Н. Л. Нам, И. И. Грандберг

КОНДЕНСАЦИЯ НЕЗАМЕЩЕННЫХ В ПОЛОЖЕНИИ 1 ПИРАЗОЛОНОВ-5 С ЭФИРАМИ β-КЕТОКИСЛОТ. СИНТЕЗ ПИРАНО[2,3-с]ПИРАЗОЛ-6-ОНОВ

Термическая конденсация β-кетоэфиров и N-незамещенных пиразолонов-5 приводит к пирано[2,3-*c*]пиразол-6-онам с хорошими выходами. Другие возможные направления конденсации не реализуются. β-Дикетоны реагируют по другой схеме с образованием нециклических продуктов реакции.

Ключевые слова: пиразолоны-5, пиранопиразол-6-оны, эфиры β-кетокислот.

Ранее мы детально исследовали конденсации аминопиразолов с β-дикарбонильными соединениями, приводящие в зависимости от строения аминопиразолов к пиразолопиридинам или пиразолопиримидинам [1, 2]. В настоящей работе мы исследовали возможность незамещенных в положении 1 5-оксипиразолов (пиразолонов-5) вступать в подобного рода конденсации.

Впервые 3,4-диметилпирано[2,3-*c*]пиразол-6-он (**3**) был получен Вольфом [3] при нагревании 3-метилпиразолона-5 с избытком ацетоуксусного эфира. Позднее получение и некоторые реакции (нитрование, хлорирование и бромирование) пирано[2,3-*c*]пиразол-6-онов, где синтез последних также осуществлялся по схеме Вольфа, были описаны в работе [4]. Авторы использовали в основном разнообразные пиразолоны-5 с различными заместителями в положении 1, а в качестве β-кетоэфиров – только ацето- и бензоилуксусный эфиры.

В настоящей работе мы исследовали поведение незамещенных в поло-

жении 1 5-оксипиразолов (пиразолонов-5) и разнообразных β -кетоэфиров в подобного рода конденсациях. Реакция между ацетоуксусным эфиром (1) и 3-метилпиразолоном-5 (2) могла пойти по нескольким путям (I, II или III). Соединение 5 в данных условиях не образовывалось. 3,6-Диметилпиразол-4-он 5, полученный по другой схеме, имел иные характеристики, его структура была строго доказана [5]. Проблема выбора между структурами 3 и 4 была решена анализом спектров ЯМР ¹Н – продукт конденсации действительно отвечал структуре 3, что согласуется с данными [3, 4]. Для окончательного решения этого вопроса мы попытались ввести в эту конденсацию 3-метил-4-этил- и 4-изопропил-3-метилпиразолоны-5 (6 и 7). В этих случаях реакция могла пойти лишь по пути II, так как в обоих пиразолонах положение 4 занято. Однако конденсации не наблюдалось и пиразолоны 6 и 6а возвращались из реакции неизмененными.

7 **a** $R^1 = R^2 = Me$, $R^3 = H$; **b** $R^1 = R^2 = R^3 = Me$; **c** $R^1 = R^2 = Me$, $R^3 = Et$; **d** $R^1 = R^2 = Me$, $R^3 = n$ -Pr; **e** $R^1 = Me$, $R^2 = Ph$, $R^3 = H$; **f** $R^1 = Me$, $R^2 = p$ -MeOC₆H₄; $R^3 = H$; **g** $R^1 = R^2 = Me$, $R^3 = CH_2COOEt$; **h** $R^1 = Ph$, $R^2 = Me$, $R^3 = H$; **i** $R^1 = p$ -MeOC₆H₄, $R^2 = Me$, $R^3 = H$

Таким образом, реакция идет с участием свободного положения 4 и кислородной функции в положении 5, причем группа NH в положении 1 не затрагивается.

Как было показано [3], первой стадией реакции является конденсация с отщеплением воды и участием группы CH₂ пиразолона-5. В дальнейшем отщепляется молекула спирта и образуется пиранопиразол-6-он.

