В. С. Толкунов, Ю. Б. Высоцкий^а, О. А. Горбань, С. В. Шишкина⁶, О. В. Шишкин⁶, В. И. Дуленко

РЕАКЦИИ СОЛЕЙ З-АРИЛАМИНОБЕНЗОФУРО-, З-АРИЛАМИНОБЕНЗОТИЕНО-И З-АРИЛАМИНОИНДОЛО[2,3-*c*]ПИРИЛИЯ С НУКЛЕОФИЛЬНЫМИ РЕАГЕНТАМИ

Изучены реакции солей 3-ариламинобензофуро-, 3-ариламинобензотиено- и 3-ариламиноиндоло[2,3-*c*]пирилия с ацетатом аммония, первичными аминами, гидразингидратом. В спиртовой среде первичные амины и гидразингидрат раскрывают пирилиевый цикл с образованием ариламидов 2-(N-бензилметилкетимин)гетарил-3-уксусных кислот или соответ-ствующих гидразонов, при этом дальнейшая гетероциклизация не происходит. При дей-ствии ацетата аммония в уксусной кислоте образуются 2-арил-1-метилгетеро[2,3*c*]пири-дин-3(2H)-оны, наряду с их 2-незамещенными аналогами.

Ключевые слова: 3-ариламинобензотиено[2,3-*c*]пирилий, 3-ариламинобензофуро[2,3-*c*]пирилий, 3-ариламиноиндоло[2,3-*c*]пирилий, 2-N-арил-1-метилгетеро[2,3-*c*]пиридин-3(2H)оны, рециклизация.

Соли пирилия являются интересными объектами для изучения их взаимодействия с нуклеофильными реагентами [1, 2]. Функциональные группы в катионе влияют на электронную структуру и, следовательно, химические свойства этих солей, участвуют в процессах циклообразования [3, 4]. В продолжение исследований по синтезу и превращениям конденсированных солей пирилия [5, 6] нами изучены реакции перхлоратов 3-ариламинобензофуро- (1), 3-ариламинобензотиено- (2) и 3-ариламиноиндоло-[2,3-с]пирилия (3) с нуклеофильными реагентами. С целью выяснения влияния ариламиногруппы на реакционную способность пирилиевого цикла, конденсированного с различными бензаннелированными гетероциклами, рассчитаны параметры электронной структуры солей 1а-За в рамках связанного варианта многопараметрической теории возмущений метода ППП [7, 8]. Параметры π-электронного гамильтониана и резонансные интегралы аналогичны принятым для атомов углерода и азота [9, 10], атома кислорода фуранового цикла [11], атома серы тиофена [12]. Влияние заместителей на параметры электронной структуры соединений учитывалось в рамках теории возмущения, описывающей химическое замещение [13].

На основе анализа параметров электронной структуры катионов солей **1а–3а** показано, что локализация заряда наблюдается в основном в пирилиевом кольце и на гетероатомах О, N, причем она несколько снижается при переходе к соответствующим ангидроформам этих соединений **4а–6а**.

Отметим, что значения остаточных π -электронных зарядов на атомах азота и кислорода практически не изменяются. Анализ ближних порядков связей P_{ik} соединений **1а–За** и соответствующих ангидроформ **4а–6а** показал, что в пирилиевом кольце наиболее слабыми являются связи $C_{(1)}$ –О и $C_{(3)}$ –О.

Рис. 1. Молекулярные диаграммы солей 1а-За и соответствующих ангидроформ 4а-ба

Для квантово-химической трактовки внутримолекулярных циклизаций на основе индексного подхода Фукуи [14] в рамках статистической модели реакционной способности в качестве индексов реакционной способности выбраны порядки дальних связей $P_{ik}(0)$. При этом величина определяет возможность и скорость циклизации, а знак – стереоспецифичность процесса.

Из возможных молекулярных перегруппировок рассматриваемых структур практический интерес вызывает циклизация по связи C₍₁₎–N соединений **1а–3а** ($P_{C_{(1)}-N}^{la} = 0.103$; $P_{C_{(1)}-N}^{lb} = 0.106$; $P_{C_{(1)}-N}^{lc} = 0.100$), вероятность которой увеличивается в случае ангидроформ ($P_{C_{(1)}-N}^{2a} = 0.145$; $P_{C_{(1)}-N}^{2b} = 0.149$; $P_{C_{(1)}-N}^{2c} = 0.145$).

Согласно изложенному, положение 1 в катионе пирилия наиболее подвержено атаке нуклеофильного реагента.

Нами изучены реакции перхлоратов 3-ариламиногетеропирилия 1b-d, 2b, 3b,c с нуклеофильными реагентами, такими, как аммиак, первичные и вторичные амины, гидразингидрат. Выявлены значительные отличия свойств соединений 1–3 от свойств аналогично построенных 1,3-диалкили 1-алкил-3-арилзамещенных солей пирилия [1, 2, 15]. Так, взаимодействие перхлоратов 1b-d, 2b, 3b,c с водно-спиртовым раствором аммиака протекает не по традиционному для солей пирилия пути, приводящему к пиридиновым основаниям, а с раскрытием пирилиевого цикла и образованием ариламидов 2-ацетилгетарил-3-уксусных кислот 7а-с, 8, 9a,b, идентичных соединениям, полученным нами ранее из соответствующих пиронов и ариламинов [16].

