В. Д. Дяченко, Р. П. Ткачев, А. Н. Чернега^а

ГЕТЕРОЦИКЛИЗАЦИИ 1,3-БУТАДИЕНТИОЛАТОВ

Конденсацией производных этоксиметиленцианоуксусной кислоты с цианотиоацетамидом при основном катализе получены бутадиентиолаты и меркаптопиридины. Бутадиентиолаты при взаимодействии с алкилгалогенидами циклизуются в алкилтиопиридины, а реакция их с фенацилбромидом приводит к замещенному тиазолу.

Ключевые слова: 1,3-бутадиентиолаты, никотинамид, пиридо[2,3-*d*]пиримидин, производные этоксиметиленцианоуксусной кислоты, тиазол, PCA.

Нами разработан синтез замещенных 1,3-бутадиентиолатов реакцией нуклеофильного винильного замещения (S_NVin) и показано их применение для получения замещенных гетероциклов – пиридинов и тиенопиридинов [1]. Осуществление такого синтетического подхода основано на способности функционализированных бутадиенов при алкилировании подвергаться также и внутримолекулярной циклизации с участием нитрильной группы.

В настоящей работе исследованы новые синтетические возможности 1,3-бутадиентиолатов, полученных при взаимодействии производных этоксиметиленцианоуксусной кислоты 1a-e с цианотиоацетамидом (2) в присутствии основания. Найдено, что продукты реакции S_NVin (3), выделить которые не удалось, в присутствии N-метилморфолина образуют 1,3-бутадиентиолаты 4a-c. Отметим, что стабилизация полученных енаминокарбонильных соединений 4a-c обусловлена прямым полярным донорно-акцепторным сопряжением функциональных групп [2, 3].

Повышение основности среды в данной реакции способствует внутримолекулярной циклизации соединений **3** в меркаптопиридины **5**а,**b**. Соединения **4** гладко взаимодействуют с алкилгалогенидами **6**а–**d** с образованием алкилтиопиридинов **7**а–**d** (табл. 1, 2, экспериментальная часть). Введение в данную реакцию фенацилбромида позволило получить тиазол **8** как результат синтеза Ганча.

На основании спектроскопических данных можно сделать вывод о том, что продукт **8** находится в виде смеси *E*- и *Z*-изомеров. Так, в ИК спектре присутствуют 3 полосы поглощения валентных колебаний нитрильной группы в области 2170, 2188 и 2232 см⁻¹. В спектре ЯМР ¹Н наблюдается удвоение сигналов протонов этоксикарбонильной группы и метинового протона (экспериментальная часть). Так как бутадиентиолат **4a** существует в виде одного из π -диастереомеров [1], можно предположить, что в ходе образования тиазола **8** возможно вращение вокруг связи C₍₃₎–C₍₄₎ бутадиена и, как следствие, образование равной смеси двух π -диастереомеров.

1a R = EtO, **b** R = α-нафтиламино, **c** R = *o*-MeC₆H₄NH, **d** R = *o*-MeOC₆H₄NH, **e** R = *m*-MeOC₆H₄NH; **4a** R = EtO, **b** R = α-нафтиламино, **c** R = *o*-MeC₆H₄NH; **5**, **9 a** R = *o*-MeOC₆H₄NH, **b** R = *m*-MeOC₆H₄NH; **6 a**-**c** Hal = Br, **a** Z = C(O)Ph, **b** Z = CH=CH₂, **c** Z = CH₂Me; **d** Hal = I, Z = (CH₂)₃Me; **7 a**,**b** R = EtO, **a** Z = C(O)Ph, **b** Z = (CH₂)₃Me, **c** R = α-нафтиламино, Z = CH=CH₂, **d** R = *o*-MeC₆H₄NH, Z = CH₂Me; **12 a** R¹ = *o*-MeOC₆H₄, **b** R¹ = *m*-MeOC₆H₄; B = N-метилморфолин, NaOEt

