А. Н. Панкратов

КОЛИЧЕСТВЕННЫЕ СООТНОШЕНИЯ ДЛЯ ОЦЕНКИ ТЕРМОДИНАМИЧЕСКИХ И МОЛЕКУЛЯРНЫХ СВОЙСТВ ПИРИДИНОВ И 2,2'-БИПИРИДИНОВ

Методами MNDO, AM1, PM3 рассчитаны стандартные теплоты образования, энтропии, потенциалы ионизации и дипольные моменты соединений ряда пиридина. Установлены линейные зависимости, позволяющие *а priori* оценивать термодинамические и молекулярные характеристики пиридинов. Найдены корреляции значений р K_a 2,2'-бипиридинов для водных растворов с газофазным сродством к протону.

Ключевые слова: 2,2'-бипиридин, пиридин, дипольный момент, количественные соотношения структура–свойство, основность, потенциал ионизации, теплота образования, энтропия.

Пиридин является одним из ключевых соединений в химии. Пиридиновый цикл входит в состав многих природных соединений, в частности алкалоидов [1]. Соединения пиридинового ряда являются физиологически активными веществами [1, 2], служат лекарственными препаратами [1, 3], антисептиками [3], витаминами [3, 4], инсектицидами, гербицидами, фунгицидами, мономерами, растворителями, ингибиторами коррозии, водоотталкивающими средствами [3]. В сельском хозяйстве пиридины используются как регуляторы роста растений и пестициды [5]. Пиридин и его производные широко и разнообразно применяются в аналитической химии [2, 6, 7]. Для направленного синтеза пиридинов с заданными свойствами важна оценка *а priori* термодинамических и молекулярных характеристик названных соединений.

2,2'-Бипиридин и его замещенные – важные хелатообразующие реагенты и редокс-индикаторы [2, 6, 7]. Протонирование является конкурирующей реакцией по отношению к комплексообразованию. Молекулярный дизайн 2,2'-бипиридинов требует вывода количественных соотношений для оценки значений р K_a .

Логично предположить, что основность бипиридинов в водных растворах, характеризуемая величинами pK_a , в значительной степени определяется электронным строением молекул, электронными эффектами заместителей в ароматическом кольце. Интегральной мерой внутримолекулярных факторов, влияющих на основность аминов, может служить сродство к протону (*PA*). Последнее выражают как энтальпию реакции отрыва протона в газовой фазе:

$BH^+ \rightarrow B + H^+$

и вычисляют полуэмпирическими квантово-химическими методами по формуле [8–11]:

$PA = \Delta H_f(B) + \Delta H_f(H^+) - \Delta H_f(BH^+).$

Цель настоящей работы – квантово-химическое исследование элек-391 тронной структуры соединений ряда пиридина, нахождение корреляций литературных экспериментальных значений стандартных теплот образования (ΔH_f), энтропий (*S*), потенциалов ионизации (*I*), дипольных моментов (μ) молекул с рассчитанными, а также установление связи между значениями р K_a 2,2'-бипиридинов (характеризующими их основность в водных растворах) и газофазным сродством к протону.

Объектами исследования служили пиридин и его 231 производное, молекулы которых включают атомы C, H, N, O, F, Si, S, Cl, Br, I, а также 2,2'-бипиридин и 8 его замещенных.

Чтобы прогностические количественные соотношения могли быть получены достаточно просто, для их вывода целесообразно использовать полуэмпирические методы квантовой химии. Нами установлена корректность воспроизведения методами MNDO [12, 13], AM1 [14] и PM3 [15, 16] важнейших термодинамических и молекулярных характеристик [17–37], электроотрицательности, индуктивных и мезомерных параметров атомных групп [37–39] в рядах соединений. Поэтому названные методы использованы для решения задач настоящей работы.

