Б. С. Федоров, А. Н. Утенышев, А. А. Гидаспов^а, Е. В. Качановская^а, В. В. Бахарев^а, М. А. Фадеев

КОНДЕНСИРОВАННЫЕ ТЕТРАЗОЛО-1,3,5-ТРИАЗИНЫ

2*. РЕАКЦИИ АЛКИЛИРОВАНИЯ И НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ В РЯДУ 5-ТРИНИТРОМЕТИЛТЕТРАЗОЛО[1,5-*a*]-1,3,5-ТРИАЗИН-7-ОНА

Осуществлен синтез нового гетероциклического соединения 3-метил-5-тринитрометилтетразоло[1,5-*a*]-1,3,5-триазин-7-она воздействием иодистого метила на серебряную соль 5-тринитрометилтетразоло[1,5-*a*]-1,3,5-триазин-7-она. Проведено рентгеноструктурное исследование синтезированного соединения и показана возможность его использования в реакциях нуклеофильного замещения тринитрометильной группы под действием фенола, его замещенных и тиофенола.

Ключевые слова: конденсированные тетразоло-1,3,5-триазины, 3-метил-5-арилокси(тио)тетразоло[1,5-*a*]-1,3,5-триазин-7-оны, 3-метил-5-нитрометилтетразоло[1,5-*a*]-1,3,5три- азин-7-он, алкилирование, нуклеофильное замещение тринитрометильной группы.

Продолжая работу в ряду конденсированных тетразоло-1,3,5-триазинов [1], мы изучили возможность синтеза ковалентных производных замещенного тетразоло[1,5-*a*]-1,3,5-триазин-7-она с использованием реакции алкилирования различных солей 5-тринитрометилтетразоло[1,5-*a*]-1,3,5-триазин-7-она иодистым метилом в ДМФА и ацетонитриле. При использовании тетраметиламмониевой соли 5-тринитрометилтетразоло-[1,5-*a*]-1,3,5-триазин-7-она (**1a**) [1] получить продукты алкилирования не удалось, несмотря на широкое варьирование реакционных условий (растворитель, температура, время реакции), и лишь использование серебряной соли 5-тринитрометилтетразоло[1,5-*a*]-1,3,5-триазин-7-она [2] позволило осуществить процесс алкилирования и выделить целевое соединение.

* Сообщение 1 см. [1].

Строение полидентантного аниона 1с может быть отображено с помощью резонансных структур, имеющих единую сопряженную электронную систему, и допускает его алкилирование по пяти центрам: экзоциклическому атому кислорода и по четырем атомам азота циклической системы (1 и 3 тетразольного фрагмента, а также 4 и 6 триазинового цикла).

Алкилирование серебряной соли **1с** иодистым метилом протекает как в избытке алкилирующего агента, так и в растворе ацетонитрила. Единственным продуктом реакции является 3-метил-5-тринитрометилтетразоло[1,5-*a*]-1,3,5-триазин-7-он (**2**), т. е. в изученных условиях алкилирование идет по атому $N_{(3)}$ тетразольного фрагмента.

Экспериментально установлено, что выход продукта метилирования выше при проведении реакции в ацетонитриле.

Данные РСА (рисунок, табл. 1–3) соединения 2 четко подтверждают его строение.

Ковалентная гетероциклическая система тетразоло[1,5-*a*]-1,3,5-триазин-7-она и экзоциклические связи $O_{(1a)}-C_{(1a)}$, $C_{(2a)}-C_{(5a)}$ лежат практически в одной плоскости. Экзоциклическая связь $C_{(4a)}-N_{(2a)}$ выведена из плоскости гетероциклической системы (на угол порядка 4°). Длина экзоциклической связи $O_{(1a)}-C_{(1a)}$ соответствует длине двойной связи [3]. В гетероциклической системе из десяти связей длина трех $N_{(9a)}-C_{(1a)}$, $C_{(1a)}-N_{(5a)}$, $N_{(5a)}-N_{(4a)}$

Структура 3-метил-5-тринитрометилтетразоло[1,5-а]-1,3,5-триазин-7-она (2)