Соеди- нение	Брутто- формула	I	<u>Найдено, %</u> Зычислено,	Т. пл., °С	Вы- ход,	
		С	Н	Ν		%
4b	$C_{22}H_{23}N_5O_2S$	<u>62.34</u> 62.69	<u>5.65</u> 5.50	<u>16.88</u> 16.62	328-330	73
4c	$C_{19}H_{23}N_5O_2S$	<u>58.98</u> 59.20	<u>6.12</u> 6.01	<u>18.09</u> 18.17	178–180	82
5a	$C_{14}H_{12}N_4O_2S$	<u>55.51</u> 55.98	<u>3.89</u> 4.03	$\frac{18.42}{18.66}$	305-307	90
5b	$C_{14}H_{12}N_4O_2S$	<u>55.69</u> 55.98	$\frac{4.25}{4.03}$	<u>18.91</u> 18.66	172–174	68
7a	$C_{17}H_{15}N_3O_3S$	<u>59.99</u> 59.81	<u>4.29</u> 4.43	$\frac{12.27}{12.31}$	199–201	74
7b	$C_{14}H_{19}N_3O_2S$	<u>57.63</u> 57.31	<u>6.74</u> 6.53	$\frac{14.89}{14.32}$	105–107	85
7c	$C_{20}H_{16}N_4OS$	<u>66.57</u> 66.64	<u>4.39</u> 4.48	<u>15.47</u> 15.55	200–202	68
7d	C17H18N4OS	<u>62.69</u> 62.55	<u>5.55</u> 5.56	<u>17.23</u> 17.17	158–160	70
9a	$C_{19}H_{22}N_4O_2S$	<u>61.49</u> 61.60	<u>6.11</u> 5.99	<u>15.34</u> 15.12	140-142	85
9b	$C_{19}H_{22}N_4O_2S$	<u>61.45</u> 61.60	<u>5.88</u> 5.99	<u>15.02</u> 15.12	153–155	81

Характеристики соединений 4b,c, 5a,b, 7a-d и 9a,b

Пиридинтиолы 5 при взаимодействии с амилиодидом образуют сульфиды 9, изучение химических свойств которых показало, что они способны претерпевать различные химические трансформации. В частности, они бромируются бромом по бензольному ядру с образованием производного 10. При кипячении в уксусном ангидриде получен 2-метилпиридо[2,3-*d*]-пиримидин 11, а в реакции с триэтилортоформиатом (ср. [4]) образуются 2-незамещенные пиридо[2,3-*d*]пиримидины 12а,b.

Для однозначного установления региоселективности циклизации олефина **3**, а также пути алкилирования полученных тиолов проведено рентгеноструктурное исследование 6-амино-5-(*о*-метоксифенилкарбамоил)-2-пентилтио-3-цианопиридина (**9a**). Общий вид молекулы **9a** приведен на рисунке, основные длины связей и валентные углы показаны в табл. 3. Атомы $N_{(2)}$ и $N_{(4)}$ имеют плоскотригональную конфигурацию связей (сумма валентных углов 359.8 и 360.0°). Группа $N_{(2)}H_2$ практически копланарна кольцу $N_{(1)}C_{(1-5)}$ (соответствующий двугранный угол лишь 3.6°), что благоприятно для эффективного сопряжения между неподеленной электронной парой атома $N_{(2)}$ и пиридиновой π -системой. Конформация молекулы допускает также $n(N_{(4)})$ - $\pi(C_{(6)}=O_{(1)})$ и $n(N_{(4)})$ - $\pi(C_{(7-12)})$ сопряжение – торсионные углы $O_{(1)}C_{(6)}N_{(4)}C_{(7)}$ и $C_{(6)}N_{(4)}C_{(7)}C_{(8)}$ составляют 2.2 и 4.9°.