Расчеты проводили по программам из пакета *MOPAC* [40, 41] с полной оптимизацией геометрии (процедура Бройдена–Флетчера – Гольдфарба–Шанно [42]), применяя алгоритм быстрой минимизации по Тилу [43]. Предварительную оптимизацию осуществляли методом молекулярной механики (процедура MMX) [44] по программе комплекса *PCMODEL* [44]. При квантово-химических расчетах задавали условие, чтобы норма градиента не превышала 0.084 кДж/(моль·Å). В некоторых случаях достаточного уменьшения нормы градиента достигли путем отказа от быстрой минимизации по Тилу (использовали ключевое слово NOTHIEL пакета *MOPAC*), а также при оптимизации с помощью метода Давидона–Флетчера–Пауэлла (ключевое слово DFP) [42] и в ходе сочетания подходов, символизируемых ключевыми словами NOTHIEL и DFP.

Для молекул с закрытыми электронными оболочками использовали формализм ограниченного метода Хартри–Фока (RHF). Расчеты пиридилметильных радикалов проводили неограниченным методом Хартри– Фока (UHF) [41]. При вычислении вращательных вкладов в термодинамические функции число симметрии принимали равным 1. Регрессионный анализ проводили для уровня доверительной вероятности 0.95 с учетом коэффициента Стьюдента. Значения ΔG_f рассчитывали из соотношения:

$$\Delta G_f = \Delta H_f - T \Delta S_f,$$

где стандартные энтропии образования ΔS_f вычисляются по формуле:

$$\Delta S_f = S - \Sigma S_i,$$

в которой S – стандартные энтропии веществ, S_i – энтропии составляющих молекулу элементов в их стандартных состояниях [45, 46], находимые с учетом двухатомности молекул водорода, азота, кислорода, фтора, серы, хлора, брома, иода; T = 298.15 К.

В ряде случаев возникает проблема неоднозначности оптимальных конформаций молекул. Для выяснения вопросов, связанных с конфор-

мационным состоянием молекулярных систем, нам пришлось проанализировать серию работ ([47–59] и др.). Можно, конечно, было бы провести конформационный анализ квантово-химическими методами, но это многократно увеличило бы объем исследования.

В качестве примеров приведены оптимальные конформации некоторых молекул.

 $Ar = Ph, 4-MeC_6H_4, 2-HOC_6H_4$

Обращает на себя внимание, что, по данным метода MNDO, все значения теплот образования пиридина и его 2-, 3-, 4-метил-, 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-диметил-, 2-, 3-, 4-циано-, 3-карбокси-, 2-, 3-, 4-амино-, 2-, 3-, 4-гидрокси-, 6-метил-2-гидрокси-, 2-метил-3-гидрокси-, 6-метил-3-гидрокси-, 2-метил-3-гидрокси-, 6-метил-3-гидрокси-, 2-метил-3-гидрокси-, 6-метил-3-гидрокси-, 2-метил-3-гидрокси-, 6-метил-2-гидрокси-, 2-метил-3-гидрокси-, 6-метил-3-гидрокси-, 2-метил-3-гидрокси-, 6-метил-3-гидрокси-, 2-метил-3-гидрокси-, 6-метил-3-гидрокси-, 2-метил-3-гидрокси-, 2-метил-3-гидрокси-, 6-метил-3-гидрокси-, 2-метил-3-гидрокси-, 2-метил-3-гидрокси-, 2-метил-3-гидрокси-, 6-метил-3-гидрокси-, 2-метил-3-гидрокси-, 2-, 2,4'- и 4,4'-бипиридинов занижены по сравнению с экспериментальными на 8.0–53.2 кДж/моль. В случае метода РМЗ для 2-гидрокси- и 6-метил-2-гидроксипиридинов вычисленные значения несколько выше экспериментальных, а для 2- и 3-цианопиридинов практически совпадают с измеренными.

Потенциалы ионизации рассчитаны для соединений XC_5H_4N (X = H, 2-Me, 3-Me, 4-Me, 2-CN, 3-CN, 4-CN, 2-CHO, 4-CHO, 2-NH₂, 3-NH₂, 4-NH₂, 2-OH, 3-OH, 4-OH, 2-OMe, 4-OEt, 2-F, 2-SiMe₃, 4-SiMe₃, 2-Cl, 4-Cl, 2-Br, 4-Br) и $X_2C_5H_3N$ (X = 2,3-Me₂, 2,4-Me₂, 2,5-Me₂, 2,6-Me₂), а также для 4-*трет*-бутил-, 2,4,6-три-*трет*-бутилпиридинов и 2-, 3-, 4-пиридилметильных радикалов. Методы AM1 и PM3 привели к потенциалам ионизации, завышенным на 0.07–1.08 эВ по сравнению с экспериментальными потен-

циалами почти для всех изученных веществ. Исключения составляют 2- (AM1, PM3) и 4-хлорпиридины (PM3). Во всех данных, полученных методами MNDO, AM1 и PM3, для ионизационных потенциалов преобладают положительные, а для дипольных моментов – отрицательные отклонения рассчитанных значений от экспериментальных.