близка к длине одинарной связи (1.40–1.44 Å) [3]; длина пяти связей: $C_{(2a)}-N_{(1a)}$, $N_{(1a)}-C_{(3a)}$, $C_{(3a)}-N_{(5a)}$, $C_{(3a)}-N_{(2a)}$, $N_{(2a)}-N_{(3a)}$ близка к длине полуторной связи (1.345–1.365 Å); длина связей $N_{(9a)}-C_{(2a)}$, $N_{(3a)}-N_{(4a)}$ близка к длине двойной связи (1.28–1.30 Å) [3]. Это свидетельствует о весьма своеобразном сопряжении π -связей в гетероцикле, что, вероятно, обусловлено электронным влиянием сильного электроноакцепторного заместителя – тринитрометильной группы – и наличием двойной экзоциклической связи $O_{(1a)}-C_{(1a)}$. В тринитрометильной группе соединения **2**, подобно другим ковалентным тринитрометильным соединениям [4, 5], плоскости нитрогрупп образуют конформацию *пропеллера*. Вследствие неполной эквивалентности нитрогрупп имеются небольшие различия в длинах связей O–N и C–N (до 0.3 Å) и в валентных углах O–N–O и O–N–C (до 4°), углы поворота плоскостей нитрогрупп A = $C_{(5A)}-N_{(6A)}-O_{(62A)}-O_{(63A)}$, В = $C_{(5A)}-N_{(7A)}-O_{(71A)}-O_{(72A)}$ и С = $C_{(5A)}-N_{(8A)}-O_{(81A)}-O_{(82A)}$ несколько различаются и составляют между A и B – 64.9°, B и C – 68.7°, A и C – 67.8°.

Соединение 2 кристаллизуется в виде двух независимых молекул 2A (рисунок) и 2Б, которые различаются длинами связей на 0.01–0.05 Å и валентными углами на $1-3^{\circ}$. Однако в молекуле 2Б нитрогруппы в тринитрометильной группе разупорядочены, что может быть обусловлено проявляющейся в момент съемки нестабильностью либо кристалла, либо самого соединения 2. Вероятно, отмеченное является причиной достаточно высокого значения R-фактора. В связи с этим данные по структуре 2Б в настоящей статье не приведены и не обсуждаются.

Длины связей (*d*) в структуре 2

Таблица 1

Связь	<i>d</i> , Å	Связь	d, Å
N(1A)-C(2A)	1.345(3)	N _(6A) -C _(5A)	1.548(3)
N _(1A) -C _(3A)	1.347(3)	N _(7A) -O _(72A)	1.223(4)
N _(2A) -C _(3A)	1.362(3)	N _(7A) -O _(71A)	1.234(4)
N _(2A) -N _(3A)	1.367(3)	N _(7A) -C _(5A)	1.548(3)
N _(2A) -C _(4A)	1.461(3)	N _(8A) -O _(81A)	1.218(4)
N(3A)-N(4A)	1.281(3)	N _(8A) -O _(82A)	1.227(4)
N _(4A) -N _(5A)	1.401(3)	N _(8A) -C _(5A)	1.523(3)
N(5A)-C(3A)	1.343(3)	N _(9A) -C _(2A)	1.301(3)
N(5A)-C(1A)	1.446(3)	N _(9A) -C _(1A)	1.411(3)
N _(6A) -O _(63A)	1.198(4)	O _(1A) C _(1A)	1.171(3)
N _(6A) -O _(62A)	1.202(4)	C _(2A) -C _(5A)	1.553(3)