Таблица 2

-									
Сое- дине- ние	ИК спектр, v, см ⁻¹			Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)					
	NH ₂	C=O	C≡N	СОNH, с или ОСH ₂ , к	H ₍₄₎ , с или –CH=, с	NH ₂ , уш. с	Ar или <u>CH</u> ₃ CH ₂ , т	другие сигналы	
4b	3214, 3336, 3446	1666	2202, 2232	10.22	8.57	7.63	7.55–6.92 (7Н, м)	3.85 (4H, м, CH ₂ OCH ₂); 3.28 (4H, м, CH ₂ NCH ₂); 2.79 (3H, с, CH ₃)	
4c	3256, 3312, 3430	1648	2180, 2196	9.10	8.68	7.93	7.92–6.94 (4Н, м)	3.76 (4H, м, CH ₂ OCH ₂); 3.09 (4H, м, CH ₂ NCH ₂); 2.75 (3H, с, CH ₃); 2.28 (3H, с, Ar <u>CH₃</u>)	
5a	3336, 3364	1650	2208	8.98	8.34	7.31	7.67 (1Н, д, <i>J</i> = 7.1), 7.07–6.87 (3Н, м)	11.62 (1H, c, SH); 3.85 (3H, c, OCH ₃)	
5b	3294, 3356	1658	2208	9.62	8.02	7.33	7.34 (1H, c), 7.22 (1H, д, <i>J</i> = 7.5), 7.12 (1H, д. д), 6.54 (1H, д, <i>J</i> = 8.0)	3.75 (3H, c, OCH ₃)*	
7a	3322, 3428	1696	2206	4.29 (<i>J</i> = 7.1)	8.17	7.69	1.36 (J = 7.1)	8.07 (2H, μ , $J = 7.9$, C ₆ H ₅); 7.60 (2H, μ . μ , C ₆ H ₅); 7.53 (1H, μ . μ , $J = 7.0$, C ₆ H ₅); 4.89 (2H, c, SCH ₂)	

Спектральные характеристики соединений 4b,c, 5a,b, 7а–d и 9a,b

7b	3238, 3378	1694	2208	4.30 (<i>J</i> = 7.1)	8.14	7.99	1.38 (<i>J</i> = 7.1)	3.22 (2H, т, <i>J</i> = 7.0, SCH ₂); 1.65 (2H, м, SCH ₂ <u>CH₂</u>); 1.41 (4H, м, SCH ₂ CH ₂ CH ₂ <u>CH₂CH₂</u>); 0.94 (3H, т, <i>J</i> = 7.0, CH ₃)
7c	3234, 3320	1664	2222	10.28	8.62	7.78	8.10-7.47 (7Н, м)	5.93 (1H, м, CH=); 5.39 (1H, д, <i>J</i> _{trans} = 18.6, =CH ₂); 5.13 (1H, д, <i>J</i> _{cis} = 8.3, =CH ₂); 3.92 (2H, д, <i>J</i> = 6.7, SCH ₂)
7d	3360, 3450	1656	2210	9.69	8.42	7.88	7.23 (1Н, д, <i>J</i> = 7.1), 7.22 (1Н, д), 7.17 (1Н, д. д, <i>J</i> = 7.2), 7.13 (1Н, д. д, <i>J</i> = 7.1)	3.18 (2H, т, <i>J</i> = 7.0, SCH ₂); 2.22 (3H, с, Ar <u>CH</u> ₃); 1.72 (2H, м, SCH ₂ <u>CH₂</u>); 1.05 (3H, т, <i>J</i> = 7.3, S(CH ₂) <u>2CH₃</u>)
9a	3328, 3418	1648	2214	9.28	8.36	7.84	7.59 (1Н, д, <i>J</i> = 7.8), 7.09 (1Н, д. д, <i>J</i> = 7.2), 6.94 (1Н, д, <i>J</i> = 7.2), 6.87 (1Н, д. д)	3.82 (3H, с, OCH ₃); 3.17 (2H, т, <i>J</i> = 7.1, SCH ₂); 1.66 (2H, м, SCH ₂ <u>CH₂</u>); 1.37 (4H, м, SCH ₂ CH ₂ <u>CH₂CH₂</u>); 0.90 (3H, т, <i>J</i> = 6.9, S(CH ₂) ₄ <u>CH₃</u>)
9b	3280, 3388, 3440	1658	2214	9.91	8.41	7.92	7.36 (1H, c), 7.24 (1H, д, <i>J</i> = 7.6), 7.16 (1H, д. д), 6.59 (1H, д, <i>J</i> = 8.0)	3.78 (3H, с, OCH ₃); 3.24 (2H, т, <i>J</i> = 7.1, SCH ₂); 1.65 (2H, м, SCH ₂ <u>CH₂</u>); 1.41 (4H, м, SCH ₂ CH ₂ <u>CH₂CH₂</u>); 0.93 (3H, т, <i>J</i> = 6.7, S(CH ₂) ₄ <u>CH₃</u>)

