Посвящается профессору В. И. Минкину в связи с его юбилеем

В. Дирненс, С. Беляков, Э. Лукевиц

ПРИСОЕДИНЕНИЕ НИТРИЛОКСИДОВ К N-АЛЛИЛСАХАРИНУ

Исследовано присоединение нитрилоксидов к N-аллилсахарину и показано, что реакция протекает региоспецифично с образованием 5-замещенного изомера. Методом PCA определена молекулярная структура 2-{5-[(3-метил)-изоксазолин-2-ил]метил}-3-оксо-2,3-дигидробенз[*d*]изотиазолдиоксида-1,1. Особенностью строения кристаллов этого соединения является наличие сверхсимметрии кристаллической структуры: две кристаллографически независимые молекулы связаны центром псевдоинверсии.

Ключевые слова: N-аллилсахарин, изоксазолины, нитрилоксиды.

Сахарин (3-оксо-2,3-дигидробенз[*d*]изотиазолдиоксид-1,1) является самым известным соединением класса изотиазол-1,1-диоксидов. Его синтезу, химическим свойствам и превращениям посвящено несколько обзоров [1–7]. Одним из направлений в синтезе фармакологически интересных соединений сахарина является его О- или N-модификация. N-замещенные производные сахарина 1 являются действенными ингибиторами человеческой лейкоцитарной эластазы [8–17] и могут использоваться как активные терапевтические средства для лечения эмфиземы и воспалительных болезней легких [18].

 R^1 = арил(гетарил), R^2 = алкил, R^3 = H, алкил

С другой стороны, среди изоксазолинов найдены соединения с противовоспалительной активностью [19], а сам гетероцикл является ценным синтоном в органической химии для получения β -гидроксикетонов [20–25], γ -аминоспиртов [26–28], α , β -ненасыщенных оксимов [29, 30] и β -гидроксинитрилов [31, 32]. Поэтому синтезировались вещества, молекулы которых объединяли бы фрагменты сахарина и изоксазолина.

Для синтеза изоксазолинсодержащих производных сахарина **13–22**, в которых между атомом азота сахарина и гетероциклом имеется –CH₂– мостик, была осуществлена реакция [2+3]-циклоприсоединения нитрилоксидов **3–12**, генерируемых из хлорангидридов гидроксамовых кислот в присутствии триэтиламина, к N-аллилсахарину **2**.

Соединение	R	Соединение	R
13	Me	18	$4-ClC_6H_4$
14	Ph	19	$4-Me_2NC_6H_4$
15	$2-ClC_6H_4$	20	$4-MeOC_6H_4$
16	2-MeOC ₆ H ₄	21	3,4-(MeO) ₂ C ₆ H ₃
17	$4-BrC_6H_4$	22	2,4-Cl ₂ C ₆ H ₃

Реакцию проводили "в одной колбе" последовательно: 1) превращение арилоксима под действием N-хлорсукцинимида в хлороформе в соответствующий хлорангидрид арил(метил)гидроксамовой кислоты; 2) добавление непредельного соединения; 3) добавление триэтиламина как дегидрогалогенирующего средства для генерирования нитрилоксида.

Реакция [2+3]-циклоприсоединения протекает региоспецифично: всегда образуется только один региоизомер – 5-замещенный изоксазолин.

Таблица 1

	P		- F			
Сое- дине-	Брутто-формула,	ла, <u>Найдено, %</u> Вычислено, % Т. пл., Вы		Выход,		
ние	(мол. масса)	С	Н	Ν		70
13	C ₁₂ H ₁₂ N ₂ O ₄ S (280.31)	<u>51.45</u> 51.42	<u>4.34</u> 4.32	<u>9.95</u> 9.99	121	65
14	C ₁₇ H ₁₄ N ₂ O ₄ S (342.38)	<u>59.52</u> 59.64	<u>4.11</u> 4.12	<u>8.21</u> 8.18	130	63
15	C ₁₇ H ₁₃ ClN ₂ O ₄ S (376.82)	<u>54.31</u> 54.19	<u>3.46</u> 3.48	<u>7.45</u> 7.43	131	61
16	C ₁₈ H ₁₆ N ₂ O ₅ S (372.40)	<u>58.17</u> 58.06	<u>4.31</u> 4.33	<u>7.55</u> 7.52	145	73
17	C ₁₇ H ₁₃ BrN ₂ O ₄ S (421.27)	<u>48.63</u> 48.47	<u>3.13</u> 3.11	<u>6.62</u> 6.65	163	71
18	C ₁₇ H ₁₃ ClN ₂ O ₄ S (376.82)	<u>54.33</u> 54.19	<u>3.46</u> 3.48	<u>7.40</u> 7.43	129	67
19	C ₁₉ H ₁₉ N ₃ O ₄ S (385.45)	<u>59.12</u> 59.21	<u>4.92</u> 4.97	<u>10.94</u> 10.90	156	59
20	C ₁₈ H ₁₆ N ₂ O ₅ S (372.40)	<u>58.01</u> 58.06	<u>4.35</u> 4.33	<u>7.52</u> 7.52	152	64
21	C ₁₉ H ₁₈ N ₂ O ₆ S (402.43)	<u>56.85</u> 56.71	<u>4.49</u> 4.51	<u>7.00</u> 6.96	199	69
22	C ₁₇ H ₁₂ Cl ₂ N ₂ O ₄ S (411.27)	<u>49.80</u> 49.65	<u>2.96</u> 2.94	<u>6.82</u> 6.81	171	61