1, 7 X = O, R^1 = Me-7; 1b, 7a R^2 = Me; 1c, 7b R^2 = Cl; 1d, 7c R^2 = Br; 2b, 8 X = S, R^1 = Me-6, R^2 = Me; 3, 9 X = NH, R^1 = H; 3b, 9a R^2 = Me; 3c, 9b R^2 = OMe

При кипячении перхлоратов **1b,d** и **2b** с ацетатом аммония в уксусной кислоте в каждом случае были выделены два продукта: из соли **1b** получены 1,7-диметил-2-(4-метилфениламино)бензофуро[2,3-*c*]пиридин-3(2H)-он (**10a**) (64%) и 1,7-диметилбензофуро[2,3-*c*]пиридин-3(2H)-он (**11**) (36%), из соли **1d** – 2-(4-бромфенил)-1,7-диметилбензофуро[2,3-*c*]пиридин-3(2H)-он (**10b**) (60%) и пиридинон **11** (40%), из соли **2b** – 1,6-диметил-2-(4-метилфенил)бензотиено[2,3-*c*]пиридин-3(2H)-он (**12**) (55%) и 1,6-ди-

метилбензотиено[2,3-*c*]пиридин-3(2Н)-он (13) (45%). Соединение 11 идентично образцу, полученному из борфторида 1-метил-3-оксибензофуро-[2,3-*c*]пирилия (по данным ТСХ и ЯМР ¹Н [4]). В указанных условиях из перхлоратов **3b**,**c** получены только 2-арил-1-метилиндоло[2,3-*c*]пиридин-3(2Н)-оны (14а,b) с выходами 72 и 74% соответственно.

Образование продуктов 11, 13 связано с присоединением нуклеофила по положению 3 пирилиевого цикла. Косвенным подтверждением нуклеофильной атаки по этому положению служит факт образования исключительно пиридонов 10a,b, 12, 14a,b при реакции кетоамидов 7a,c, 8, 9a,b с ацетатом аммония в уксусной кислоте.

7a,c, 8, 9a,b $\xrightarrow{\text{AcONH}_4}$ 10a,b, 12, 14a,b

10, **11** X = O, R¹ = Me-7; **10 a** R² = Me, **b** R² = Br; **12**, **13** X = S, R¹ = Me-6, R² = Me; **14 a** R² = Me, **b** R² = OMe

Строение 2-(4-бромфенил)-1,7-диметилбензофуро[2,3-*c*]пиридин-3(2H)она **10b** установлено с помощью РСА (рис. 2, табл. 1–3).

Рис. 2. Строение 2-(4-бромфенил)-1,7-диметилбензофуро[2,3-с]пиридин-3(2Н)-она 10b

Шестичленный гетероцикл соединения **10b** плоский с точностью до 0.02 Å.

Во фрагменте $O_{(2)}-C_{(1)}-C_{(2)}-C_{(3)}-C_{(10)}$ наблюдается сильная делокализация электронной плотности, на что указывает удлинение связей $O_{(2)}-C_{(1)}$ до 1.228(5) Å по сравнению со средним значением (ср. зн.) 1.210 Å [17], $C_{(2)}-C_{(3)}$ до 1.361(6) Å (ср. зн. 1.330 Å) и укорочение связей $C_{(1)}-C_{(2)}$ до 1.426(6) Å (ср. зн. 1.464 Å), $C_{(3)}-C_{(10)}$ до 1.412(6) Å (ср. зн. 1.464 Å).

Таблица 1

Координаты неводородных атомов (x, y, z) и эквивалентные и	зотропные тепловые
параметры U_{eq} , $Å^2$, в структуре 10b	-

Атом	$x \cdot 10^4$	<i>y</i> •10 ⁴	$z \cdot 10^4$	U_{eq}
$Br_{(1)}$	5880(1)	3675(1)	595(1)	74(1)
N(1)	1914(2)	3434(3)	-699(5)	36(1)
O ₍₁₎	-19(2)	4706(2)	-2410(4)	45(1)
O(2)	2078(2)	1850(2)	13(4)	43(1)
C ₍₁₎	1579(3)	2505(4)	-440(6)	35(1)
C(2)	655(3)	2394(3)	-761(6)	38(1)
C ₍₃₎	166(3)	3147(3)	-1384(6)	33(1)
C ₍₄₎	-753(3)	3294(3)	-1928(6)	34(1)
C(5)	-1500(3)	2711(4)	-1935(6)	43(1)
C ₍₆₎	-2270(3)	3086(4)	-2651(6)	47(1)
C ₍₇₎	-2310(3)	4004(4)	-3361(6)	44(1)
C ₍₈₎	-1576(3)	4595(3)	-3323(6)	38(1)
C ₍₉₎	-810(3)	4214(4)	-2577(6)	38(1)
C(10)	572(3)	4045(3)	-1686(6)	36(1)
C ₍₁₁₎	1430(3)	4216(3)	-1331(6)	34(1)
C(12)	2857(3)	3550(3)	-395(6)	32(1)
C(13)	3415(3)	3535(3)	-1767(7)	44(1)
C(14)	4314(3)	3599(4)	-1513(7)	51(1)
C(15)	4638(3)	3644(4)	185(8)	47(1)
C(16)	4094(3)	3680(4)	1579(7)	47(1)
C(17)	3187(3)	3617(3)	1307(6)	44(1)
C(18)	-3170(3)	4355(4)	-4199(7)	59(2)
C ₍₁₉₎	1853(3)	5166(3)	-1575(6)	46(1)

