5.01, trial version) [21] приводит к структуре, в которой оба изохинолиновых фрагмента почти перпендикулярны: угол между их плоскостями составляет 84.3° в случае соединения 5a и 81.4° в случае 5c, что близко к рассчитанному углу для 8,8'-диэтил-1,1'-биизохинолина (93.8°) [19]. Кристаллы соединения 5а принадлежат к пространственной группе 2C/c, Z = 8. По данным PCA, длина связи между двумя изохинолиновыми фрагментами соединения 5а составляет 1.513 Å, а угол между плоскостями этих фрагментов 90.0°. Подробные результаты РСА соединения 5а будут опубликованы в специальной статье.

Спектральные ха	рактеристики	соединений	2a-c.	5а-е
	part opinor mitting			

Сое- ди- не- ние	ИК спектр, v, см ⁻¹		Спектр Я	FIMP ¹ Η, δ,	М. Д.	Масс- спектр, [M] ⁺ (<i>I</i> _{отн} , %)
		R ¹ , R ⁴ (OCH ₃)*	R ² , R ³	2H-4 и 2H-4'	Н _{аром}	
2a	2235 (сл., C=N), 1680, 1600, 1565, 1275, 1255, 1205, 1175, 1120, 1040, 1030, 1020, 970, 950, 925	_	1.25 (6H, c, 2CH ₃)	2.83	7.28–7.68 (4Н, м)	184 (70)
2b	2340 (сл., C≡N), 1600, 1565, 1520, 1285, 1275, 1250, 1230, 1205, 1145, 1040, 980	3.83 (3H, c), 3.87 (3H, c)	1.21 (6H, c, 2CH ₃)	2.74	6.90 (1H, c, H-5), 7.05 (1H, c, H-8)	244 (78)
2c	2340 (сл., C≡N), 1685, 1600, 1565, 1340,1290, 1270, 1185, 1135, 1045, 1025, 980, 965	_	1.40–1.75 (10Н, м, 5СН ₂)	2.82	7.30–7.62 (4Н, м)	224 (100)
5a	1625, 1570 (сл.), 1245, 1175, 1040 (сл.), 940	_	1.26 (12H, c, 4CH ₃)	2.84	7.14–7.30 (6Н, м, H-5,5',6,6',7,7'), 7.39 (2Н, м, H-8,8')	316 (47)
5b	1605, 1565, 1515, 1275, 1250, 1230, 1200, 1175, 1155, 1130, 1110, 1060, 935, 845	3.60 (3H, c), 3.85 (3H, c)	1.23 (6H, c, 2CH ₃), 1.28 (6H, c, 2CH ₃)	2.75 2.83	6.82 (1H, c, H-5), 6.87 (1H, c, H-8), 7.18–7.23 (3H, m, H-5',6',7'), 7.37 (1H, m, H-8')	376 (58)
5c	1600, 1565, 1620, 1340, 1275 (c), 1235, 1200, 1125, 1035, 1005, 930, 910, 845	3.61 (6H, c), 3.83 (6H, c)	1.25 (12H, c, 4CH ₃)	2.72	6.83 (2H, c, H-5,5'), 6.87 (2H, c, H-8,8')	436 (34)
5d	1620, 1565, 1345, 1290, 1240, 1225, 1175, 980, 940	_	1.27 (6H, c, 2CH ₃), 1.50 (6H, м, 3CH ₂) 1.69 (4H, м, 2CH ₂)	2.84	7.13–7.30 (6Н, м, H-5,5',6,6',7,7'), 7.39 (2Н, м, H-8,8')	356 (100)
5e	1605, 1570, 1515, 1340, 1275, 1235, 1200, 1160, 1230, 1155, 1125, 1060, 1040 (сл.), 1000 (сл.), 930, 865	3.60 (3H, c), 3.84 (3H, c)	1.22 (6H, c, 2CH ₃), 1.50 (6H, м, 3CH ₂), 1.70 (4H, м, 2CH ₂)	2.74 (2H) 2.82 (2H)	6.82 (1H, c, H-5), 6.86 (1H, c, H-8), 7.15–7.28 (3H, м,H-5',6',7'), 7.35 (1H, м, H-8')	416 (100)

* Сигналы $R^1 = H$ и $R^4 = H$ указаны в графе $H_{\rm apom}.$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на приборе UR-20 для суспензий в вазелиновом масле, спектры ЯМР ¹Н – при 25 °C на спектрометре Bruker WM-250 (250 МГц) в ДМСО-d₆, внутренний стандарт ГМДС, $\delta = 0.05$ м. д. Масс-спектры снимали на приборе Finnigan МАТ в стандартных условиях (ЭУ, 70 эВ). Контроль за ходом реакций и чистотой полученных продуктов проводили с помощью ТСХ на пластинках Silufol в системе хлороформ–ацетон, 9:1, проявление 3% раствором хлоранила в толуоле.