Валентные углы (0) в структуре 2

Таблица 2

Угол	ω, град.	Угол	ω, град.
C _(2A) -N _(1A) -C _(3A)	109.76(19)	O _(82A) -N _(8A) -C _(5A)	119.0(3)
C _(3A) -N _(2A) -N _(3A)	110.75(19)	C _(2A) -N _(9A) -C _(1A)	119.7(2)
$C_{(3A)}$ - $N_{(2A)}$ - $C_{(4A)}$	127.1(2)	O _(1A) -C _(1A) -N _(9A)	127.9(2)
$N_{(3A)}$ - $N_{(2A)}$ - $C_{(4A)}$	122.0(2)	O _(1A) -C _(1A) -N _(5A)	120.8(3)
$N_{(4A)} - N_{(3A)} - N_{(2A)}$	108.8(2)	$N_{(9A)}$ - $C_{(1A)}$ - $N_{(5A)}$	111.3(2)
$N_{(3A)} - N_{(4A)} - N_{(5A)}$	106.4(2)	N _(9A) -C _(2A) -N _(1A)	131.4(2)
C(3A)-N(5A)-N(4A)	111.11(19)	N _(9A) -C _(2A) -C _(5A)	115.21(19)
C _(3A) -N _(5A) -C _(1A)	122.0(2)	N _(1A) -C _(2A) -C _(5A)	113.39(19)
N _(4A) -N _(5A) -C _(1A)	126.8(2)	N _(5A) -C _(3A) -N _(1A)	125.71(19)
O _(63A) -N _(6A) -O _(62A)	125.2(3)	N _(5A) -C _(3A) -N _(2A)	103.0(2)
$O_{(63A)}$ - $N_{(6A)}$ - $C_{(5A)}$	114.3(3)	N _(1A) -C _(3A) -N _(2A)	131.3(2)
$O_{(62A)}$ - $N_{(6A)}$ - $C_{(5A)}$	120.5(3)	$N_{(8A)}$ - $C_{(5A)}$ - $N_{(7A)}$	104.4(2)
O _(72A) -N _(7A) -O _(71A)	129.6(3)	N _(8A) -C _(5A) -N _(6A)	108.16(19)
O _(72A) -N _(7A) -C _(5A)	116.3(3)	N _(7A) -C _(5A) -N _(6A)	107.8(2)
O _(71A) -N _(7A) -C _(5A)	114.1(2)	N _(8A) -C _(5A) -C _(2A)	112.2(2)
O _(81A) -N _(8A) -O _(82A)	126.5(3)	N _(7A) -C _(5A) -C _(2A)	111.86(19)
$O_{(81A)} - N_{(8A)} - C_{(5A)}$	114.4(2)	$N_{(6A)}$ - $C_{(5A)}$ - $C_{(2A)}$	112.0(2)

В присутствии основания (триэтиламина) тринитрометильная группа в соединении **2** легко замещается под действием нуклеофилов различной природы – фенола, замещенных фенолов и тиофенола, в результате чего образуются соответствующие ковалентные 3-метил-5-арилокси(тио)тетразоло[1,5-*a*]-1,3,5-триазин-7-оны **3а-d**:

3 a X = O, R = H, b X = S, R = H, c X = O, R = p-NHAc, d X = O, R = p-t-Bu

Таблица З

Угол	ф, град.	Угол	ф, град.
$C_{(3A)}$ - $N_{(2A)}$ - $N_{(3A)}$ - $N_{(4A)}$	-1.9	$O_{(62A)}$ - $N_{(6A)}$ - $C_{(5A)}$ - $N_{(7A)}$	6.1
$C_{(4A)}$ - $N_{(2A)}$ - $N_{(3A)}$ - $N_{(4A)}$	-177.7	$O_{(62A)}$ - $N_{(6A)}$ - $C_{(5A)}$ - $N_{(8A)}$	-106.2
$N_{(2A)} - N_{(3A)} - N_{(4A)} - N_{(5A)}$	1.2	$O_{(62A)}$ - $N_{(6A)}$ - $C_{(5A)}$ - $C_{(2A)}$	129.6
$N_{(3A)}$ - $N_{(4A)}$ - $N_{(5A)}$ - $C_{(1A)}$	-179.8	$O_{(63A)}$ - $N_{(6A)}$ - $C_{(5A)}$ - $N_{(7A)}$	-171.8
$N_{(3A)}$ - $N_{(4A)}$ - $N_{(5A)}$ - $C_{(3A)}$	-0.2	$O_{(63A)}$ - $N_{(6A)}$ - $C_{(5A)}$ - $N_{(8A)}$	75.9
$N_{(4A)} - N_{(5A)} - C_{(1A)} - N_{(9A)}$	-178.9	$O_{(63A)}$ - $N_{(6A)}$ - $C_{(5A)}$ - $C_{(2A)}$	-48.3
$N_{(4A)}$ - $N_{(5A)}$ - $C_{(1A)}$ - $O_{(1A)}$	0.5	$O_{(71A)}$ - $N_{(7A)}$ - $C_{(5A)}$ - $N_{(6A)}$	-66.8
$C_{(3A)}$ - $N_{(5A)}$ - $C_{(1A)}$ - $N_{(9A)}$	1.6	$O_{(71A)}$ - $N_{(7A)}$ - $C_{(5A)}$ - $N_{(8A)}$	48.1
$C_{(3A)}$ - $N_{(5A)}$ - $C_{(1A)}$ - $O_{(1A)}$	-179.0	$O_{(71A)}$ - $N_{(7A)}$ - $C_{(5A)}$ - $C_{(2A)}$	169.6
$C_{(2A)}$ - $N_{(9A)}$ - $C_{(1A)}$ - $N_{(5A)}$	-1.0	$O_{(72A)}$ - $N_{(7A)}$ - $C_{(5A)}$ - $N_{(6A)}$	113.8
$C_{(2A)}$ - $N_{(9A)}$ - $C_{(1A)}$ - $O_{(1A)}$	179.7	$O_{(72A)}$ - $N_{(7A)}$ - $C_{(5A)}$ - $N_{(8A)}$	-131.4
$C_{(3A)}$ - $N_{(1A)}$ - $C_{(2A)}$ - $N_{(9A)}$	2.6	$O_{(72A)}$ - $N_{(7A)}$ - $C_{(5A)}$ - $C_{(2A)}$	-9.8
$C_{(3A)}$ - $N_{(1A)}$ - $C_{(2A)}$ - $C_{(5A)}$	-179.3	$O_{(81A)}$ - $N_{(8A)}$ - $C_{(5A)}$ - $N_{(6A)}$	158.1
$C_{(1A)}$ - $N_{(9A)}$ - $C_{(2A)}$ - $N_{(1A)}$	-1.2	$O_{(81A)}$ - $N_{(8A)}$ - $C_{(5A)}$ - $N_{(7A)}$	43.4
$C_{(1A)}$ - $N_{(9A)}$ - $C_{(2A)}$ - $C_{(5A)}$	-179.3	$O_{(81A)}$ - $N_{(8A)}$ - $C_{(5A)}$ - $C_{(2A)}$	77.9
$C_{(2A)}$ - $N_{(1A)}$ - $C_{(3A)}$ - $N_{(2A)}$	179.7	$O_{(82A)}$ - $N_{(8A)}$ - $C_{(5A)}$ - $N_{(6A)}$	-25.7
$C_{(2A)}$ - $N_{(1A)}$ - $C_{(3A)}$ - $N_{(5A)}$	-1.8	$O_{(82A)}$ - $N_{(8A)}$ - $C_{(5A)}$ - $N_{(7A)}$	-140.3
$N_{(3A)}$ - $N_{(2A)}$ - $C_{(3A)}$ - $N_{(1A)}$	-179.6	$O_{(82A)}$ - $N_{(8A)}$ - $C_{(5A)}$ - $C_{(2A)}$	98.4
$N_{(3A)}$ - $N_{(2A)}$ - $C_{(3A)}$ - $N_{(5A)}$	1.7	$N_{(1A)}$ - $C_{(2A)}$ - $C_{(5A)}$ - $N_{(6A)}$	-52.2
$C_{(4A)}$ - $N_{(2A)}$ - $C_{(3A)}$ - $N_{(1A)}$	-4.0	$N_{(1A)}$ - $C_{(2A)}$ - $C_{(5A)}$ - $N_{(7A)}$	69.0
$C_{(4A)}$ - $N_{(2A)}$ - $C_{(3A)}$ - $N_{(5A)}$	77.3	$N_{(1A)}$ - $C_{(2A)}$ - $C_{(5A)}$ - $N_{(8A)}$	-174.1
$N_{(4A)}$ - $N_{(5A)}$ - $C_{(3A)}$ - $N_{(1A)}$	-179.8	$N_{(9A)}$ - $C_{(2A)}$ - $C_{(5A)}$ - $N_{(6A)}$	126.2
$N_{(4A)} - N_{(5A)} - C_{(3A)} - N_{(2A)}$	-0.9	$N_{(9A)}$ - $C_{(2A)}$ - $C_{(5A)}$ - $N_{(7A)}$	-112.6
$C_{(1A)}$ - $N_{(5A)}$ - $C_{(3A)}$ - $N_{(1A)}$	-0.1	$N_{(9A)}$ - $C_{(2A)}$ - $C_{(5A)}$ - $N_{(8A)}$	4.3
$C_{(1A)}$ - $N_{(5A)}$ - $C_{(3A)}$ - $N_{(2A)}$	78.7		