Длины связей (*l*) в структуре 10b

Таблица 2

Связь	l, Å	Связь	l, Å	Связь	l, Å
$Br_{(1)}-C_{(15)}$	1.903(5)	$C_{(10)} - C_{(11)}$	1.343(6)	$C_{(4)} - C_{(9)}$	1.373(7)
N ₍₁₎ -C ₍₁₎	1.401(6)	C ₍₁₂₎ –C ₍₁₃₎	1.360(6)	C ₍₅₎ –C ₍₆₎	1.379(6)
O ₍₁₎ –C ₍₉₎	1.384(5)	C ₍₁₃₎ -C ₍₁₄₎	1.376(6)	C(7)-C(8)	1.383(6)
O ₍₂₎ -C ₍₁₎	1.228(5)	C(15)-C(16)	1.359(7)	C(8)-C(9)	1.387(6)
$C_{(2)} - C_{(3)}$	1.361(6)	N ₍₁₎ -C ₍₁₁₎	1.392(6)	C ₍₁₁₎ -C ₍₁₉₎	1.480(6)
C(3)-C(4)	1.460(6)	N(1)-C(12)	1.453(5)	C(12)-C(17)	1.383(6)
C ₍₄₎ -C ₍₅₎	1.391(6)	O ₍₁₎ C ₍₁₀₎	1.390(5)	C ₍₁₄₎ -C ₍₁₅₎	1.376(7)
C ₍₆₎ -C ₍₇₎	1.386(7)	C(1)-C(2)	1.426(6)	C ₍₁₆₎ -C ₍₁₇₎	1.390(6)
$C_{(7)} - C_{(18)}$	1.520(6)	C(3)-C(10)	1.412(6)		

Бромфенильный заместитель при атоме N₍₁₎ повернут практически пер-

пендикулярно плоскости гетероцикла [торсионный угол $C_{(11)}$ – $N_{(1)}$ – $C_{(12)}$ – $C_{(17)}$ 106.3(5)°]. Нарушение сопряжения приводит к удлинению связи $N_{(1)}$ – $C_{(12)}$ до 1.453(5) Å (ср. зн. 1.390 Å). В трициклическом фрагменте бензольное и пиридиновое кольца развернуты относительно друг друга на угол 6.3°. Длины связей в пятичленном цикле заметно отличаются от таковых в фурановом кольце. Все они существенно удлинены (табл. 2), что указывает на заметное ослабление сопряжения в этом фрагменте. В кристалле обнаружены укороченные межмолекулярные контакты $H_{(13)}...O_{(2')}$ (x, 0.5 – y, z – 0.5) 2.33 Å (сумма ван-дер-ваальсовых радиусов 2.45 Å [18]), $Br_{(1)}...H_{(6')}$ (1 + x, 0.5 – y, 0.5 + z) 3.08 Å (3.23 Å).

При взаимодействии перхлоратов пирилия **1b–d**, **2b**, **3b**, **c** с бензиламином или фурфуриламином в спирте происходит присоединение первичного амина по положению 1 пирилиевого цикла. Последующий разрыв связи $C_{(1)}$ –О приводит к образованию ариламидов 2-(1-бензилиминоэтил)гетарил-3-уксусных кислот **15а–с**, **16**, **17а**, **b**, которые устойчивы в условиях реакции и не претерпевают дальнейшей гетероциклизации. Это первый пример выделения промежуточных продуктов в реакциях солей пирилия с первичными аминами, ранее постулированных Димротом и другими исследователями [19–21].

15 X = O, 15 a-c R¹ = Me-6, a R² = Me, R³ = Ph, b R² = Cl, R³ = фурил-2, c R² = Br, R³ = Ph; 18 X = O, R¹ = Me-7; 16, 19 X = S, 16 R¹ = Me-5, R² = Me, R³ = Ph, 19 R¹ = Me-6, 17, 20 X = NH; 17 R¹ = H, a R² = Me, R³ = Ph; b R² = MeO, R³ = фурил-2, 20 R¹ = H

Взаимодействие солей пирилия **1b–d**, **2b**, **3b**, **c** с бензиламином и фурфуриламином в уксусной кислоте, в отличие от реакции в спирте, приводит к соответствующим 2-арил-1-метилгетеропиридин-3(2H)-онам **10а–с**, **12**, **14а**, **b** и протекает, вероятно, также через промежуточное образование кетиминов **15а–с**, **16**, **17а**, **b**, которые в кислой среде циклизуются в пиридоны **10а–с**, **12**, **14а**, **b** соответственно. Для проверки этого предположения нами изучена гетероциклизация кетиминов **15–17** в условиях кислого катализа. Показано, что при их кипячении в уксусной кислоте с хорошими выходами образуются пиридоны **10**, **12**, **14**.

Валентные углы (ω) в структуре 10b

Таблица З

Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
$C_{(11)} - N_{(1)} - C_{(1)}$	125.3(4)	C ₍₁₀₎ -C ₍₁₁₎ -N ₍₁₎	115.6(4)	C ₍₅₎ -C ₍₄₎ -C ₍₃₎	133.8(4)
$C_{(1)} - N_{(1)} - C_{(12)}$	116.0(4)	N ₍₁₎ -C ₍₁₁₎ -C ₍₁₉₎	120.8(4)	$C_{(5)} - C_{(6)} - C_{(7)}$	122.1(5)
$O_{(2)} - C_{(1)} - N_{(1)}$	119.9(4)	$C_{(13)}$ - $C_{(12)}$ - $N_{(1)}$	120.1(4)	$C_{(8)}$ - $C_{(7)}$ - $C_{(18)}$	120.1(5)
$N_{(1)}$ - $C_{(1)}$ - $C_{(2)}$	115.6(4)	$C_{(12)}$ - $C_{(13)}$ - $C_{(14)}$	121.4(4)	$C_{(7)}$ - $C_{(8)}$ - $C_{(9)}$	116.7(4)
$C_{(2)}-C_{(3)}-C_{(10)}$	119.9(4)	$C_{(16)}$ - $C_{(15)}$ - $C_{(14)}$	121.8(4)	$C_{(4)} - C_{(9)} - C_{(8)}$	123.3(4)
$C_{(10)}$ - $C_{(3)}$ - $C_{(4)}$	104.3(4)	C(14)-C(15)-Br(1)	119.2(4)	$C_{(11)}$ - $C_{(10)}$ - $O_{(1)}$	125.2(4)
$C_{(9)}$ - $C_{(4)}$ - $C_{(3)}$	106.5(4)	$C_{(12)}$ - $C_{(17)}$ - $C_{(16)}$	118.8(5)	$O_{(1)} - C_{(10)} - C_{(3)}$	111.6(4)
$C_{(6)}-C_{(5)}-C_{(4)}$	117.6(5)	C ₍₁₁₎ -N ₍₁₎ -C ₍₁₂₎	118.6(4)	$C_{(10)}$ - $C_{(11)}$ - $C_{(19)}$	123.5(4)
$C_{(8)}$ - $C_{(7)}$ - $C_{(6)}$	120.6(4)	$C_{(9)}-O_{(1)}-C_{(10)}$	105.1(3)	$C_{(13)}$ - $C_{(12)}$ - $C_{(17)}$	120.2(4)
$C_{(6)}-C_{(7)}-C_{(18)}$	119.3(4)	$O_{(2)}-C_{(1)}-C_{(2)}$	124.4(4)	$C_{(17)}$ - $C_{(12)}$ - $N_{(1)}$	119.5(4)
$C_{(4)}$ - $C_{(9)}$ - $O_{(1)}$	112.3(4)	$C_{(3)}-C_{(2)}-C_{(1)}$	120.2(4)	$C_{(13)}$ - $C_{(14)}$ - $C_{(15)}$	117.9(5)
$O_{(1)} - C_{(9)} - C_{(8)}$	124.5(4)	$C_{(2)}-C_{(3)}-C_{(4)}$	135.7(4)	C ₍₁₆ -C ₍₁₅₎ -Br ₍₁₎	119.0(4)
$C_{(11)} - C_{(10)} - C_{(3)}$	123.2(4)	C(9)-C(4)-C(5)	119.7(4)	C ₍₁₅₎ -C ₍₁₆₎ -C ₍₁₇₎	119.7(4)