Оксимы **1а,b** и **3** синтезированы и описаны ранее ([22], [23] и [11] соответственно). Карбинол **4a** – продукт фирмы Aldrich. Карбинолы **4b** и **4c** синтезировали по реакции Гриньяра, как описано ранее ([25] и [26] соответственно). Их характеристики совпадают с приведенными в литературе для образцов **4b** [27] и **4c** [26].

Этиловый эфир а-оксимино(3,3-пентаметилен-3,4-дигидроизохинолил-1)уксусной кислоты (1с) получают нитрозированием этилового эфира (3,3-пентаметилен-1,2,3,4тетрагидроизохинолилиден-1)уксусной кислоты [6] нитритом натрия в АсОН по известной методике [24]. Выход 65%. Т. пл. 138–139 °С (толуол–гексан). По данным спектра ЯМР ¹H, оксим 1с образуется в виде смеси (*Z*)- и (*E*)-изомеров (соотношение 4:3 или 3:4; какой изомер преобладает, не установлено). Спектр ЯМР ¹H, 6, м. д. (*J*, Гц): 1.20 и 1.24 (3H, два т, J = 7.2, CH₃); 1.30–1.72 (10H, м, 5CH₂); 2.67 и 2.73 (2H, два с, CH₂-4); 4.21 и 4.25 (2H, два к, J = 7.2, OCH₂); 7.00 и 7.95 (1H, два д, J = 9.0, H-8); 7.22–7.45 (3H, м, H-5,6,7); 12.15 и 12.31 (1H, два с, OH). Найдено, %: С 68.54; H 5.69; N 13.57. С₁₈H₂₂N₂O₃. Вычислено, %: С 68.77; H 5.77; N 13.36.

3,3-(R²)₂-1-Циано-6,7-(R¹)₂-3,4-дигидроизохинолины 2а-с. А. В 100 мл ацетона при 50 °С последовательно растворяют 2.74 г (10 ммоль) оксима **1а** и 1.90 г (10 ммоль) *п*-толуолсульфохлорида. К раствору приливают в один прием 16 мл 10% NaOH и смесь кипятят 1 ч. Далее от реакционной массы отгоняют ~60 мл ацетона, остаток выливают в воду и полученную смесь экстрагируют CHCl₃. Экстракт промывают водой, сушат MgSO₄, остаток после отгонки CHCl₃ кристаллизуют из метанола (-20 °С), затем из 60% (по объему) водного ДМФА. После высушивания получают 1.39 г нитрила **2а**.

Нитрилы **2b,c** получают аналогично из оксимов **1b,c** и очищают перекристаллизацией (табл. 1).

Б. Кипятят 1.01 г (5 ммоль) оксима **3** в 30 мл *n*-ксилола в течение 3 ч, ксилол отгоняют под вакуумом, остаток растирают с гексаном, кристаллы отфильтровывают и перекристаллизовывают аналогично методу А. Получают 0.33 г нитрила **2a**, идентичного образцу, полученному по методике А (ИК спектр, данные ЯМР ¹H, R_{f_5} т. пл.).

3,3-(R²)₂-6,7-(R¹)₂-3',3'-(R³)₂-6',7'-(R⁴)₂-Би-1,1'-(3,4-дигидроизохинолины) 5а-е. А. Раствор 0.3 г (1.23 ммоль) нитрила 2b и 0.2 мл (1.25 ммоль) карбинола 4a в 20 мл толуола прибавляют к 10 мл конц. H₂SO₄, полученную смесь перемешивают 2 ч при 20 °C и выливают в 100 мл воды. Водный слой отделяют, промывают 15 мл толуола, затем добавляют к нему 25% NH₄OH до pH ~8, полученную массу экстрагируют CH₂Cl₂, экстракт промывают водой, сушат MgSO₄, растворитель отгоняют, остаток пере-кристаллизовывают. Получают 0.27 г соединения 5b. Аналогично, комбинируя нитрилы 2a-с и карбинолы 4a-с, получают соединения 5a (2a+4a), 5c (2b+4b), 5d (2c+4a), 5e (2b+4c).

Кристаллы продукта **5a** выпадают после подщелачивания водного раствора и выдерживания полученной смеси в течение 3 ч, их отфильтровывают, промывают водой и перекристаллизовывают. При синтезе продукта **5c** маслянистый осадок после отгонки CH₂Cl₂ растирают с эфиром и полученное твердое вещество кристаллизуют из водного метанола. Соединение **5e** выделяют аналогично продукту **5b**, остаток после отгонки растворителя экстрагируют горячим гексаном, экстракт фильтруют, из фильтрата на холоду выпадают кристаллы чистого (по TCX) соединения **5e**.