Характеристики изоксазолинсодержащих сахаринов 13-22

Таблица 2

Спектры ЯМР ¹Н изоксазолинсодержащих сахаринов

Соеди- нение	Химические сдвиги, δ, м. д. (КССВ, <i>J</i> , Гц)
13	2.01 (3H, c, CH ₃); 2.89 (1H, \exists . \exists , $J = 6.8$, $J = 16.8$, CH _C); 3.14 (1H, \exists . \exists , $J = 9.4$, $J = 16.8$, CH _B); 3.78 (1H, \exists . \exists , $J = 7.0$, $J = 15.4$, NCH); 3.96 (1H, \exists . \exists , $J = 5.2$, $J = 15.4$, NCH); 4.85–5.18 (1H, \exists , CH _A); 7.74–8.09 (4H, \exists , H _{apon})
14	3.27 (1H, μ , μ , $J = 6.8$, $J = 15.2$, CH _C); 3.52 (1H, μ , μ , $J = 9.2$, $J = 15.2$, CH _B); 3.87 (1H, μ , μ , $J = 6.8$, $J = 13.8$, NCH); 4.07 (1H, μ , μ , $J = 5.4$, $J = 13.8$, NCH); 5.05–5.33 (1H, M, CH _A); 7.32–7.43 (3H, M, H _{apoM}); 7.58–7.72 (2H, M, H _{apoM}); 7.76–7.94 (3H, M, H _{apoM}); 7.95–8.09 (1H, M, H _{apoM})
15	3.45 (1H, д. д, <i>J</i> = 6.8, <i>J</i> = 16.1, CH _C); 3.69 (1H, д. д, <i>J</i> = 8.3, <i>J</i> = 16.1, CH _B); 3.89 (1H, д. д, <i>J</i> = 5.9, <i>J</i> = 13.4, NCH); 4.12 (1H, д. д, <i>J</i> = 4.8, <i>J</i> = 13.4, NCH); 5.09–5.45 (1H, м, CH _A); 7.25–7.43 (3H, м, H _{аром}); 7.58–7.69 (1H, м, H _{аром}); 7.81–8.12 (4H, м, H _{аром})
16	3.48 (1H, μ , μ , $J = 6.8$, $J = 17.7$, CH _C); 3.59 (1H, μ , μ , $J = 9.7$, $J = 17.7$, CH _B); 3.85 (3H, c, OCH ₃); 3.87 (1H, μ , μ , $J = 7.2$, $J = 14.6$, NCH); 4.03 (1H, μ , μ , $J = 5.9$, $J = 14.6$, NCH); 5.10–5.25 (1H, M, CH _A); 6.95 (2H, M, H _{apoM}); 7.38 (1H, M, $J = 1.6$, $J = 7.3$, H _{apoM}); 7.73 (1H, μ , μ , $J = 1.6$, $J = 7.7$, H _{apoM}); 7.83–8.05 (3H, M, H _{apoM}); 8.08 (1H, M, H _{apoM})
17	3.29 (1H, д. д, <i>J</i> = 7.7, <i>J</i> = 17.8, CH _C); 3.52 (1H, д. д, <i>J</i> = 9.2, <i>J</i> = 17.8, CH _B); 3.87 (1H, д. д, <i>J</i> = 7.4, <i>J</i> = 16.1, NCH); 4.07 (1H, д. д, <i>J</i> = 5.5, <i>J</i> = 16.1, NCH); 5.05–5.41 (1H, м, CH _A); 7.42 (4H, с, H _{аром}); 7.82–8.12 (4H, м, H _{аром})
18	3.32 (1H, д. д, <i>J</i> = 7.8, <i>J</i> = 17.8, CH _C); 3.49 (1H, д. д, <i>J</i> = 9.2, <i>J</i> = 17.8, CH _B); 3.87 (1H, д. д, <i>J</i> = 7.4, <i>J</i> = 15.3, NCH); 4.07 (1H, д. д, <i>J</i> = 5.5, <i>J</i> = 15.3, NCH); 5.07–5.43 (1H, м, CH _A); 7.36 (2H, д, <i>J</i> = 8.6, H _{аром}); 7. 61 (2H, д, <i>J</i> = 8.6, H _{аром}); 7. 81–8.16 (4H, м, H _{аром})