Симбатность поведения величин $P_{3\kappa cn}$ и P_{Teop} ($P = \Delta H_f$, S, I, μ), а также хорошее согласие рассчитанных значений с экспериментальными позволяют предположить линейную связь между ними:

$$P_{\rm эксп} = b P_{\rm teop}.$$

В литературе нами найдены значения энтропии только для пиридина, его 2- и 3-метилзамещенных. Для числа точек, равного трем, отличие коэффициента корреляции от нуля имеет значение только, если он строго равен единице. Но даже такое сильное условие соблюдается для значений, полученных методами MNDO и AM1. Это подчеркивает то, что найденные взаимосвязи носят не случайный характер.

Таблица 1

Р	Метод	Число соединений	b	r	MU	MS
ΔH_f	MNDO	27	1.0432 ± 0.0696	0.9967	5.83	-5.83
ΔH_f	AM1	27	0.9890 ± 0.0408	0.9931	2.91	0.61
ΔH_f	PM3	27	1.0312 ± 0.0479	0.9970	3.79	-3.66
S	MNDO	3	1.0078 ± 0.0440	1.00	1.21	-0.52
S	AM1	3	1.0060 ± 0.0415	1.00	1.10	-0.39
S	PM3	3	0.9904 ± 0.0314	0.9930	0.92	0.75
Ι	MNDO	33	0.9671 ± 0.0135	0.9159	0.36	0.33
Ι	AM1	33	0.9603 ± 0.0101	0.9355	0.39	0.39
Ι	PM3	33	0.9517 ± 0.0112	0.8955	0.51	0.47
I**	PM3	31	0.9469 ± 0.0095	0.9357	0.52	0.52
μ	MNDO	217	1.0056 ± 0.0393	0.7693	0.64	-0.23
μ***	MNDO	203	1.0220 ± 0.0339	0.8394	0.55	-0.22
μ	AM1	217	1.0027 ± 0.0351	0.8217	0.50	-0.21
μ***	AM1	206	1.0210 ± 0.0308	0.8712	0.50	-0.21
μ	PM3	217	1.0123 ± 0.0377	0.7870	0.60	-0.23
μ***	PM3	203	1.0366 ± 0.0311	0.8609	0.51	-0.23

Характеристики уравнений $P_{\text{эксп}} = bP_{\text{теор}} *$

* Здесь: b – наклон; r – коэффициент корреляции; MS (mean signed) – среднее арифметическое от величин $P_{\text{теор}} - P_{\text{эксп}}$ и MU (mean unsigned) – среднее арифметическое от $|P_{\text{теор}} - P_{\text{эксп}}|$.

*** Исключены молекулы с $|\mu_{\text{теор}} - \mu_{\text{эксп}}| > 1.45 \text{ D}.$

^{**} Исключены данные для 2- и 4-хлорпиридинов.

При оценках потенциалов ионизации и особенно дипольных моментов коэффициент корреляции, оставаясь достаточно высоким, оказывается все же ниже, а коэффициент *b* больше отличается от единицы, чем в случае термодинамических характеристик. Применительно к ионизационным потенциалам это может быть обусловлено следующими факторами:

1. Сравнительно малый диапазон изменений потенциалов ионизации.

2. Значения потенциалов ионизации, рассчитанные по теореме Купманса [60], сравнивались с экспериментальными, среди которых были как вертикальные, так и адиабатические потенциалы.

При обсуждении причин отклонений $\mu_{\text{теор}}$ от $\mu_{\text{эксп}}$ необходимо принимать во внимание следующее:

1. В квантово-химических расчетах пренебрегали колебаниями атомов, внутренними вращениями в молекулах, возможностью существования последних в виде смесей конформеров.