Мы вводили в реакцию 3-метил-, 3-фенил- и 3-*n*-метоксифенилпиразолоны-5; в качестве β-кетоэфиров использовали ацетоуксусный, метилацетоуксусный, этилацетоуксусный, пропилацетоуксусный, изопропилацетоуксусный, бензоилацетоуксусный, *n*-метоксибензоилацетоуксусный, ацетилянтарный эфиры и α-ацетилбутиролактон. Во всех случаях конденсацию проводили однотипно – нагреванием при температуре бани 145–190 °C (см. экспериментальную часть) в течение 2–4 ч с образованием продуктов 445 **7а**-і. Выходы от 20 до 90% (особенно низкие выходы отмечены для бензоилуксусного эфира). Заместители в ацетоуксусном эфире заметно ухудшали выход: для изопропилацетоуксусного эфира вообще не удалось выделить чистое вещество, хотя, по данным спектра ЯМР ¹Н, оно присутствовало в смеси. Это, по-видимому, связано с пространственными затруднениями при конденсации. Спектры ЯМР ¹Н достаточно информативны. Протон в положении 5 ядра пирана давал синглет в области 5.8–5.9 м. д. со сверхтонким расщеплением 1.1 Гц на соседней группе CH₃ в поло-жении 4, которая, в свою очередь, расщеплялась в дублет с J = 1.1 Гц. Таким образом, у 5-незамещенных соединений можно всегда отне-сти сигналы групп CH₃ в положениях 3 и 4, находящиеся рядом в области 2.5–2.3 м. д. Все пиранопиразолы давали отрицательную реакцию с FeCl₃, в то время как все оксипиразолы окрашивались в водно-спиртовом растворе FeCl₃ в темно-коричневый цвет.

Необычно вступал в реакцию с 3-фенил- и 3-*n*-метоксифенилпиразолонами-5 α -ацетилбутиролактон. При конденсации в стандартных условиях (170 °C, 3 ч) 3-фенилпиразолона-5 и 3-*n*-метоксифенилпиразолона-5 с α ацетилбутиролактоном в спектрах ЯМР ¹Н полученных соединений отмечен аномально высокий химический сдвиг триплета для группы OCH₂ (~4.15 м. д.), в то время как в спиртах с ожидаемыми структурами **8** и **9** сдвиг группы CH₂O находится в области ~3.5 м. д.

В спектре соединения **10** химический сдвиг находится при 3.48 м. д. (см. экспериментальную часть). При ацилировании же группы ОН спиртов этот сигнал сдвигается в слабое поле на ~0.5–0.8 м. д., что позволило предположить для соединений **8** и **9** альтернативные структуры **8a** и **9a**, в пользу которых свидетельствует наличие в спектре ЯМР ¹Н слабопольных сигналов в области 10 и 12 м. д. (протоны NH и фенольной ОН групп) и отсутствие сигнала спиртовой группы ОН в области 3–5 м. д. (для соединения **10** сигнал протона группы ОН находится в области 4.4 м. д.). Кроме того, соединения **8a** и **9a** давали положительную реакцию с FeCl₃ (появление темно-коричневого окрашивания).

Однако в масс-спектре соединения **8**a имеется интенсивный пик [M-31]⁺ (второй по интенсивности после [M]⁺), соответствующий [M-

 $CH_2OH]^+$, что нехарактерно для бутиролактонов. В связи с этим был снят масс-спектр модельного соединения **11** с доказанной структурой, в котором также наблюдался интенсивный пик $[M-31]^+$. Дальнейшие исследования показали, что при нагревании до 180 °C соединение **11** перегруппировывается в **11а** и эта перегруппировка, происходящая в ионизационной камере в условиях прямого ввода за счет высокой температуры (300 °C), и является причиной появления иона $[M-31]^+$.