* Сигнал протона группы SH не проявляется, вероятно, вследствие быстрого обмена протонами с молекулами воды.

В результате этих электронных взаимодействий связи $N_{(2)}-C_{(5)}$ 1.338(11), $N_{(4)}-C_{(6)}$ 1.360(10), $N_{(4)}-C_{(7)}$ 1.402(11) Å заметно укорочены по сравнению со стандартным для чисто одинарных связей $N(sp^2)-C(sp^2)$ значением 1.45 Å [5]). Особенностью строения молекулы **9**а является наличие весьма прочной ("усиленной резонансом" [6]) внутримолекулярной водородной связи, $N_{(2)}-H_{(21)}\cdots O_{(1)}$ ($N_{(2)}-H_{(21)}$ 0.70(10), $N_{(2)}\cdots O_{(1)}$ 2.662(8), $O_{(1)}\cdots H_{(3)}$ 2.09(9) Å, $N_{(2)}H_{(21)}O_{(1)}$ 133(6)°), замыкающей шестичленный цикл $O_{(1)}C_{(6)}C_{(4)}C_{(5)}N_{(2)}H_{(21)}$. Отметим, что среднестатистическое расстояние N···O для связей H типа N–H···O составляет 2.89 Å [7].

Общий вид молекулы соединения 9а с нумерацией атомов

Таблица З

Основные длины связей (Å) и валентные углы (град.) в молекуле 9а

Связь	d, Å	Угол	ω, град.
$S_{(1)} - C_{(1)}$	1.763(8)	$C_{(1)} - S_{(1)} - C_{(15)}$	103.0(4)
$S_{(1)} - C_{(15)}$	1.815(8)	$C_{(1)} - N_{(1)} - C_{(5)}$	118.3(7)
$N_{(1)} - C_{(1)}$	1.320(8)	C ₍₆₎ -N ₍₄₎ -C ₍₇₎	130.0(8)
$N_{(1)} - C_{(5)}$	1.350(10)	O(1)-C(6)-N(4)	120.2(9)
N ₍₂₎ -C ₍₅₎	1.338(11)	$O_{(1)} - C_{(6)} - C_{(4)}$	123.0(8)
N ₍₄₎ -C ₍₆₎	1.360(10)		
N ₍₄₎ -C ₍₇₎	1.402(11)		
C ₍₆₎ –O ₍₁₎	1.222(8)		

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления определяли на столике Кофлера. ИК спектры получали на приборе ИКС-40 в вазелиновом масле. Спектры ЯМР ¹Н записывали на спектрометре Gemini-200 (199 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектры записывали на спектрометре Kratos MS-890 (70 эВ). Контроль за ходом реакции и индивидуальностью полученных соединений осуществляли методом ТСХ на пластинках Silufol UV-254 в системе ацетон–гексан, 3:5, проявитель пары иода.