2. Измерения малых значений дипольных моментов (до 1 D) осуществляются с высокой погрешностью при использовании всех экспериментальных методов, за исключением микроволновой спектроскопии.

3. Экспериментальные значения получены в разных условиях и для различных агрегатных состояний.

Влияние последнего фактора можно считать минимальным благодаря следующим обстоятельствам. Среди 217 соединений с пиридиновым кольцом дипольные моменты измерены вторым методом Дебая в следующих условиях: для 149 - в бензоле при 298 К (в том числе для одного при 283-313 К), для 41 - в бензоле при близких к 298 К температурах, для 4 – в тетрахлориде углерода при 298 К, для 20 – в диоксане при 298 К. Все измерения проведены для разбавленных растворов с использованием инертных растворителей, причем при оценках дипольных моментов осуществлялась экстраполяция к бесконечному разведению. Лишь для 2-этил-, 2-винил- и 4-винилпиридинов рассмотрены значения µ, относящиеся к жидкому состоянию. При этом методы MNDO, AM1 и PM3 удовлетворительно воспроизвели экспериментальные данные. Все упомянутые значения сопоставимы с результатами газофазных квантово-химических расчетов. Исключение из корреляционных рядов величин $\mu_{\text{теор}}$ и $\mu_{\scriptscriptstyle Эксп}$, относящихся к соединениям, для которых $|\mu_{\text{reop}} - \mu_{\text{эксп}}| > 1.45$ D (табл. 2), несколько повышает коэффициент корреляции.

Установленные количественные соотношения показывают, что полуэмпирические методы квантовой химии корректно воспроизводят тенденции изменения теплот образования, энтропий, потенциалов ионизации и дипольных моментов в ряду пиридина. Пользуясь найденными корреляциями, можно предсказывать реальные свойства веществ, не всегда доступные для экспериментальных измерений. Для этого рассчитанные значения следует скорректировать множителем *b*. В случае $P = \mu$ (табл. 1, соотношение для 217 молекул) близость значений *b* к единице позволяет непосредственно предсказывать дипольный момент, не прибегая к корреляционным уравнениям, хотя использование последних допустимо. То же самое, возможно, окажется справедливым для энтропии при условии накопления необходимого массива экспериментальных и расчетных данных.

Таблица 2

Соединение	Методы расчета		
2-Гидроксиэтилпиридин	MNDO, AM1, PM3		
2-(4'-Пиридилметилен)-6-бром-1-инданон	MNDO, AM1, PM3		
2-п-Аминофенилпиридин	MNDO		
3-м-Нитрофенилпиридин	MNDO		
4- <i>п</i> -Нитрофенилпиридин	AM1, PM3		
2,4-Диформилпиридин	AM1, PM3		
3-Ацетилпиридин	AM1		
2,6-Диацетилпиридин	MNDO		
1-(2'-Пиридил)-3-фенил-1-пропенон	PM3		
1-(2'-Пиридил)-3-(4"-толил)-1-пропенон	PM3		
1-(2'-Пиридил)-3-(4"-анизил)-1-пропенон	MNDO, AM1, PM3		
1-(2'-Пиридил)-3-(2"-тиенил)-1-пропенон	PM3		
3-Карбоксипиридин (никотиновая кислота, ниацин)	MNDO		
4-Карбоксипиридин (изоникотиновая кислота)	AM1, PM3		
Гидразид изоникотиновой кислоты	MNDO, PM3		
4-N,N-Диметиламинопиридин	MNDO		
<i>цис-2-о</i> -Хлорфенилазопиридин	MNDO		
цис-3-о-Хлорфенилазопиридин	AM1		
2-Амино-3-нитропиридин	MNDO		
2-Амино-5-нитропиридин	AM1		
2-Нитро-5-хлорпиридин	PM3		
транс-2,2'-Азодипиридил	PM3		
транс-3,3'-Азодипиридил	MNDO, AM1, PM3		
<i>цис-</i> 4,4'-Азодипиридил	MNDO, AM1, PM3		
Бис(2-пиридил)кетон	MNDO		

Неудачи воспроизведения дипольных моментов молекул полуэмпирическими методами квантовой химии

Оценки *а priori* названных параметров методами квантовой химии важны для молекулярного дизайна соединений с заданными свойствами и могут служить основанием для принятия экспертного решения о целесообразности синтеза, порой трудоемкого, длительного, требующего сложной аппаратуры, жестких условий, дорогих и токсичных реактивов.