Характеристики синтезированных соединений

Таблица 4

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. пл., ⁰С	Вы- ход,	
нение	формула	С	Н	Hal	N	S		%
12a	$C_{27}H_{26}N_2O_2$	<u>79.18</u> 79.00	<u>6.24</u> 6.38	-	<u>6.92</u> 6.82	_	175–176	98
12b	$C_{24}H_{21}CIN_2O_3$	<u>68.31</u> 68.49	<u>4.88</u> 5.03	<u>8.55</u> 8.42	<u>6.79</u> 6.66	_	172–173	90
12c	$C_{26}H_{23}BrN_2O_2$	<u>65.75</u> 65.69	<u>5.04</u> 4.88	<u>16.69</u> 16.81	<u>5.72</u> 5.89	_	205	96
13	$C_{27}H_{26}N_2OS$	<u>75.87</u> 76.02	<u>6.25</u> 6.14	-	<u>6.44</u> 6.57	<u>7.60</u> 7.52	150-152	91
14a	$C_{26}H_{25}N_{3}O$	<u>79.04</u> 78.96	$\frac{6.22}{6.37}$	-	$\frac{10.46}{10.62}$	_	172–173	79
14b	$C_{24}H_{23}N_3O_3$	<u>71.67</u> 71.80	<u>5.70</u> 5.77	-	$\frac{10.63}{10.47}$	_	169–170	63
15	$C_{20}H_{17}NO_2$	<u>79.32</u> 79.19	<u>5.77</u> 5.65	-	<u>4.51</u> 4.62		205	92
16	$C_{20}H_{17}NOS$	<u>75.06</u> 75.20	<u>5.49</u> 5.36	-	$\frac{4.52}{4.38}$	<u>9.95</u> 10.04	223–224	91
17	$C_{19}H_{16}N_2O$	<u>79.26</u> 79.14	<u>5.68</u> 5.59	-	<u>9.56</u> 9.71	_	288	89
18	$C_{20}H_{19}NO_3$	<u>74.86</u> 74.75	<u>5.83</u> 5.96	-	<u>4.21</u> 4.36	_	134–135	96
19	$C_{20}H_{19}NO_2S$	<u>71.31</u> 71.19	<u>5.45</u> 5.68	-	$\frac{4.04}{4.15}$	<u>9.36</u> 9.50	196–197	80
20	$C_{19}H_{18}N_2O_2$	<u>74.40</u> 74.49	<u>6.02</u> 5.92	-	<u>9.03</u> 9.14	-	173	97
21a	$C_{20}H_{21}N_{3}O_{2} \\$	<u>71.75</u> 71.62	<u>6.22</u> 6.31	-	<u>12.61</u> 12.53		191	97
21b	$C_{19}H_{18}ClN_3O_2$	<u>64.26</u> 64.14	<u>5.03</u> 5.10	<u>9.87</u> 9.96	<u>11.73</u> 11.81		201	96
22	$C_{19}H_{20}N_4O$	<u>71.16</u> 71.23	<u>6.23</u> 6.29		<u>17.54</u> 17.49		107	95

В трифторуксусной кислоте гетероциклизация кетиминов **15а,с**, **16**, **17а** протекает с образованием соответствующих 2-бензил-1-метилгетеро[2,3-*c*]-607 пиридин-3(2Н)-онов 18-20.

Строение 2-бензил-1,7-диметилбензофуро[2,3-*c*]пиридин-3(2H)-она (18), 2-бензил-1,6-диметилбензотиено[2,3-*c*]пиридин-3(2H)-она (19) и 2-бензил-1-метилиндоло[2,3-*c*]пиридин-3(2H)-она (20) подтверждено их встречным синтезом из бензиламидов 2-ацетилгетарил-3-уксусных кислот 21–23. Образцы соединений 18–20, полученных разными способами, имеют идентичные характеристики (т. пл. и данные ЯМР ¹Н).