При выяснении условий возможной перегруппировки пиразололактона **8a** в пиранопиразол **8** мы обнаружили, что перегруппировка частично происходит при 280 °C, так как в спектре ЯМР ¹Н полученного продукта реакции помимо сигналов исходного **8a** (см. экспериментальную часть) появлялись сигналы, отвечающие структуре **8**: 3.60 (т, OCH₂), 2.71 (т, CH₂), 2.11 (с, CH₃), 7.50–7.38 м. д. (м, H_{аром}). Причиной остановки конденсации на первой стадии (**8a** и **9a**) являются пространственные затруднения из-за объемного заместителя в положении 3 ядра пиразолона, что приводит к повороту по оси C–C, удалению группы OH от фрагмента O–CO и невозможности замыкания пиранового цикла.

Конденсация ацетилацетона 12 с пиразолоном 2 могла привести к пиранопиразолу 13, однако нагревание до кипения пиразолона 2 с избытком 12 в течение 6 ч привело только к продукту конденсации двух молекул пиразолона с одной молекулой ацетилацетона и образованием соединения 14. Интересно, что продукт моноконденсации 15 выделить не удалось, несмотря на избыток ацетилацетона. Продукт конденсации 14a (полученный ранее в работе [3]) не растворялся в щелочи, но и не имел полос поглощения в области 1620–1800 см⁻¹ в ИК спектре и, таким образом, не содержал группы C=O. Это может быть объяснено его существованием в таутомерной форме 14, которой хорошо соответствует спектр ЯМР ¹Н. Гидроксильные группы в соединении 14, по-видимому, не обладают достаточной кислотностью, отсюда нерастворимость его в щелочах. Однако вещество дает положительную реакцию с FeCl₃ (темно-коричневое окрашивание). Пиразолон 2 не реагировал при нагревании с дибензоилметаном при 160 °C в течение 3 ч и был выделен из реакции неизмененным.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н снимали на приборе Bruker АМ-300 (300 МГц) в ДМСО-d₆; внутренний стандарт ТМС. УФ спектры регистрировали на приборе Specord М-40 в спирте, ИК спектры – на приборе Perkin–Elmer в КВг.

Синтез пирано[2,3-с]пиразол-6-онов (общая методика). Нагревают 0.05 моль пиразолона-5 и 0.055 моль соответствующего β-кетоэфира в 50 мл колбе на металлической бане 2–4 ч до 150–190 °C, отгоняя отщепляющиеся воду и спирт. После охлаждения колбы добавляют 20 мл этилацетата и нагревают 15 мин до кипения. Реакционную массу охлаждают, отфильтровывают выпавший осадок и перекристаллизовывают из соответствующего растворителя.

3,4-Диметилпирано[2,3-с]пиразол-6-он (7а). Нагревают 2 ч при 145–155 °С, выход 78%, т. пл. 252 °С (в запаянном капилляре) (из 60% спирта). ИК спектр, v, см⁻¹: 1520, 1610, 1700 (С=О). УФ спектр, λ_{max} , нм (lg ε): 227 (3.31), 299 (4.26). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.47 (3H, с, CH₃-3); 2.36 (3H, д, *J* = 1.1, CH₃-4); 5.8 (1H, кв, *J* = 1.1, H-5); 12.9 (1H, ш. с, NH). Реакция с FeCl₃ отрицательная (т. пл. 245 °С [4]).

3,4,5-Триметилпирано[2,3-с]пиразол-6-он (7b). Нагревают 3 ч при 180 °С, выход 65%, т. пл. 257 °С (в запаянном капилляре) (из этилацетата). ИК спектр, v, см⁻¹: 1540, 1610, 1710 (С=О). УФ спектр, λ_{max} , нм (lg ε): 223 (3.65); 231 (3.65); 282 (4.38). Спектр ЯМР ¹Н, δ , м. д.: 1.98 (3H, c, CH₃-5); 2.34 (3H, c, CH₃-4); 2.49 (3H, c, CH₃-3); 12.7 (1H, ш. c, NH). Найдено, %: С 60.3; H 5.8; N 15.9; [M]⁺ 178. С₉H₁₀N₂O₂. Вычислено, %: С 60.7; H 5.6; N 15.9; [M]⁺ 178. Реакция с FeCl₃ отрицательная.