Как уже указывалось, актуальными являются теоретические оценки значений р K_a в ряду 2,2'-бипиридина. Нами осуществлены квантовохимические расчеты сродства к протону 2,2'-бипиридина и серии его 4-замещенных, для которых имеются экспериментальные данные по основности [2, 61]. Вычисляли названную величину по приведенной выше формуле ($PA = \Delta\Delta H_f$) и с использованием соотношения:

$$PA = \Delta G_f(B) + \Delta G_f(H^+) - \Delta G_f(BH^+),$$

где в качестве $\Delta H_f(\mathrm{H}^+)$ и $\Delta G_f(\mathrm{H}^+)$ взяты экспериментальные значения $\Delta H_f(\mathrm{H}^+)/4.184 = 367.163$ и $\Delta G_f(\mathrm{H}^+)/4.184 = 362.570$ кДж/моль [46].

Принято во внимание, что, в отличие от 2,2'-бипиридина [2], имеющего

в кристалле и в растворах *транс*-конформацию, катион его сопряженной кислоты, по данным УФ спектроскопии, существует в *цис*-форме [2, 62]. Последнее подтверждается нашими квантово-химическими расчетами (табл. 3). Таким образом, косвенные данные электронной спектроскопии о конформации протонированного 2,2'-бипиридина находят квантово-химическое обоснование.

Введение заместителя в один из ароматических циклов молекулы 2,2'-бипиридина делает кольца, а значит, и атомы азота – центры электрофильной атаки ионом гидроксония – химически неэквивалентными, поэтому необходимо рассчитывать протонное сродство замещенных 2,2'-бипиридинов при протонировании по каждому из неэквивалентных атомов азота (табл. 3).

Как видно, в большинстве случаев более вероятно протонирование молекул 2,2'-бипиридинов по незамещенному ароматическому кольцу. Особенно ярко это проявляется для 4-нитро-2,2'-бипиридина: по данным разных квантово-химических методов, различие в теплотах образования изомерных катионов составляет от 16.7 до 23.4 кДж/моль. Энергии сопряженных кислот остальных 2,2'-бипиридинов различаются сравнительно мало, независимо от того, для какой из изомерных форм сродство к протону больше.

В соответствии со сказанным выше при анализе количественных соотношений р K_a vs PA нами рассмотрено сродство к протону при протонировании 2,2'-бипиридинов по незамещенному кольцу.

Если различия в основности 2,2'-бипиридинов обусловлены внутримолекулярными факторами, а среда вносит постоянный вклад, то взаимосвязь pK_a vs PA должна быть линейной. Однако для всей совокупности рассмотренных веществ линейные зависимости pK_a vs $\Delta\Delta H_f$ и pK_a vs $\Delta\Delta G_f$ не наблюдаются. Это свидетельствует о дифференцирующем влиянии среды на протолитические свойства соединений ряда 2,2'-бипиридина.

Таблица З

Кон-	∆ <i>Н</i> //4.184, кДж/моль		<i>S</i> /4.184, Дж/(моль·К)			Δ <i>G</i> _f /4.184, кДж/моль			
фор- мер	MNDO	AM1	PM3	MNDO	AM1	PM3	MNDO	AM1	PM3
Цис-	213.32	215.99	209.86	91.75	91.15	91.48	245.54	248.40	242.16
Транс-	217.47	219.90	214.59	90.58	90.81	91.86	250.04	252.41	246.78

Термодинамические параметры цис- и *транс*-конформеров протонированной формы 2,2'-бипиридина