Рентгеноструктурное исследование монокристалла соединения 9а с линейными размерами 0.14×0.37×0.49 мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (МоКа-излучение, отношение скоростей сканирования $2\theta'\omega = 1.2$, $\theta_{\max} = 27^{\circ}$, сегмент сферы $0 \le h \le 16$, $0 \le k \le 8$, $-29 \le l \le 16$ 29). Всего было собрано 4858 отражений, из которых 4243 являются симметрически независимыми ($R_{int} = 0.018$). Кристаллы соединения **9а** моноклинные, a = 12.962(5), b 1.265 г/см³, $\mu = 1.78$ см⁻¹, F(000) = 784.56, пространственная группа $P2_1/c$. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [8]. В уточнении использовано 1229 отражений с I > 3(I) (244 уточняемых параметра, число отражений на параметр 5.0). Около половины атомов водорода удалось выявить из разностного синтеза электронной плотности, положения остальных были рассчитаны. Атомы H при атомах N₍₂₎ и N₍₄₎ были уточнены изотропно, остальные атомы водорода включены в уточнение с фиксированными позиционными и тепловыми параметрами. Учет поглощения в кристалле выполнен с помощью метода азимутального сканирования [9]. При уточнении использована весовая схема $w = 1/[0.01 \text{Fo}^2 +$ 12.0 σ ([Fo])² + 1.0]. Окончательные значения факторов расходимости R = 0.068 и $R_W = 0.066$. Остаточная электронная плотность из разностного ряда Фурье 0.26 и -0.33 e/Å³. Координаты неводородных атомов могут быть получены у авторов.

1-Амино-2,4-дициано-4-этоксикарбонил-1,3-бутадиен-1-тиолат Nметилморфоли- ния (4а) охарактеризован в работе [1].

1-Амино-4-арилкарбамоил-2,4-дициано-1,3-бутадиен-1-тиолаты N-метилморфолиния 4b,c. К суспензии 1.00 г (10 ммоль) цианотиоацетамида **2** в 15 мл этанола при 20 °С прибавляют 2.20 мл (20 ммоль) N-метилморфолина и перемешивают до образования раствора (5 мин). Затем к реакционной смеси прибавляют 10 ммоль соответствующего этоксиметиленпроизводного цианоуксусной кислоты **1b,c** и перемешивают ее еще 10 мин. При этом происходит потемнение раствора и образование осадка. Смесь оставляют на 1 сут. Выпавший осадок отфильтровывают, промывают этанолом и гексаном (табл. 1, 2).

Нитрилы 6-амино-5-арилкарбамоил-2-меркаптоникотиновых кислот 5а,b получают аналогично солям 4 из олефинов 1d,e, используя в качестве основания 0.68 г (10 ммоль) этилата натрия (табл. 1, 2).

Нитрилы 6-амино-5-арилкарбамоил(этоксикарбонил)-2-(*Z*-метилтио)никотиновых ки-слот 7а-d и 9а,b (общая методика). К суспензии 5 ммоль соли 4 или меркаптопиридина 5 в 10 мл ДМФА добавляют 2.80 мл (5 ммоль) 10% водного раствора КОН. К образовавшемуся раствору прибавляют 5 ммоль соответствующего алкилгалогенида 6. Смесь самопроизвольно разогревается до 40–45 °C, ее перемешивают в течение 1 ч. Образовавшийся осадок отфильтровывают, промывают этанолом и гексаном (табл. 1, 2). Масс-спектр соединения 7d, m/z (I_{orth} , %): 326 [M]⁺⁻ (32), 220 (100), 178 (70), 107 (98).