19	2.92 (6H, c, $2 \times CH_3$); 3.27 (1H, d . d , $J = 6.6$, $J = 17.8$, CH_C); 3.47 (1H, d . d , $J = 8.6$, $J = 17.8$, CH_B); 3.85 (1H, d . d , $J = 7.4$, $J = 13.6$, NCH); 4.05 (1H, d . d , $J = 5.6$, $J = 13.6$, NCH); 4.98–5.32 (1H, M , CH_A); 6.67 (2H, d , $J = 8.4$, H_{apoM}); 7.52 (2H, d , $J = 8.4$, H_{apoM}); 7.76–8.09 (4H, M , H_{apoM})
20	3.29 (1H, \exists , \exists , $J = 7.2$, $J = 15.4$, CH _C); 3.49 (1H, \exists , \exists , $J = 9.1$, $J = 15.4$, CH _B); 3.81 (3H, c, OCH ₃); 3.85 (1H, \exists , \exists , $J = 7.1$, $J = 13.6$, NCH); 4.07 (1H, \exists , \exists , $J = 5.6$, $J = 13.6$, NCH); 5.03–5.38 (1H, m , CH _A); 6.87 (2H, \exists , $J = 8.4$, H _{apom}); 7.61 (2H, \exists , $J = 8.4$, H _{apom}); 7.74–7.92 (3H, m , H _{apom}); 7.96–8.12 (1H, m , H _{apom})
21	3.32 (1H, μ , μ , $J = 7.1$, $J = 16.2$, CH _C); 3.52 (1H, μ , μ , $J = 9.1$, $J = 16.2$, CH _B); 3.85 (6H, c, 2 × OCH ₃); 3.89 (1H, μ , μ , $J = 7.6$, $J = 18.4$, NCH); 4.25 (1H, μ , μ , $J = 6.1$, $J = 18.4$, NCH); 5.05–5.38 (1H, μ , CH _A); 6.83 (1H, μ , $J = 8.2$, H _{apom}); 7.05 (1H, μ , μ , $J = 1.6$, $J = 8.2$, H _{apom}); 7.41 (1H, μ , $J = 1.6$, H _{apom}); 7.81–8.14 (4H, μ , H _{apom})
22	3.45 (1H, μ , μ , $J = 6.6$, $J = 16.6$, CH _C); 3.67 (1H, μ , μ , $J = 9.1$, $J = 16.6$, CH _B); 3.89 (1H, μ , μ , $J = 6.8$, $J = 14.4$, NCH); 4.12 (1H, μ , μ , $J = 5.2$, $J = 14.4$, NCH); 5.09–5.43 (1H, μ , CH _A); 7.25 (1H, μ , μ , $J = 1.8$, $J = 7.8$, H _{apom}); 7.43 (1H, μ , $J = 1.8$, H _{apom}); 7.58 (1H, μ , $J = 7.8$, H _{apom}); 7.78–8.12 (4H, μ , H _{apom})

Для определения пространственной структуры соединения 13 был выполнен PCA его кристалла. На рис. 1 приведена пространственная модель молекулы соединения 13. Особенностью строения его кристаллов является наличие сверхсимметрии кристаллической структуры: две кристаллически независимые молекулы соединения 13 связаны центром псевдоинверсии. Проекция упаковки молекул дана на рис. 2. Основные длины связей и величины валентных углов приведены в табл. 4, 5. Изоксазолиновый цикл имеет форму конверта. Выходы атомов C(5) из плоскости O(1), N(2), C(3), C(4) составляют 0.257(4) и 0.203(5) Å для двух независимых молекул. Соответствующие двугранные углы между плоскостью сахаринового остатка и средней плоскостью изоксазолинового цикла равны $28.7(4)^{\circ}$ и $35.3(4)^{\circ}$.