Таблица 4

		Ароматическое кольцо	РА/4.184, кДж/моль						
Заместитель	pK _a		$\Delta\Delta H_f$			$\Delta\Delta G_f$			
			MNDO	AM1	PM3	MNDO	AM1	PM3	
Н	4.27	-	212.68	223.07	219.97	203.13	213.48	210.24	
001	4.00	Замещенное	208.95	218.71	215.01	199.73	209.62	205.93	
CONH ₂	4.00	Незамещенное	210.34	220.31	216.66	201.31	211.22	207.39	
NHCOMe	4.17	Замещенное	214.09	224.56	224.57	204.76	215.40	214.24	
		Незамещенное	215.01	227.30	224.59	205.36	218.61	213.71	
NO ₂	2.24	Замещенное	198.64	208.62	206.18	189.35	199.59	196.72	
	3.24	Незамещенное	204.20	213.39	210.22	193.71	204.40	204.40 201.02	
	4.01	Замещенное	211.73	222.80	221.76	200.66	213.54	212.18	
Оме	4.91	Незамещенное	214.81	224.99	221.84	204.08	215.60	212.15	
OEt	5.00	Замещенное	212.26	223.67	222.47	202.46	213.80	214.06	
	5.00	Незамещенное	214.29	226.16	222.31	222.31 204.42	215.86	213.91	
OCH ₂ Ph	1.2.6	Замещенное	214.53	224.73	223.10	202.61	218.26	210.77	
	4.30	Незамещенное	215.78	225.70	220.80	203.71	03.71 216.80 208.80	208.80	
Cl	2.02	Замещенное	208.10	218.86	218.29	198.99	209.77	208.82	
	5.85	Незамещенное	210.41	220.96	218.89	201.28	211.86	209.34	
Pr	2.80	Замещенное	209.57	218.69	217.35	200.41	209.61	207.77	
Br	5.80	Незамещенное	211.08	220.34	217.98	201.99	211.30	208.62	

Измеренные в воде спектрофотометрическим методом значения pK_a [2, 61] для 4-замещенных 2,2'-бипиридинов и рассчитанные значения газофазного сродства к протону (*PA*)

399

PA	Метод	r
$\Delta\Delta H_f$	MNDO	0.9558
$\Delta\Delta H_{f}$	AM1	0.9679
$\Delta\Delta H_{f}$	PM3	0.9150
$\Delta\Delta G_{f}$	MNDO	0.9274
$\Delta\Delta G_{f}$	AM1	0.9575
$\Delta\Delta G_{f}$	PM3	0.8436

Значения коэффициента корреляции r линейных зависимостей pK_a vs PA для 4-X-2,2'-бипиридинов с X = H, CONH₂, NO₂, OCH₂Ph, Cl, Br

Значения р K_a и PA 4-X-2,2'-бипиридинов с X = H, CONH₂, NO₂, OCH₂Ph, Cl, Br удовлетворяют условию линейности связи между указанными величинами (табл. 4, 5), что соответствует, по-видимому, постоянному вкладу среды в основность веществ. Лишь данные метода PM3 для PA = $\Delta\Delta G_f$ характеризуются большим разбросом, что отражает сравнительно низкое значение коэффициента корреляции. Все три квантово-химических метода для PA = $\Delta\Delta H_f$, $\Delta\Delta G_f$ привели к положительным отклонениям от линии тренда для метокси- и этоксизамещенных 2,2'-бипиридинов и к отрицательному для соединения с заместителем NHCOMe.

Согласно табл. 5, линейной зависимости pK_a vs PA подчиняются данные для веществ как с явно гидрофильными (CONH₂, NO₂), так и со сравнительно гидрофобными (OCH₂Ph, Cl, Br) функциональными группами. Отклонения от тренда наблюдаются для достаточно объемных заместителей, в которых более-менее соблюден гидрофильно-гидрофобный баланс. Чтобы повысить предсказательные возможности количественных соотношений pK_a vs PA, необходимо измерить значения pK_a для более обширного ряда 2,2'-бипиридинов с различными вариантами электронодонорного и электроноакцепторного замещения в ароматическом кольце. При этом нужно, чтобы среди заместителей присутствовали функциональные группы разного стерического объема, различающиеся по гидрофильности (гидрофобности).

Автор благодарит ведущего инженера Е. В. Калмыкова за техническое содействие.