Торсионные углы (φ) в структуре 2

Ранее [1, 6, 7] способность тринитрометильной группы к замещению под действием различных нуклеофильных агентов (амины, спирты, азиды) была показана для тринитрометильных производных 1,3,5-триазина.

Таким образом, нами впервые получены ковалентные производные 3,5-ди-замещенных тетразоло[1,5-*a*]-1,3,5-триазин-7-онов.

Спектры ¹Н и ¹³С ЯМР регистрировали на спектрометре Bruker AM-300 (300 и 75 МГц соответственно) в ДМСО-d₆, внутренний стандарт ГМДС ($\delta = 0.055$ м. д.) и ТМС ($\delta = 2.00$ м. д.) соответственно, ИК спектры – на спектрометре Specord M-80 в таблетках КВг. Исходное соединение **1а** получали известным способом [1].

Серебряная соль 5-тринитрометилтетразоло[1,5-*a*]-1,3,5-триазин-7-она (1с). К раствору 3.60 г (0.01 моль) соли 1а в 25 мл ацетона при перемешивании и температуре 20–25 °С прибавляют 1.29 г (0.0105 моль) NaClO₄, выдерживают 2 ч, осадок перхлората тетраметиламмония отфильтровывают и ацетон, содержащий соль 1b, испаряют. К раствору в 25 мл воды кристаллического остатка после испарения ацетона при перемешивании и температуре 20–25 °С прибавляют 1.79 г (0.0105 моль) АgNO₃, выдерживают 30 мин, выпавший осадок соли 1с отфильтровывают и сушат на воздухе под черной бумагой. Выход соли 1с 3.35 г (85%), т. пл. 158 °С (разл.). ИК спектр, v, см⁻¹: 1734, 1626, 1612, 1592, 1572, 1518, 1476, 1436, 1368, 1332, 1300, 1168, 1144, 932, 844, 802, 776. Найдено, %: С 12.26; N 31.92. C₄AgN₉O₇. Вычислено, %: С 12.19; N 32.00.

3-Метил-5-тринитрометилтетразоло[1,5-*a***]-1,3,5-триазин-7-он (2)**. К суспензии 3.94 г (0.01 моль) соли **1с** в 40 мл ацетонитрила приливают 1.52 мл (0.03 моль) иодистого метила. Реакционную массу нагревают 6 ч при 55–65 °C. Осадок Agl отфильтровывают, промывают на фильтре 2 × 10 мл ацетонитрила. Объединенный фильтрат упаривают. Остаток обрабатывают водой при перемешивании, кристаллы отфильтровывают, промывают на фильтре водой и сушат на воздухе. Выход соединения **2** 2.11 г (70%), т. пл. 159–161 °C (из дихлорэтана). ИК спектр, v, см⁻¹ : 2880, 1770, 1628, 1596, 1534, 1476, 1420, 1380, 1342, 1296, 1238, 1148, 1056, 1018, 926, 848, 806, 772. Спектр ЯМР ¹Н, δ, м. д.: 4.15 (3H, с, NCH₃). Спектр ЯМР ¹³С, δ, м. д.: 158.74 (<u>C</u>–C(NO₂)₃); 151.85 (N–C=N); 144.88 (C=O); 34.07 (NCH₃). Найдено, %: С 19.97; Н 1.06; N 41.79. C₅H₃N₉O₇. Вычислено, %: С 19.94; Н 1.00; N 41.86.