Синтез соединения 5с. Б. Раствор 0.5 г (2 ммоль) нитрила 2b, 0.26 мл (2 ммоль) вератрола и 0.2 мл (2.2 ммоль) оксида изобутилена в 10 мл толуола прибавляют по каплям к 10 мл 98% H₂SO₄, перемешивают 1 ч, выливают в 100 мл воды и далее обрабатывают по методике A. Выход продукта 5c 0.32 г.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 01-03-96479).

- 1. N. W. Alcock, D. I. Hulmes, J. M. Brown, J. Chem. Soc. Chem. Commun., 395 (1995).
- 2. K. Yamamoto, H. Tateishi, K. Watanabe, T. Adachi, H. Matsubara, T. Ueda, T. Yoshida, *J. Chem. Soc. Chem. Commun.*, 1637 (1995).
- G. K. Cheung, I. M. Downie, M. J. Earle, H. Heaney, M. F. S. Matough, K. F. Shuhaibar, D. Thomas, *Synlett*, 77 (1992).
- 4. M. G. Banwell, B. D. Bissett, S. Busato, C. J. Cowden, D. C. R. Hockless, J. W. Holman, R. W. Read, A. W. Wu, J. Chem. Soc. Chem. Commun., 2551 (1995).
- 5. H. Wollweber, R. Hiltman, Angew. Chem., 72, 1001 (1960).
- В. С. Шкляев, Б. Б. Александров, Г. И. Леготкина, М. И. Вахрин, М. С. Гаврилов, А. Г. Михайловский, XTC, 1560 (1983).
- 7. Houben-Weil, *Methoden der Organischen Chemie*, Georg Thieme Verlag, Stuttgart, New York, 1968, **10**, Teil 4, 228.
- 8. Л. Г. Донарума, В. З. Хельдт, в кн. *Органические реакции*, пер. с англ., Изд-во иностр. лит., Москва, 1965, **11**, с. 7.
- 9. А. П. Станкявичус, П. Б. Терентьев, О. А. Соловьев, ХГС, 509 (1971).
- 10. А. П. Станкявичус, Л. М. М. Станкявичене, П. Б. Терентьев, ХГС, 1462 (1999).
- Б. Б. Александров, М. С. Гаврилов, В. Д. Свиридов, Н. Д. Чкаников, В. С. Шкляев, Ю. В. Шкляев, Изв. АН СССР. Сер. хим., 2136 (1990).
- 12. Ю. В. Шкляев, Б. Я. Сыропятов, В. С. Шкляев, Башк. хим. журн., 4, № 4, 21 (1997).
- 13. E. A. Mistrukov, Y. Rozpravra, O. N. Sorokina, Mendeleev Commun., 205 (1993).
- 14. V. A. Glushkov, Yu. V. Shklyaev, Mendeleev Commun., 17 (1998).
- 15. M. T. Ashby, G. N. Govindan, A. K. Grafton, J. Am. Chem. Soc., 116, 4801 (1994).
- 16. M. T. Ashby, J. Am. Chem. Soc., 117, 2000 (1995).
- 17. G. Chelucci, A. Bacchi, D. Fabbri, A. Saba, F. Ulgheri, Tetrahedron Lett., 40, 553 (1999).
- 18. G. Chelucci, M. A. Cabras, A. Saba, A. Sechi, Tetrahedron: Asymmetry, 7, 1027 (1996).
- 19. H. Tsue, H. Fujinami, T. Itakura, R. Tsuchiya, K. Kobayashi, H. Takahashi, K. Hirao, *Chem. Lett.*, 17 (1999).
- 20. H. Tsue, H. Fujinami, T. Itakura, K. Hirao, Tetrahedron: Asymmetry, 10, 2975 (1999).
- 21. L. J. Chiang, J.W.Swirczewsc, K. Liang, J. Millar, Chem. Lett., 981 (1994).
- 22. В. С. Шкляев, Б. Б. Александров, М. С. Гаврилов, Изв. АН СССР. Сер. хим., 959 (1986).
- 23. Yu. V. Shklyaev, V. A. Glushkov, V. V. Davidov, V. I. Sokol, V. S. Sergienko, *Mendeleev Commun.*, 36 (2000).
- Ю. В. Шкляев, Б. Я. Сыропятов, В. С. Шкляев, М. С. Гаврилов, Е. С. Бороненкова, Р. З. Даутова, Б. Б. Александров, А. А. Горбунов, *Хим.-фарм. журн.*, **33**, № 9, 8 (1999).
- 25. J. M. Bruce, A. Chaudhry, J. Chem. Soc. Perkin Trans. 1, 372, (1972).
- 26. P. Sabatier, A. Mailhe, C. R. Acad. Sci., 138, 1321 (1904).
- 27. A. Arcoleo, M. C. Natoli, M.-L. Marino, Ann. Chim. (Ital.), 60, 323 (1970); PKXum, 1970, 24K334.

Институт технической химии УрО РАН, Пермь 614990 e-mail: cheminst@mpm.ru Поступило в редакцию 12.03.2002 После доработки 23.07.2003