СПИСОК ЛИТЕРАТУРЫ

- Дж. Робертс, М. Касерио, Основы органической химии, пер. с англ. Ю. Г. Бунделя, под ред. А. Н. Несмеянова, Мир, Москва, 1978, 2, 888 с.
- 2. Н. Н. Мельников, Е. Г. Новиков, Б. А. Хаскин, *Химия и биологическая активность дипиридилов и их производных*, Химия, Москва, 1975, 104 с.
- 3. Ю. И. Чумаков, Пиридиновые основания, Техніка, Киев, 1965, 192 с.
- 4. В. М. Березовский, *Химия витаминов*, под ред. спецред. Н. А. Преображенского, Пищепромиздат, Москва, 1959, 600 с.

- 5. С. П. Пономаренко, Т. К. Николаенко, Ю. Я. Боровиков, Укр. хим. журн., 56, 56 (1990).
- 6. З. Хольцбехер, Л. Дивиш, М. Крал, Л. Шуха, Ф. Влачил, *Органические реагенты в неорганическом анализе*, пер. с чешск. З. З. Высоцкого, Мир, Москва, 1979, 752 с.
- 7. А. Т. Пилипенко, Е. Р. Фалендыш, *Успехи химии*, **41**, 2094 (1972).
- 8. М. И. Кабачник, *Успехи химии*, **48**, 1523 (1979).
- 9. R. De Kock, C. Jasperse, Inorg. Chem., 22, 3839 (1983).
- 10. S. Olivella, F. Urpi, J. Vilarrasa, J. Comput. Chem., 5, 230 (1984).
- 11. J. L. Ozment, A. M. Schmiedekamp, Int. J. Quantum Chem., 43, 783 (1992).
- 12. M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
- 13. M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc., 99, 4907 (1977).
- 14. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- 15. J. J. P. Stewart, J. Comput. Chem., 10, 209 (1989).
- 16. J. J. P. Stewart, J. Comput. Chem., 10, 221 (1989).
- 17. A. N. Pankratov, A. E. Shchavlev, J. Mol. Struct. Theochem, 392, 137 (1997).
- 18. A. N. Pankratov, J. Mol. Struct. Theochem, 453, 7 (1998).
- 19. A. N. Pankratov, Afinidad, 56, 257 (1999).
- 20. A. N. Pankratov, A. E. Shchavlev, Canad. J. Chem., 77, 2053 (1999).
- 21. A. N. Pankratov, J. Serb. Chem. Soc., 65, 1 (2000).
- 22. A. N. Pankratov, I. M. Uchaeva, J. Mol. Struct. Theochem, 498, 247 (2000).
- 23. А. Н. Панкратов, Журн. структур. химии, 41, 696 (2000).
- 24. А. Н. Панкратов, А. Е. Щавлев, Журн. аналит. химии, 56, 143 (2001).
- 25. А. Н. Панкратов, Журн. неорган. химии, 46, 791 (2001).
- 26. А. Н. Панкратов, И. М. Учаева, Журн. неорган. химии, 47, 452 (2002).
- 27. A. N. Pankratov, *Heteroatom Chem.*, **13**, 229 (2002).
- 28. A. N. Pankratov, I. M. Uchaeva, *Phosphorus, Sulfur, and Silicon and the Related Elemets*, **177**, 791 (2002).
- 29. A. N. Pankratov, J. Serb. Chem. Soc., 67, 339 (2002).
- 30. A. N. Pankratov, I. M. Uchaeva, *Phosphorus*, *Sulfur*, and *Silicon and the Related Elements*, 177, 2611 (2002).
- 31. А. Н. Панкратов, И. М. Учаева, Журн. неорган. химии, 48, 91 (2003).
- A. N. Pankratov, A. V. Shalabay, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 178, 1007 (2003).
- 33. А. Н. Панкратов, Химия природн. соедин., 457 (2003).
- 34. A.N. Pankratov, V.B. Borodulin, O.A. Chaplygina, J. Coord. Chem., 57, 665 (2004).
- 35. А. Н. Панкратов, И. М. Учаева, Журн. неорган. химии, 49, 1520 (2004).
- 36. А. Н. Панкратов, А. В. Шалабай, Журн. структур. химии, 45, 800 (2004).
- 37. А. Н. Панкратов, Журн. аналит. химии, 60, 149 (2005).
- 38. A. N. Pankratov, E. Shchavlev, Monatsh. Chem., 129, 1007 (1998).
- 39. А. Н. Панкратов, А. Е. Щавлев, Журн. структур. химии, 40, 1059 (1999).
- J. J. P. Stewart, MOPAC, A Semi-Empirical Molecular Orbital Program, QCPE, 1983, Program No. 455. Version 6.0 (1993).
- Т. Кларк, Компьютерная химия. Практическое руководство по расчетам структуры и энергии молекулы, пер. с англ. А. А. Коркина, под ред. В. С. Мастрюкова, Ю. Н. Панченко, Мир, Москва, 1990, 383 с.
- Дж. Дэннис, Р. Шнабель, Численные методы безусловной оптимизации и решения нелинейных уравнений, пер. с англ. О. П. Бурдакова, под ред. Ю. Г. Евтушенко, Мир, Москва, 1988, 440 с.
- 43. W. Thiel, J. Mol. Struct. Theochem, 163, 415 (1988).
- 44. У. Буркерт, Н. Эллинджер, *Молекулярная механика*, пер. с англ. В.С. Мастрюкова, Мир, Москва, 1986, 364 с.
- Д. Сталл, Э. Вестрам, Г. Зинке, Химическая термодинамика органических соединений, пер. с англ. В. А. Левицкого, В. М. Сахарова, предисл. Я. И. Герасимова, Мир, Москва, 1971, 807 с.
- В. А. Киреев, Методы практических расчетов в термодинамике химических реакций, Химия, Москва, 1975, 536 с.
- А. И. Китайгородский, П. М. Зоркий, В. К. Бельский, Строение органических и элементоорганических молекул: Библиографический указатель. 1929–1979, отв. ред. М. А. Порай-Кошиц, Наука, Москва, 1984, 284 с.