5-Арокси(тио)-3-метилтетразоло[1,5-а]-1,3,5-триазин-7-оны За-d (общая методика). К раствору 3.01 г (0.01 моль) соединения **2** в 30 мл дихлорэтана при 20–25 °С и перемешивании прибавляют 0.011 моль соответствующего фенола или тиофенола. Затем, поддерживая температуру не выше 25 °С, прибавляют 1.68 мл (0.012 моль) триэтиламина. Реакционную массу выдерживают при температуре 20–25 °С и перемешивании до исчезновения исходного соединения **2** по данным TCX (~1–3 ч). Затем реакционную массу, не фильтруя, испаряют и остаток обрабатывают водой при перемешивании. Кристаллический осадок отфильтровывают, промывают на фильтре водой и сушат на воздухе.

5-Фенокси-3-метилтетразоло[1,5-*a*]-1,3,5-триазин-7-он (3а), выход 1.85 г (76%), т. пл. 250–252 °С. ИК спектр, v, см⁻¹ : 3064, 2964, 1748, 1664, 1654, 1598, 1520, 1482, 1456, 1396, 1318, 1252, 1222, 1040, 1016, 816, 774. Спектр ЯМР ¹Н, δ, м. д.: 3.92 (3H, с, NCH₃); 7.09–7.45 (5H, м, C₆H₅). Спектр ЯМР ¹³С, δ, м. д.: 168.90 (N=C–O); 151.86 (N–C=N); 146.37 (C=O); 152.36, 129.54, 125.85, 121.41 (C₆H₅O); 32.97 (NCH₃). Найдено, %: С 49.24; Н 3.35; N 34.35. С₁₀H₈N₆O₂. Вычислено, %: С 49.18; Н 3.30; N 34.41.

5-Фенилтио-3-метилтетразоло[1,5-*a*]-1,3,5-триазин-7-он (3b), выход 1.56 г (68%), т. пл. 238–240 °С. ИК спектр, v, см⁻¹: 3068, 1734, 1620, 1596, 1498, 1466, 1448, 1434, 1408, 1380, 1348, 1340, 1330, 1280, 1232, 1192, 1138, 1090, 1032, 1012, 948, 768. Спектр ЯМР ¹H, δ , м. д.: 3.86 (3H, с, NCH₃); 7.50 (5H, уш. с, C₆H₅). Спектр ЯМР ¹³С, δ , м. д.: 180.32 (N=C–S); 150.24 (N–C=N); 144.25 (C=O); 134.95, 129.78, 129.19, 127.64 (C₆H₅S); 32.97 (NCH₃). Найдено, %: С 46.10; H 3.18; N 32.36. С₁₀H₈N₆OS. Вычислено, %: С 46.15; H 3.10; N 32.29.

5-(*п***-Ацетиламинофенокси)-3-метилтетразоло[1,5-***a***]-1,3,5-триазин-7-он (3с), выход 1.96 г (65%), т. пл. 236–258 °С. ИК спектр, v, см⁻¹: 3304, 3280, 3152, 3080, 2964, 1756, 1666, 1622, 1570, 1520, 1486, 1392, 1330, 1318, 1276, 1254, 1220, 1036, 1016, 980, 968, 852, 774. Спектр ЯМР ¹Н, δ, м. д.: 1.98 (3H, с, CH₃CO); 3.90 (3H, с, NCH₃); 7.00–7.10 и 7.53–7.63 (4H, оба д,** *p***-C₆H₄); 9.97 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 169.12 (CH₃CONH); 168.17 (N=C–O); 152.38 (N–C=N); 146.40 (C=O); 147.02, 137.06, 121.56, 119.87 (***p***-C₆H₄); 32.98 (NCH₃); 23.82 (NHCO<u>C</u>H₃). Найдено, %: С 47.78; Н 3.65; N 33.63. С₁₂H₁₁N₇O₃. Вычислено, %: С 47.84; Н 3.68; N 32.55.**