3,4-Диметил-5-этилпирано[2,3-с]пиразол-6-он (7с). Нагревают 3 ч при 180 °С, выход 42%, т. пл. 206 °С (из этилацетата). ИК спектр, v, см⁻¹: 1535, 1610, 1715 (С=О). УФ спектр, λ_{max} , нм (lg ϵ): 220 (3.49); 228 (3.44); 296 (4.11). Спектр ЯМР ¹Н, δ , м. д.: 1.03 (3H, т, CH₃-5); 2.32 (3H, с, CH₃-4); 2.49 (3H, с, CH₃-3); 2.52 (2H, к, CH₂-5); 12.7 (1H, ш. с, NH). Найдено, %: С 62.1; H 6.3; N 15.1; [M]⁺ 192. С₁₀H₁₂N₂O₂. Вычислено, %: С 62.5; H 6.3; N 14.6; [M]⁺ 192. Реакция с FeCl₃ отрицательная.

3,4-Диметил-5-пропилпирано[2,3-с]пиразол-6-он (7d). Нагревают 3 ч при 180 °С, выход 43%, т. пл. 182 °С (из этилацетата). ИК спектр, v, см⁻¹: 1540, 1610, 1710 (С=О). УФ спектр, λ_{max} , нм (lg ε): 231 (3.59); 303 (4.19). Спектр ЯМР ¹Н, δ , м. д.: 0.96 (3H, т, CH₃-5); 1.43 (2H, м, CH₂-5- β); 2.36 (3H, с, CH₃-4); 2.44 (2H, т, CH₂-5- α); 2.52 (3H, с, CH₃-3); 12.7 (1H, ш. с, NH). Найдено, %: С 64.1; H 6.7; N 13.6. С₁₁H₁₄N₂O₂. Вычислено, %: С 64.4: H 6.5; N 13.3. Реакция с FeCl₃ отрицательная.

3,4-Диметил-5-β**-оксиэтилпирано[2,3-с]пиразол-6-он (10).** Нагревают 3 ч при 175 °С, выход 60%, т. пл. 282–284 °С (в запаянном капилляре) (из этанола). ИК спектр, v, см⁻¹: 1535, 1610, 1720 (С=О). УФ спектр, λ_{max} , нм (lg ε): 227 (3.48); 266 (3.62); 303 (4.12). Спектр ЯМР ¹Н, δ, м. д.: 2.38 (3H, с, CH₃-3); 2.52 (3H, с, CH₃-4); 2.63 (2H, т, CH₂-5-α); 3.48 (2H, т, CH₂–Ο-5-β); 12.85 (1H, ш. с, NH). Найдено, %: С 57.2; H 5.7; N 13.4. С₁₀H₁₂N₂O₃. Вычислено, %: С 57.7; H 5.7; N 13.5. Реакция с FeCl₃ отрицательная.

3-Метил-4-фенилпирано[2,3-с]пиразол-6-он (7е). Нагревают 3 ч при 155 °С, выход 21%, т. пл. 192–194 °С (из 50% уксусной кислоты). ИК спектр, v, см⁻¹: 1510, 1595, 1670, 1730 (С=О). УФ спектр, λ_{max} , нм (lg ε): 257 (3.81); 312 (4.04). Спектр ЯМР ¹Н, δ , м. д.: 2.09 (3H, c, CH₃-3); 5.86 (1H, c, H-5); 7.52 (5H, c, C₆H₅); 13.0 (1H, ш. c, NH). Найдено, %: С 68.7; H 4.6; N 12.3. C₁₃H₁₀N₂O₂. Вычислено, %: С 69.0; H 4.4; N 12.4.