- 48. J. Barassin, H. Lumbroso, Bull. Soc. Chim. Fr., 492 (1961).
- 49. J. Barassin, H. Lumbroso, Compt. Rend. Acad. Sci. Paris, 254, 863 (1962).
- 50. G. Kresze, H.-G. Henkel, H. Goetz, Liebigs Ann. Chem., 674, 18 (1964).
- 51. W. P. Purcell, J. Phys. Chem., 68, 2666 (1964).
- 52. L. Sobczyk, A. Koll, Bull. Acad. Polon. Sci., 12, 831 (1964).
- 53. D. J. W. Bullock, C. W. N. Cumper, A. I. Vogel, J. Chem. Soc., 5316 (1965).
- 54. В. И. Минкин, Ю. А. Жданов, А. Д. Гарновский, И. Д. Садеков, *Журн. физ. химии*, **40**, 657 (1966).
- 55. R. J. W. Le Fevre, P. J. Stiles, J. Chem. Soc. (B), 420 (1966).
- 56. О. А. Осипов, В. И. Минкин, Д. Ш. Верховодова, М. И. Княжанский, *Журн. неорган. химии*, **12**, 1549 (1967).
- 57. J. Barassin, G. Queguiner, H. Lumbroso, Bull. Soc. Chim. Fr., 4707 (1967).
- 58. J. M. Bobbitt, A. R. Katritzky, P. D. Kennewell, M. Snarey, J. Chem. Soc. (B), 550 (1968).
- 59. A. R. Katritzky, P. D. Kennewell, M. Snarey, J. Chem. Soc. (B), 554 (1968).
- 60. M. D. Newton, J. Chem. Phys., 48, 2825 (1968).
- 61. R. A. Jones, B. D. Roney, W. H. F. Sasse, K. O. Wade, J. Chem. Soc. (B), 106 (1967).
- 62. K. Nakamoto, J. Phys. Chem., 64, 1420 (1960).

Саратовский государственный университет им. Н. Г. Чернышевского, Саратов 410012, Россия e-mail: PankratovAN@chem.sgu.ru Поступило в редакцию 09.08.2002 После доработки 11.03.2005