2-(1,3-Дициано-3-этоксикарбонилпроп-2-ен)-4-фенилтиазол (8). К раствору 3.24 г (10 ммоль) соли **4a** в 5 мл ДМФА прибавляют 1.99 г (10 ммоль) фенацилбромида и перемениивают реакционную смесь 1 ч. Образовавшийся осадок выделяют, промывают этанолом и гексаном. Выход 2.55 г (79%). Т. пл. 183–185 °С. ИК спектр, v, см⁻¹: 1684, 1698 (С=О), 2170, 2188, 2232 (С≡N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 8.18 (1H, с, H₍₅₎ тиазола); 7.86 и 7.78 (1H, оба д, J = 7.0, =CH–); 7.73–7.38 (5H, м, C₆H₅); 4.38 и 4.13 (2H, оба к, J = 7.1, <u>CH₂CH₃</u>); 4.07 (1H, д, J = 7.0, CHCN); 1.40 и 1.27 (3H, оба т, J = 7.1, CH₃). Масс-спектр, m/z ($I_{0тн}$, %): 322 [M⁺−1] (80), 276 (100), 250 (80), 134 (40), 102 (25), 82 (28), 73 (28), 44 (30). Найдено, %: С 63.37; Н 3.94; N 13.14. С₁₇H₁₃N₃O₂S. Вычислено, %: С 63.14; Н 4.05; N 12.99.

Нитрил 6-амино-3-(4-бром-3-метоксифенилкарбамоил)-2-пентилтионикотиновой кислоты (10). К раствору 3.71 г (10 ммоль) пиридина 9b в 15 мл ДМФА при переменивании добавляют по каплям 0.515 мл (10 ммоль) Вг₂, после чего перемешивают 1 ч. Образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Выход 3.99 г (89%). Т. пл. 205–207 °C. ИК спектр, v, см⁻¹: 1664 (C=O), 2216 (C=N), 3178, 3326, 3384 (NH, NH₂). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 10.03 (1H, с, CONH); 8.38 (1H, с, H₍₄₎); 7.89 (2H, уш. с, NH₂); 7.52 (1H, с, H_{аром}); 7.37 (1H, д. *J* = 8.7, H_{аром}); 7.21 (1H, д. *J* = 8.7, H_{аром}); 3.85 (3H, с, OCH₃); 3.20 (2H, т. *J* = 7.1, SCH₂); 1.68 (2H, м. SCH₂<u>CH₂</u>); 1.38 (4H, м. SCH₂CH₂<u>CH₂</u>); 0.90 (3H, т. *J* = 6.9, S(CH₂)<u>4</u><u>CH₃</u>). Найдено, %: С 50.93; H 4.63; N 12.31. С₁9H₂₁BrN₄O₂S. Вычислено, %: C 50.78; H 4.71; N 12.47.

2-Метил-3-(3-метоксифенил)-7-пентилтио-6-цианопиридо[2,3-*d***]пиримидин-4(3H)-он (11).** К раствору 1.85 г (5 ммоль) тиола **9b** в 5 мл уксусного ангидрида прибавляют 0.10 мл пиридина и кипятят с обратным холодильником 2 ч. Выдерживают при комнатной температуре 1 сут, образующийся осадок отфильтровывают, промывают этанолом. Выход 1.72 г (87%). Т. пл. 260–262 °C. ИК спектр, v, см⁻¹: 1690 (C=O), 2230 (C=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 8.59 (1H, с, H₍₅)); 7.44 (1H, д. д. $J_1 = 8.1, J_2 = 7.6, H_{аром})$; 7.04 (1H, д. $J = 8.1, H_{аром}$); 6.94 (1H, с, H_{аром}); 6.87 (1H, д. $J = 7.6, H_{аром}$); 3.83 (3H, с, OCH₃); 3.37 (2H, т, *J* = 7.1, SCH₂); 1.78 (2H, м, SCH₂<u>CH₂</u>); 1.41 (4H, м, SCH₂CH₂<u>CH₂</u>CH₂); 1.22 (3H, с, CH₃); 0.93 (3H, т, *J* = 7.0, S(CH₂)<u>4</u><u>CH₃</u>). Найдено, %: C 64.09; H 5.51; N 14.39. C₂₁H₂₂N₄O₂S. Выгчислено, %: C 63.93; H 5.62; N 14.20.