3-Метил-4-*n*-метоксифенилпирано[2,3-*c*]пиразол-6-он (7f). Нагревают 3 ч при 155 °С, выход 17%, т. пл. 195–197 °С (из 70% уксусной кислоты). ИК спектр, ν, см⁻¹: 1510, 1585, 1685 (C=O). УФ спектр, λ_{max}, нм (lg ε): 303 (4.24). Спектр ЯМР ¹Н, δ, м. д.: 2.14 (3H, с, CH₃-3); 3.84 (3H, с, O–CH₃); 5.81 (1H, с, H-5); 7.17 (2H, д, *o*-H_{аром}); 7.50 (2H, д, *m*-H_{аром}); 13.0 (1H, ш. с, NH). Найдено, %: С 66.1; H 4.6; N 10.7. С₁₄H₁₂N₂O₃. Вычислено, %: С 65.6; H 4.7;

N 10.9. Реакция с FeCl₃ отрицательная.

3,4-Диметил-5-карбэтоксиметилпирано[2,3-с]пиразол-6-он (7g). Нагревают 2 ч при 175 °С, выход 29%, т. пл. 170–172 °С (из этилацетата). ИК спектр, v, см⁻¹: 1580, 1610, 1695 (С=О). УФ спектр, λ_{max} , нм (lg ε): 220 (3.65); 302 (4.19). Спектр ЯМР ¹Н, δ , м. д.: 1.20 (3H, т, OCH₂CH₃); 2.44 (3H, с, CH₃-4); 2.55 (3H, с, CH₃-3); 3.52 (2H, с, CH₂-5); 4.10 (2H, к, O<u>CH₂CH₃</u>); 12.8 (1H, ш. с, NH). Найдено, %: С 57.3; H 5.6; N 11.3. С₁₂H₁₄N₂O₄. Вычислено, %: С 57.6; H 5.6; N 11.3. Реакция с FeCl₃ отрицательная.

3-Фенил-4-метилпирано[2,3-с]пиразол-6-он (7h). Нагревают 3 ч при 180 °С, выход 69%, т. пл. 194–195 °С (из этанола). ИК спектр, v, см⁻¹: 1510, 1590, 1690 (С=О). УФ спектр, λ_{max} , нм (lg ε): 250 (3.98); 302 (4.18). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.14 (3H, д, *J* = 1.1, CH₃-4); 5.83 (1H, к, *J* = 1.1, H-5); 7.35–7.42 (5H, м, H_{аром}). Найдено, %: С 69.1, H 4.4; N 12.1.С₁₃H₁₀N₂O₂. Вычислено, %: С 69.0; H 4.4; N 12.0. Реакция с FeCl₃ отрицательная (т. пл. 190 °С [4]).

3-*n*-Метоксифенил-4-метилпирано[2,3-*c*]пиразол-6-он (7i). Нагревают 3 ч при 160 °С, выход 86%, т. пл. 231–233 °С (из этилацетата). ИК спектр, v, см⁻¹: 1525, 1600, 1710 (С=О). УФ спектр, λ_{max} , нм (lg ε): 229 (4.19); 250 (4.03); 307 (4.40). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.12 (H, д, *J* = 1.1, CH₃-4); 3.84 (3H, с, OCH₃); 5.86 (1H, к, *J* = 1.1, H-5); 2.12 (2H, д, *m*-H_{аром}); 7.9 (2H, д, *J* = 6, *o*-H_{аром}); 11.8 (1H, оч. ш. с, NH). Найдено, %: С 66.1; H 4.8; N 11.2. С₁₄H₁₂N₂O₃. Вычислено, %: С 65.6; H 4.7; N 10.9.Реакция с FeCl₃ отрицательная.