5-(п-трет-Бутилфенокси)-3-метилтетразоло[1,5-а]-1,3,5-триазин-7-он (3d), выход 2.19 г (73%), т. пл. 248–251 °С. ИК спектр, v, см⁻¹: 3060, 2960, 2872, 1758, 1642, 1518, 1466, 1390, 1312, 1274, 1254, 1224, 1184, 1120, 1032, 1016, 944, 850, 812, 776. Спектр ЯМР ¹Н, δ, м. д.: 1.26 (9H, c, CH₃); 3.93 (3H, c, NCH₃); 6.99–7.10 и 7.37–7.48 (4H, оба д, *p*-C₆H₄). Спектр ЯМР ¹³С, δ, м. д.: 168.98 (N=C–O); 152.37 (N–C=N); 146.39 (С=O); 149.59, 148.20, 126.22, 120.76 (*p*-C₆H₄); 34.16 (<u>С</u>(CH₃)₃); 32.96 (NCH₃); 31.08 (С(<u>С</u>H₃)₃). Найдено, %: С 59.90; Н 5.42; N 28.01. С₁₄H₁₆N₆O₂. Вычислено, %: С 55.99; Н 5.37; N 27.98.

Рентгеноструктурное исследование соединения 2. Кристаллы соединения 2 (из дихлорэтана): $C_5H_3N_9O_7$, М 301.1, моноклинные, пространственная группа *P*, *a* = 24.466(5), *b* = 14.673(3), *c* = 6.730(1) Å, β = 90.70(3)^o, *V* = 2415.8 Å³, *D_c* = 1.651 г/см³, *Z* = 8. Интенсивности 4019 независимых отражений с *I*>2σ(*I*) были получены на автоматическом 4-кружном дифрактометре КМ-4 (λ = 0.71069 Å, Мо*К* α , графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{max} = 27^{o}$). Структура определена прямым методом (SHELX-86) и уточнена полноматричным МНК в анизотропном приближении. Атомы водорода были локализованы из геометрических соображений и для них уточнялись лишь позиционные параметры. Конечное значение *R*-фактора составило 0.072.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 01-04-97042) и Министерства промышленности и науки Московской области.

СПИСОК ЛИТЕРАТУРЫ

- 1. Б. С. Федоров, М. А. Фадеев, А. А. Гидаспов, Е. А. Косарева, В. В. Бахарев, *XTC*, 259 (2005).
- 2. К. Ингольд, Теоретические основы органической химии, Мир, Москва, 1973, 1055 с.
- 3. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, 541 с.
- 4. С. С. Новиков, Г. А. Швехгеймер, В. В. Севостьянова, В. А. Шляпочников, *Химия* алифатических и алициклических нитросоединений, Химия, Москва, 1974, 416 с.
- И. В. Целинский, И. В. Шугалей, М. Б. Щербинин, Физическая химия нитросоединений. Геометрия молекул и спектроскопия нитросоединений, ЛТИ им. Ленсовета, Ленинград, 1985, 186 с.
- 6. А. В. Шастин, Т. И. Годовикова, С. П. Голова, Л. И. Хмельницкий, Б. Л. Корсунский, *XTC*, 674 (1995).
- А. В. Шастин, Т. И. Годовикова, С. П. Голова, М. В. Поворин, Д. Е. Дмитриев, М. О. Декаприлевич, Ю. А. Стреленко, Ю. Т. Стручков, Л. И. Хмельницкий, Б. Л. Корсунский, *XTC*, 679 (1995).

Институт проблем химической физики РАН, Черноголовка 142432, Московская обл. e-mail:boris@icp.ac.ru Поступ ило в редакцию 19.12.2002

^аСамарский государственный технический университет, Самара 443010, Россия e-mail: knil@sstu.smr.ru