21 X = O, R = Me-6; 22 X = S, R = Me-5; 23 X = NH, R = H

2-Арилгетеропиридин-3(2Н)-оны 10a, 12, 14a синтезированы также при взаимодействии солей пирилия 1b–3b с триэтиламином, ацетатом натрия или анилином в уксусной кислоте. В этих условиях анилин выступает в роли основания, а не реагента. Образование продуктов 10a, 12, 14a, очевидно, протекает через соответствующие ангидрооснования 4b–6b, их дальнейшее превращение в соответствующие кетоамиды 7a, 8, 9a и циклизацию последних.

4b R^1 = Me-7, **5b** R^1 = Me-6, **6b** R^1 = H

Наши попытки получить ангидрооснования 4b-6b действием на пирилиевые соли 1b, 2b и 3b триэтиламина в ТГФ были безуспешны из-за склонности этих оснований к гидролизу, приводящему в процессе их очистки к кетоамидам 7a, 8 и 9a.

Таблица 5

Спектры ЯМР ¹Н синтезированных соединений

Соеди- нение	δ, м. д, КССВ (<i>J</i> , Гц)
15a	2.20 (3H, c, CH ₃ -4'), 2.46 (6H, c, CH ₃ C=N μ CH ₃ -6), 4.10 (2H, c, CH ₂ CO), 4.80 (2H, c, CH ₂ N=), 6.95 (2H, μ , $J = 8.5$, H-3',5'), 7.11 (2H, μ , $J = 8.5$, H-2',6'), 7.17–7.32 (5H, μ , H _{apox}), 7.45 (1H, c, H-7), 7.47 (1H, μ , $J = 8.0$, H-5), 7.59 (1H, μ , $J = 8.0$, H-4), 10.25 (1H, c, NH)
15b	2.42 (6H, c, CH ₃ C=N и CH ₃ -6), 3.95 (2H, c, CH ₂ CO), 4.77 (2H, c, CH ₂ N=), 6.36 (2H, м, H* $_{\phi \gamma p}$ -3,4), 7.11 (1H, д, J = 8.0, H-5), 7.20 (2H, д, J = 8.7, H-2',6'), 7.29 (2H, д, J = 8.7, H-3',5'), 7.40 (1H, c, H-7), 7.52 (1H, д, H $_{\phi \gamma p}$ -5), 7.53 (1H, д, J = 8.0, H-4), 10.51 (1H, c, NH)
15c	2.42 (6H, c, CH ₃ C=N и CH ₃ -6), 4.07 (2H, c, CH ₂ CO), 4.76 (2H, c, CH ₂ N=), 7.11 (1H, д, <i>J</i> = 8.0, H-5), 7.17–7.43 (10H, м, H _{аром}), 7.56 (1H, д, <i>J</i> = 8.0, H-4), 10.40 (1H, c, NH)
16	2.15 (3H, c, CH ₃ -4'), 2.42 (3H, c, CH ₃ -5), 2.49 (3H, c, CH ₃ C=N), 4.13 (2H, c, CH ₂ CO), 4.79 (2H, c, CH ₂ N=), 6.91 (2H, д, <i>J</i> = 8.3, H-3',5'), 7.03 (2H, д, <i>J</i> = 8.3, H-2',6'), 7.24–7.31 (5H, м, H _{apox}), 7.46 (1H, д, <i>J</i> = 8.2, H-6), 7.78 (1H, c, H-4), 7.84 (1H, д, <i>J</i> = 8.2, H-7), 10.48 (1H, c, NH)
17a	2.14 (3H, c, CH ₃ -4'), 2.50 (3H, c, CH ₃ C=N), 3.93 (2H, c, CH ₂ CO), 4.84 (2H, c, CH ₂ N=), 6.87 (2H, π , $J = 8.5$, H-3',5'), 6.96 (2H, π , $J = 8.5$, H-2',6'), 7.04 (1H, π , $J = 8.0$, H-6), 7.18 (1H, π , $J = 8.0$, H-5), 7.24 (5H, π , H _{apon}), 7.42 (1H, π , $J = 8.1$, H-7), 7.64 (1H, π , $J = 7.7$, H-4), 10.50 (1H, c, NHCO), 11.38 (1H, c, N ₍₁₎ H)
17b	2.47 (3H, c, CH ₃ C=N), 3.63 (3H, c, CH ₃ O-4'), 3.85 (2H, c, CH ₂ CO), 4.81 (2H, c, CH ₂ N=), 6.40 (2H, M, $H_{\phi yp}$ -3,4), 6.70 (2H, π , J = 9.0, H-3',5'), 7.02 (1H, π , J = 8.0, H-6), 7.14 (2H, π , J = 9.0, H-2',6'), 7.16 (1H, π , J = 8.0, H-5), 7.39 (1H, π , J = 8.0, H-7), 7.55 (1H, M, $H_{\phi yp}$ -5), 7.62 (1H, π , J = 7.8, H-4), 10.50 (1H, c, NHCO), 11.38 (1H, c, N ₍₁₎ H)
18	2.44 (6H, c, CH ₃ -1,7), 5.40 (2H, c, CH ₂), 6.86 (1H, c, H-4), 7.13–7.34 (7H, м, H _{аром}), 7.92 (1H, д, <i>J</i> = 8.0, H-5)
19	2.43 (3H, c, CH ₃ -6), 2.48 (3H, c, CH ₃ -1), 5.50 (2H, c, CH ₂), 7.17–7.40 (6H, м, H-4 и H _{фенил}), 7.46 (1H, д, $J = 8.2$, H-7), 7.77 (1H, д, $J = 8.2$, H-8), 8.09 (1H, c, H-5)
20	2.51 (3H, c, CH ₃ -1), 5.49 (2H, c, CH ₂), 6.89 (1H, c, H-4), 7.05 (1H, т, <i>J</i> = 7.8, H-7), 7.11 (2H, д, <i>J</i> = 8.0, H-2',6'), 7.19–7.33 (4H, м, H-3',4',5',8), 7.43 (1H, т, <i>J</i> = 8.0, H-6), 7.97 (1H, д, <i>J</i> = 7.6, H-5), 10.48 (1H, c, N ₍₉₎ H)
21	2.46 (3H, c, CH ₃ -6), 2.56 (3H, c, COCH ₃), 4.05 (2H, c, CH ₂ CO), 4.28 (2H, д, <i>J</i> = 5.8, CH ₂), 7.15–7.30 (6H, м, H _{аром}), 7.49 (1H, c, H-7), 7.64 (2H, д, <i>J</i> = 8.2, H-4), 8.53 (1H, т, <i>J</i> = 5.8, NH)
22	2.46 (3H, c, CH ₃ -5), 2.60 (3H, c, COCH ₃), 4.25 (2H, c, CH ₂), 4.42 (2H, д, <i>J</i> = 5.8, CH ₂), 7.21–7.43 (6H, м, H _{аром}), 7.85 (1H, д, <i>J</i> = 8.0, H-7), 7.92 (1H, c, H-4), 8.67 (1H, т, <i>J</i> = 5.8, NH)
23	2.60 (3H, c, COCH ₃), 4.03 (2H, c, CH ₂), 4.26 (2H, π , $J = 5.8$, CH ₂), 7.05 (1H, π , $J = 8.0$, H-6), 7.16–7.31 (6H, π , H _{apon}), 7.43 (1H, π , $J = 8.2$, H-7), 7.71 (1H, π , $J = 8.2$, H-4), 8.38 (1H, π , $J = 5.8$, NH), 11.59 (1H, c, N ₍₁₎ H)
24a	2.14 (3H, c, CH ₃ -7), 2.22 (3H, c, CH ₃ -4'), 2.40 (3H, c, CH ₃ C=N), 3.87 (2H, c, CH ₂), 6.99 (2H, c, NH ₂), 7.07 (2H, π , $J = 7.8$, H-3',5',5), 7.34 (1H, c, H-7), 7.43 (2H, π , $J = 7.8$, H-2',6',4), 10.20 (1H, c, NH)
24b	2.17 (3H, c, CH ₃ -6), 2.43 (3H, c, CH ₃ C=N), 3.89 (2H, c, CH ₂), 6.97 (2H, c, NH ₂), 7.07 (1H, α , $J = 8.0$, H-5), 7.30 (2H, α , $J = 8.6$, H-2',6'), 7.32 (1H, c, H-7), 7.46 (1H, α , $J = 8.0$, H-4), 7.60 (2H, α , $J = 8.6$, H-3',5'), 10.44 (1H, c, NH)
25	2.21 (6H, c, CH ₃ C=N и CH ₃ -4'), 3.80 (2H, c, CH ₂), 6.77 (2H, c, NH ₂), 6.95–7.12 (4H, м, H-3',5',5,6), 7.33 (1H, д, <i>J</i> = 7.7, H-7), 7.41 (2H, д, <i>J</i> = 8.2, H-2',6'), 7.54 (1H, д, <i>J</i> = 7.7, H-4), 10.50 (1H, c, CONH), 11.09 (1H, c, N ₍₁₎ H)