4,5-Дигидро-3-[1-(5-гидрокси-3-фенил-1Н-пиразол-4-ил)этилиден]фуранон-2 (8а). Нагревают 3 ч при 170 °С, выход 69%, т. пл. 282–284 °С (из этилацетата). ИК спектр, v, см⁻¹: 1515, 1630, 1710 (С=О). УФ спектр, λ_{max} , нм (lg ε): 235 (4.48); 250 (4.42); 290 (4.33). Спектр ЯМР ¹Н, δ, м. д.: 2.29 (3H, с, CH₃-4); 2.60 (2H, т, CH₂-5-α); 4.14 (2H, т, CH₂-5-β); 7.35–7.42 (5H, м, Н_{аром}). Масс-спектр, *m/z* (I_{OTH} , %): 270 [М]⁺ (100); 255 (51); 239 [М⁺–СН₂ОН] (88); 211 (74); 77 (68). Найдено, %: С 66.7; Н 5.4; N 10.4. С₁₅Н₁₄О₃N₂. Вычислено, %: С 66.7; Н 5.4; N 10.4. Реакция с FeCl₃ отрицательная.

4,5-Дигидро-3-{1-[5-гидрокси-3-(4-метоксифенил)-1Н-пиразол-4-ил]этилиден}фуранон (9а). Нагревают 3 ч при 170 °С, выход 59%, т. пл. 273–275 °С (из этилацетата). ИК спектр, ν, см⁻¹: 1500, 1525, 1610, 1635, 1710 (С=О). УФ спектр, λ_{тпах}, нм (lg ε): 251 (4.05); 286 (3.90). Спектр ЯМР ¹Н, δ, м. д.: 2.29 (3Н, с, СН₃-4); 2.59 (2Н, т, СН₂-5-α); 3.78 (3Н, с, ОСН₃); 4.13 (2Н, т, СН₂-5-β); 6.98 (2Н, д, *m*-Н_{аром}); 7.37 (2Н, д, *o*-Н_{аром}). Найдено, %: С 64.0; H 5.3; N 9.4. С₁₆Н₁₆N₂O₄. Вычислено, %: С 64.0; Н 5.3; N 9.3. Реакция с FeCl₃ положительная.

2,4-Бис(3-метил-5-оксопиразол-4-илиден)пентандиилен (14). Смесь 2.94 г (0.03 моль) 3-метилпиразолона-5 и 4 г (0.04 моль) ацетилацетона нагревают на металлической бане 6 ч при 140 °С, отгоняя отщепляющуюся воду. В процессе нагревания добавляют порциями еще 2 г ацетилацетона. Реакционную массу охлаждают и нагревают до кипения со смесью 10 мл бензола и 4 мл гексана. Осадок отфильтровывают и промывают гексаном, а затем для очистки от окрашенных примесей нагревают до кипения с 10 мл ацетона, снова отфильтровывают и перекристаллизовывают из этанола. Получают 2.6 г (67%) соединения 14 с т. пл. 232–234 °С (в запаянном капилляре). ИК спектр, v, см⁻¹: 1270, 1450, 1505, 1530, 1600, 2800–3180. Спектр ЯМР ¹Н, δ , м. д.: 1.79 (3H, с, CH₃-алиф.); 1.98 (2H, с, CH₂); 2.31 (3H, с, CH₃ пиразола); 11.5 (1H, ш. с, OH). Найдено, %: С 60.1; H 6.3; N 21.5. С₁₃Н₁₆N₄O₂. Вычислено, %: С 60.0; H 6.15; N 21.5. Реакция с FeCl₃ положительная (т. пл. 206 °С [3]).

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. Л. Нам, И. И. Грандберг, В. И. Сорокин, *ХГС*, 1555 (2002).
- 2. Н. Л. Нам, И. И. Грандберг, В. И. Сорокин, *XГС*, 1080 (2003).
- 3. L. Wolf, Ber., 38, 3036 (1905).
- 4. M. A. Khan, A. G. Cosenza, J Heterocycl. Chem., 19, 1077 (1982).
- 5. M. A. Khan, M. C. Pogotto, G. P. Ellis, *Heterocycles*, 6, 983 (1977).

Московская сельскохозяйственная академия им. К. А. Тимирязева, Москва 127550, Россия e-mail: intelbioscan@mtu-net.ru Поступило в редакцию 01.03.2002 После доработки 04.12.2004