3-Арил-7-пентилтио-6-цианопиридо[2,3-*d*]пиримидин-4(3H)-оны (12а,b). Раствор 1.85 г (5 ммоль) аминопиридина 9а или 9b в 1.66 мл (10 ммоль) триэтилортоформиата и 1.42 мл (15 ммоль) уксусного ангидрида кипятят с обратным холодильником 1 ч. Выдерживают при комнатной температуре 1 сут, осадок отфильтровывают, промывают этанолом.

Соединение 12а. Выход 1.37 г (72%). Т. пл. 104–106 °С. ИК спектр, v, см⁻¹: 1691 (С=О), 2232 (С=N). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.77 (1H, с, H₍₂₎); 8.41 (1H, с, H₍₅₎); 7.55 (1H, д. д, *J* = 7.3, H_{аром}); 7.43 (1H, д. *J* = 7.8, H_{аром}), 7.25 (1H, д. *J* = 7.6, H_{аром}); 7.14 (1H, д. д, *J* = 6, *J* = 7.8, H_{аром}); 3.84 (3H, с, OCH₃); 3.41 (2H, т, *J* = 7.1, SCH₂); 1.81 (2H, м, SCH₂<u>CH₂</u>CH₂<u>CH₂</u>); 1.46 (4H, м, SCH₂<u>CH₂CH₂</u>CH₂); 0.96 (3H, т, *J* = 7.1, S(CH₂)<u>4</u>CH₃). Найдено, %: С 62.91; H 5.21; N 14.92. С₂₀H₂₀N₄O₂S. Вычислено, %: С 63.14; H 5.30; N 14.73.

Соединение 12b. Выход 1.58 г (83%). Т. пл. 116–118 °С. ИК спектр, v, см⁻¹: 1702 (C=O), 2230 (C=N). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.73 (1H, с, H₍₂₎); 8.53 (1H, с, H₍₅₎); 7.45 (1H, д. д, *J* = 7.7, H_{аром}); 7.08–7.02 (3H, м, H_{аром}); 3.85 (3H, с, OCH₃); 3.38 (2H, т, *J* = 7.2, SCH₂); 1.79 (2H, м, SCH₂<u>CH₂</u>); 1.44 (4H, м, SCH₂<u>CH₂CH₂CH₂</u>); 0.94 (3H, т, *J* = 7.1, S(CH₂)₄<u>CH₃</u>). Найдено, %: С 63.28; Н 5.15; N 14.51. С₂₀H₂₀N₄O₂S. Вычислено, %: С 63.14; H 5.30; N 14.73.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Д. Дяченко, Р. П. Ткачев, ЖОрХ, **38**, 768 (2002).
- 2. И. Г. Остроумов, в кн. *Новые достижения в химии карбонильных и гетероциклических соединений*, Сб. науч. тр., Саратов, 2000, с. 167.
- 3. И. Г. Остроумов, О. В. Епанчина, М. Ю. Григорьева, в кн. Новые достижения в химии карбонильных и гетероциклических соединений, Сб. науч. тр., Саратов, 2000, с. 168.
- В. В. Межерицкий, Е. П. Олехнович, С. М. Лукьянов, Г. Н. Дорофеенко, Ортоэфиры в органическом синтезе, Изд-во Рост. ун-та, 1976.
- 5. M. Burke-Laing, M. Laing, Acta crystallogr., B32, 3216 (1976).
- 6. L. N. Kuleshova, P. M. Zorkii, Acta crystallogr., B37, 1363 (1981).
- 7. V. Bertilasi, P. Gilli, V. Ferretti, G. Gilli, Acta crystallogr., B51, 1004 (1995).
- 8. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS Issue 10, Chemical Crystallography Laboratory*, Univ. of Oxford, 1996.
- 9. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta crystallogr., A24, 351 (1968).

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: dvd lug@online.lg.ua Поступило в редакцию 10.12.2002

^аИнститут органической химии НАН Украины, Киев 02094