^{*} Н_{фур} – здесь и далее протон заместителя фурил-2.

Гидразингидрат реагирует с солями пирилия **1b,c**, **3b** аналогично первичным аминам. Реакция останавливается на стадии образования гидразонов ариламидов 2-ацетилгетарил-3-уксусных кислот **24a,b**, **25**. Те же гидразоны **24a,b**, **25** могут быть получены и из ариламидов 2-ацетил-609

гетарил-3-уксусных кислот 7а, b, 9а и гидразингидрата.

24 $X = O, R^1 = Me, a R^2 = Me, b R^2 = Cl, 25 X = NH, R^1 = H, R^2 = Me$

Таким образом, при взаимодействии солей 3-ариламино-1-метилгетеро[2,3-*c*]пирилия 1–3 в реакциях с нуклеофильными реагентами в спирте происходит присоединение нуклеофила по положению 1 пирилиевого фрагмента и раскрытие пирилиевого цикла, тогда как при аналогичном взаимодействии в уксусной кислоте имеет место последующая гетероциклизация продуктов присоединения в производные 2-арил-1-метилбензофуро-, 2-арил-1-метилбензотиено- и 2-арил-1-метилиндоло[2,3-*c*]пиридин-3(2H)-онов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н снимали на приборе Gemini-200 (200 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Контроль за чистотой полученных продуктов осуществляли с помощью ТСХ на пластинах Silufol UV-254 в системе толуол–этанол, 4:1. Анализ продуктов реакции проводили методом ВЭЖХ на хроматографе фирмы Laboratory pristroje (Praha). Детектор – дифференциальный рефрактометр RIDK-102, колонка 3 × 150 мм, неподвижная фаза Separon C₁₈, подвижная фаза – метанол–вода, 7:3.

Взаимодействие перхлоратов 1b-d, 2b, 3b,с с водно-спиртовым раствором аммиака. Ариламиды 2-ацетилгетарил-3-уксусных кислот (7а-с, 8, 9а,b). К суспензии 50 ммоль пирилиевой соли 1b-d, 2b, 3b,с в 25 мл спирта прибавляют 5 мл 25% раствора аммиака. Смесь кипятит 30 мин, охлаждают, прибавляют 30 мл воды. Выпавший осадок отфильтровывают и перекристаллизовывают из 2-пропанола (продукты 7а-с) или водного ДМФА (продукты 8, 9а,b). Получают 4-метилфениламид 2-ацетил-6-метилбензо[b]фуран-3илуксусной кислоты (7а) (92%, т. пл. 172–173 °C), 4-хлорфениламид 2-ацетил-6-метилбензо[b]фуран-3-илуксусной кислоты (7b) (89%, т. пл. 175–176 °C), 4-бромфениламид 2-ацетил-6-метилбензо[b]фуран-3-илуксусной кислоты (7c) (91%, т. пл. 192–193 °C), 4-метилфениламид 2-ацетил-5-метилбензо[b]тиофен-3-илуксусной кислоты (8) (90%, т. пл. 205–206 °C), 4-метилфениламид 2-ацетилиндол-3-илуксусной кислоты (9a) (93%, т. пл. 229–230 °C), 4-метоксифениламид 2-ацетилиндол-3-илуксусной кислоты (9b) (92%, т. пл. 224–225 °C).

