Э. Дж. Чургулия, Дж. А. Кереселидзе

ДИМЕРНЫЙ МЕХАНИЗМ ТАУТОМЕРНОГО ПРЕВРАЩЕНИЯ 4-АМИНО-2-ОКСОПИРИМИДИНА

Квантово-химическим полуэмпирическим методом AM1 рассчитаны значения энтальпии (ΔH), заряда на атомах (q_i) и порядка связей (P_{ij}) для шести таутомерных форм 4-амино-2-оксопиримидина. Показано, что самым стабильным из них является 4-амино-2-оксо-1H-пиримидин, или цитозин. По аналогии с комплементарными парами нуклеотидных оснований таутомерное превращение цитозина и других оксоформ может осуществляться по димерному межмолекулярному механизму. Предлагается новая интерпретация превращения цитозина в 4-амино-2-оксо-3H-пиримидин как результата 1H–3H двухстадийного переноса протона.

Ключевые слова: пиримидин, цитозин, квантово-химические расчеты, молекулярная перегруппировка, таутомерные превращения.

Для теоретического исследования таутомерных превращений пиримидиновых производных, в том числе цитозина (4-амино-2-оксо-1Нпиримидина) (1), широко применялись как полуэмпирические [1–3], так и неэмпирические [4–6] квантово-химические методы. В работах [2, 7] рассмотрены 6 возможных таутомеров 4-амино-2-оксопиримидина:

Авторы отмечают, что стабильность таутомеров 1–6 уменьшается в ряду: 1>2>4>3>5>6, однако квантово-химические расчеты [1, 8] показали, что в этом ряду самым стабильным является 4-амино-2-гидроксипиримидин (3). Такой вывод подкреплен экспериментальными данными [9]. Общий результат указанных работ свидетельствует о низкой стабильности иминных форм. В работе [6] на основании вычисления неэмпирическим

методом полной энергии предсказывается существование таутомерных форм производных пиримидина и делается вывод, что таутомерные превращения осуществляются посредством межмолекулярных водородных связей с участием гидроксильных, аминных и карбонильных групп.

С целью систематического изучения некоторых физико-химических свойств таутомерных форм 1-6 квантово-химическим полуэмпирическим методом АМ1 [10] нами рассчитаны их структурные, энергетические и электронные индексы. Как видно из таблицы, аминоформы более стабильны, а среди них самой стабильной является 4-амино-2-оксо-1Нпиримидин (1), или один из важнейших представителей нуклеотидных оснований – цитозин, что находится в полном согласии с приведенными литературными данными [2, 7]. Из таблицы видно также, что распределение заряда на атомах пиримидинового цикла исследуемых таутомеров указывает на определенную закономерность. В частности высокий отрицательный заряд (особенно для таутомера 2) на атоме С(5) и положительный заряд на атоме С₍₆₎ указывают на региоселективность электрофильного и нуклеофильного присоединения, соответственно, что находится в полном согласии с литературными данными [10]. Заряд на атомах N₍₁₎ и N₍₃₎ значительно выше, когда они находятся в sp³-гибридизированной форме 1 и 2. Это вызывает увеличение "электронного оголения" связанных с ними атомов водорода. Принимая во внимание также, что порядки связей N–H имеют довольно низкое значение ($P_{\rm NH}$ = = 0.872-0.882), можно объяснить высокую подвижность таких атомов водорода. Эти положения могут обусловливать реализацию лактамлактимного таутомерного превращения по межмолекулярному димерному механизму:

В лактимной форме **3** атом $N_{(3)}$ выступает как активный протоноакцепторный центр ($q_3^N = -0.309$), на который протон гидроксильной группы может переноситься опять-таки по межмолекулярному димерному механизму:

Соеди- нение	Δ <i>Н</i> , кДж/моль	μ, D	q_1	q_2	q_3
1	2	3	4	5	6
1	77.7	6.26	-0.324	+0.348	-0.293
2	80.2	7.00	-0.222	+0.339	-0.349
3	85.7	4.20	-0.195	+0.187	-0.309
4	92.4	4.56	-0.320	+0.398	-0.318
5	168.4	5.11	-0.291	+0.237	-0.238
6	135.4	1.46	-0.285	+0.259	-0.271

Значения энтальпий (ΔH), дипольных моментов (μ), зарядов на атомах (q_i) и порядков связей (P_{ij}) таутомеров 1–6

Окончание таблицы

Соеди- нение	q_4	<i>q</i> 5	q_6	P(N ₃ H)	P(N ₁ H)
7	8	9	10	11	12
1	+0.228	-0.345	+0.063	-	0.882
2	+0.254	-0.405	+0.065	0.881	_
3	+0.193	-0.339	+0.013	—	_
4	+0.161	-0.296	+0.035	0.872	0.878
5	+0.091	-0.285	+0.007	—	0.800
6		-0.303	+0.002	0.873	_

Следовательно, 1Н–3Н перенос протона можно рассматривать как двухстадийный процесс (энергетическая диаграмма приведена на рисунке). Энтальпия активации $\Delta \Delta H^{\#}$ первой стадии составляет 164.9, второй – 110.5 кДж/моль. Полный процесс является экзотермическим с выделением небольшой энергии – $\Delta \Delta H = -4.9$ кДж/моль.

Энергетическая диаграмма двухстадийного 1H–3H переноса протона в цитозине – зависимость энтальпии ΔH таутомеров 1 и 3 от координат реакции $R_{\rm NH}$ и $R_{\rm OH}$ соответственно

Образование иминных таутомеров 4, 5 и 6 возможно также по межмолекулярному механизму превращения димеров цитозина 1:

его иминной формы 4

и енольной формы 3

СПИСОК ЛИТЕРТУРЫ

- 1. A. Buda, A. Syqula, J. Mol. Struct. (Theochem), 92, 255 (1985).
- 2. U. Norinder, J. Mol. Struct. (Theochem), 151, 259 (1987).
- 3. P. U. Civcir, J. Mol. Struct. (Theochem), 532, 157 (2000).
- 4. M. Shibata, T. J. Zielinski, R. Rein, Int. J. Quant. Chem., 18, 323 (1980).
- 5. T.-K. Ha, H. H. Guntard, J. Am. Chem. Soc., 115, 11939 (1993).
- 6. T.-K. Ha, H.-J. Keller, R. Gunde, H. H. Guntard, J. Phys. Chem., A, 103, 6612 (1999).
- 7. A. R. Katritzky, M. Karelson, P. A. Harris, Heterocycles, 32, 329 (1991).
- 8. C. Colominas, F. J. Luque, M.Orozco, J. Am. Chem. Soc., 118, 6811 (1996).
- 9. A. Destexhe, J. Smets, L. Adamowicz, G. Meas, J. Am. Chem. Soc., 116, 1506 (1994).
- 10. А. Е. Портер, в кн. Общая органическая химия, Химия, Москва, 1985, 8, с.131.

Тбилисский государственный университет им. И. Джавахишвили, Тбилиси 380028, Грузия e-mail: keres@ictsu.tsu.edu.ge Поступило в редакцию 26.02.2003