Перечисленные продукты идентичны (т. пл.) амидам, описанным ранее [16].

Взаимодействие перхлоратов (1с,d, 2b, 3b,c) с ацетатом аммония в уксусной кислоте. 1-Метилгетеро[2,3-с]пиридин-3(2H)-оны (11, 13). 2-Арил-1-метилгетеро[2,3-с]пиридин-3(2H)-оны (10а-с, 12, 14а,b). Смесь 26 ммоль перхлората 1b,d, 2b, 3b,c и 1 г ацетата аммония в 15 мл 98% уксусной кислоты кипятят 3 ч. Охлаждают, выпавшие в процессе реакции пиридоны 11, 13 отфильтровывают, промывают спиртом, кристаллизуют из ДМФА. Фильтрат выливают в 100 мл воды и нейтрализуют 10% водным раствором аммиака. Выпавшие в осадок продукты 10а,b, 12, 14а,b отфильтровывают и кристаллизуют из 2-пропанола. Соединения 10а,b, 11а, 12, 14а,b идентичны описанным в литературе (т. пл.) [15].

Взаимодействие перхлоратов (1b-d, 2b, 3b,c) с триэтиламином (методика A), ацетатом натрия (Б) или анилином (В) в уксусной кислоте. 2-Арил-1-метилгетеро[2,3-c]пиридин-3(2H)-оны (10а-с, 12, 14а,b). А. К суспензии 0.01 моль пирилиевой соли 1b-d, 2b, 3b,c в 30 мл уксусной кислоты прибавляют 3 мл триэтиламина. Раствор кипятят 2 ч, охлаждают, прибавляют 100 мл воды и нейтрализуют 10% водным раствором аммиака. Выпавший осадок отфильтровывают, перекристаллизовывают из 2-пропанола, получают пиридоны **10а-с**, **12**, **14а**,**b** с выходами, близкими к количественным.

Б. Указанные выше продукты синтезируют аналогично, используя вместо триэтиламина 3 г ацетата натрия. Выходы, %: **10а** – 93, **10b** – 89, **10с** – 92, **12** – 90, **14а** – 78, **14b** – 83.

В. Те же продукты получают, используя 3 мл анилина. Выходы, %: **10a** – 75, **10b** – 72, **10c** – 78, **12** – 76, **14a** – 68, **14b** – 70. Образцы 2-арилпиридонов **10a–c**, **12**, **14a**,**b**, полученные по методикам А, Б, В, не дают депрессии т. пл. с образцами, полученными взаимодействием солей **1b–d**, **2b**, **3b**, **c** с AcONH₄ в AcOH (см. выше).

Ариламиды 2-[(1-бензил(фурфурил)иминоэтил)]гетарил-3-уксусных кислот (15а-с, 16, 17а,b) (общая методика). К суспензии 0.01 моль пирилиевой соли 1b-d, 2b, 3b,с в 50 мл 2-пропанола прибавляют 5 мл бензиламина или фурфуриламина. Полученную смесь кипятят 1 ч, затем охлаждают и прибавляют 20 мл воды. Осадок отфильтровывают, промывают водой. Получают продукты 15а-с, 16, 17а,b, которые кристаллизуют из 2-пропанола (15а,c, 17а,b), метанола (15b) или смеси бензол-гексан, 1:3 (16).

Циклизация ариламидов 2-[(1-бензил(фурфурил)иминоэтил)]гетарил-3-уксусных кислот (15а-с, 16, 17а,b) в уксусной кислоте. Пиридиноны (10а-с, 12, 14а,b). Раствор 1 г соединения 15а-с, 16, 17а,b в 10 мл уксусной кислоты кипятят 3 ч, охлаждают, разбавляют 30 мл воды и обрабатывают 10% водным раствором аммиака до pH >7. Выпавший осадок отфильтровывают, промывают водой. Получают 2-арилпиридоны (%): 10a (92), 10b (89), 10c (91), 12 (85), 14a (95), 14b (87). Образцы соединений 10а-с, 12, 14а,b не дают депрессии т. пл. с образцами, полученными взаимодействием солей 1b-d, 2b, 3b,c с триэтиламином.

Циклизация ариламидов 15а-с, 16, 17а в трифторуксусной кислоте. 2-Бензил-1метилгетеро[2,3-с]пиридин-3(2H)-оны (18–20). Циклизацию соединений 15а-с, 16а, 17а,b в трифторуксусной кислоте проводят по методике циклизации в уксусной кислоте. Полученные продукты 18–20 кристаллизуют из 2-пропанола. Выходы, %: 18 – 92, 19 – 91, 20 – 89.

Бензиламид 2-ацетил-1,6-диметилбензофуран-3-илуксусной кислоты (21), 2-ацетил-1,5-диметилбензотиофен-3-илуксусной кислоты (22) и 2-ацетил-1-метилиндол-3-илуксусной кислоты (23). Кипячением 1,7-диметилбензофуро[2,3-*c*]пирона-3 с бензиламином в 2-пропаноле или 1,6-диметилбензотиено[2,3-*c*]пирона-3 и 1-метилиндоло[2,3-*c*]пирона-3 с бензиламином в ДМФА по методике синтеза соответствующих ариламидов [16] получают бензиламиды 21–23, которые очищают перекристаллизацией из 2-пропанола.

Циклизация бензиламидов 21–23. 2-Бензил-1-метилгетеро[2,3-с]пиридин-3(2H)оны (18–20) (общая методика). К раствору 0.01 моль бензиламидов 21–23 в 30 мл уксусной кислоты добавляют 0.05 моль триэтиламина. Смесь кипятят 1.5 ч, охлаждают, выливают в воду и добавляют раствор аммиака до pH ≥7. Выпавший осадок пиридинона 18–20 отфильтровывают, промывают водой, высушивают и кристаллизуют из спирта. Синтезированные образцы соединений 18–20 не дают депрессии т. пл. с образцами, полученными циклизацией ариламидов 15–17 в трифторуксусной кислоте (см. выше).

Гидразоны ариламидов 2-ацетилгетарил-3-илуксусных кислот (24a,b, 25). А. К суспензии 0.01 моль соли 1b,c, 3b в 50 мл метилового спирта прибавляют 5 мл гидразингидрата и кипятят 0.5 ч. После охлаждения к реакционной смеси прибавляют 50 мл воды. Осадок отфильтровывают, промывают водой. Полученные гидразоны 24a,b кристаллизуют из металона, 25 – из 2-пропанола.

Б. Гидразоны **24а,b**, **25** получают также из 0.01 моль ариламида **7а,b**, **9а**, соответственно, по описанной выше методике, используя вместо метанола 2-пропанол.

Рентгеноструктурное исследование 2-(4-бромфенил)-1,7-диметилбензофуро[2,3-*c*]пиридин-3(2H)-она (10b). Кристаллы соединения 10b моноклинные, $C_{19}H_{14}NO_2Br$, при 20 °C *a* = 15.159(5), *b* = 13.888(4), *c* = 7.623(3)Å, *β* = 91.19(3)°, *V* = 1604.5(9) Å³, M_r = 368.22, *Z* = 4, пространственная группа *P*2₁/*c*, *d*_{выч} = 1.524 г/см³, µ(МоКа) = 2.571 мм⁻¹, *F*(000) = 744. Параметры элементарной ячейки и интенсивности 3245 отражений (2782 независимых, *R*_{int} = 0.083) измерены на автоматическом 4-кружном дифрактометре Siemens P3/PC (МоКа, графитовый монохроматор, 20/θ-сканирование, 20_{max} = 50°).

Структура расшифрована прямым методом по комплексу программ SHELX-97 [21]. Поглощение учтено полуэмпирическим методом по результатам ψ -сканирования ($T_{\text{max}} = 0.982$, $T_{\text{min}} = 0.555$). Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{\text{изо}} = nU_{\text{экв}}$ (n = 1.5 для

метильных групп и n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.12$ по 2782 отражениям ($R_1 = 0.045$ по 1201 отражению с $F>4\sigma(F)$, S = 0.918). Окончательные координаты атомов приведены в табл. 1, длины связей и валентные углы – в табл. 2 и 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. И. Дуленко, С. В. Толкунов, Н. Н. Алексеев, *XTC*, 1351 (1981).
- 2. В. И. Дуленко, С. В. Толкунов, ХГС, 889 (1987).
- С. Л. Богза, А. А. Малиенко, Т. А. Заритовская, М. Ю. Зубрицкий, С. Ю. Суйков, К. И. Кобраков, В. И. Дуленко, *ЖОрХ*, 32, 596 (1996).
- 4. С. В. Толкунов, М. Н. Кальницкий, Е. А. Земская, *XГС*, 1552 (1991).
- 5. С. В. Толкунов, А. И. Хижан, С. И. Симонова, Н. С. Семенов, С. Н. Лящук, *XГС*, 321 (1991).
- 6. С. В. Толкунов, В. И. Дуленко, *XГС*, 182 (1998).
- М. М. Местечкин, Метод матрицы плотности в теории молекул, Наукова думка, Киев, 1977.
- 8. М. Дьюар, Теория молекулярных орбиталей в органической химии, Мир, Москва, 1972.
- 9. Ю. Б. Высоцкий, Журн. структур. химии, 19, 605 (1978).
- 10. А. К. Шейнкман, М. М. Местечкин, А. П. Кучеренко, ХГС, 1096 (1974).
- 11. Ю. Б. Высоцкий, Л. Н Сивякова, Теор. и эксперим. химия, 21, 293 (1985).
- 12. Ю. Б. Высоцкий, Б. П. Земский, Е. А. Земская, Н. Н. Алексеев, *Журн. структур. химии*, **22**, 13 (1981).
- 13. Ю. Б. Высоцкий, Л. Н. Сивякова, Теор. и эксперим. химия, 25, 277 (1989).
- 14. K. Fukui, H. Fujimoto, Bull. Chem. Soc. Jpn., 39, 2116 (1966).
- 15. С. В. Толкунов, ХГС, 1335 (1998).
- 16. С. В. Толкунов, В. С. Толкунов, В. И. Дуленко, ХГС, 577 (2004).
- 17. H.-B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, 2, 741.
- 18. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- 19. K. Dimroth, Angew. Chem., 72, 331 (1960).
- 20. Г. П. Сафарян, И. В. Щербакова, Г. Н. Дорофеенко, Е. В. Кузнецов, ХГС, 1608 (1981).
- 21. С. В. Верин, Д. Э. Тосунян, Е. В. Кузнецов, ХГС, 1468 (1991).
- 22. G. M. Sheldrick, SHELX-97. PC Version. A system of computer programs for the crystal structure solution and refinement., 1998, Rev. 2.

Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецк 83114 e-mail: tolkunov@uvika.dn.ua

^аДонбасская государственная академия строительства и архитектуры, Макеевка 86128, Украина

⁶Институт монокристаллов НАН Украины, Харьков 310001 Поступило в редакцию 06.11.2002 После доработки 04.10.2004