Рис. 1. Пространственная модель молекулы соединения 13 с обозначением атомов

Рис. 2. Проекция кристаллической структуры соединения 13 вдоль оси Х

Брутто-формула	$C_{12}H_{12}N_2O_4S$
Цвет кристаллов	Бесцветный
Размер монокристалла, мм	0.12×0.23×0.30
Кристаллическая сингония	Моноклинная
Параметры кристаллической решетки, Å	
a	10.8844(3)
b	14.2738(4)
С	17.2119(4)
β, °	105.304(2)
Объем элементарной ячейки, V, Å ³	2579.3(1)
Пространственная группа	$P 2_1/n$
Ζ	8
F(000)	1168
Плотность, D_x , г/см ³	1.444
μ , MM^{-1}	0.26
$2\theta_{\rm max}$, °	55.0
Число рефлексов	
измеренных	10554
независимых	6363
используемых в МНК	$3868 (I > 3\sigma_I)$
Число уточняемых параметров	373
<i>R</i> -фактор	0.072
wR_2	0.185
$\Delta \rho_{\rm max}$, e/Å ³	1.00
$\Lambda \rho_{\rm min.} {\rm e}/{\rm \AA}^3$	-0.98

Кристаллографические данные и параметры уточнения кристаллической структуры 13

Таблица 4

Chast	l, Å		Cogar	l, Å		
Связь	молекула А	молекула В	Связь	молекула А	молекула В	
S(8)–O(17)	1.423(2)	1.419(2)	N(7)-C(15)	1.407(4)	1.398(4)	
S(8)-O(18)	1.437(2)	1.428(2)	C(15)-C(14)	1.480(4)	1.479(4)	
S(8)-N(7)	1.655(2)	1.677(3)	N(2)-C(3)	1.264(4)	1.278(4)	
S(8)-C(9)	1.745(3)	1.755(3)	C(3)–C(4)	1.486(5)	1.477(5)	
O(16)-C(15)	1.206(4)	1.201(4)	C(3)–C(19)	1.491(6)	1.463(6)	
C(6)–N(7)	1.460(4)	1.491(4)	C(10)–C(11)	1.390(6)	1.383(6)	
C(6)–C(5)	1.520(4)	1.466(6)	C(13)–C(12)	1.382(6)	1.396(6)	
O(1)–N(2)	1.424(4)	1.440(4)	C(12)–C(11)	1.367(7)	1.364(7)	
O(1)–C(5)	1.433(4)	1.450(5)				

Длины связей (*l*) в структуре соединения 13

Таблица 5

Cagar	ω, град.		
Связь	молекула А	молекула В	
O(17)-S(8)-N(7)	111.92(14)	111.69(14)	
O(17)-S(8)-O(18)	117.4(2)	117.7(2)	
O(17)-S(8)-C(9)	110.2(2)	109.5(2)	
N(7)-S(8)-O(18)	108.48(14)	109.04(14)	
N(7)-S(8)-C(9)	93.28(13)	93.20(15)	
O(18)-S(8)-C(9)	112.99(14)	113.1(2)	
N(7')-S(8')-O(17')	111.69(14)	111.69(14)	
S(8)-N(7)-C(6)	122.5(2)	120.8(2)	
C(6)-N(7)-C(15)	120.6(2)	121.2(3)	
N(2) - O(1) - C(5)	108.8(2)	108.3(3)	

Валентные углы (ω) в структуре 13

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для рентгеноструктурного анализа использовался автоматический дифрактометр Bruker-Nonius Kappa CCD (съемка при комнатной температуре, молибденовое излучение с $\lambda = 0.71073$ Å, графитовый монохроматор, φ - и ω -сканирование). Структура расшифрована по методике [33] и уточнена полноматричным МНК по программе [34]. Основные кристаллографические характеристики соединения **13** приведены в табл. 3.

Спектры ЯМР ¹Н соединений **13–15**, **17–22** зарегистрированы на приборе Bruker WR-90 (90.1 МГц), а для соединения **16** – на приборе Varian Mercury-200BB (200.1 МГц) в CDCl₃, внутренний стандарт ТМС.

Общая методика получения изоксазолинов **13–22** приведена в работе [35], характеристики полученных соединений приведены в табл. 1 и 2.

Экспериментальная часть выполнена при участии Э. Алксниса, В. Муравенко и И. Скрастыни.

СПИСОК ЛИТЕРАТУРЫ

- 1. L. L. Bambas, in *The Chemistry of Heterocyclic Compounds.*, Ed. A. Weissberger, New York, Interscience Publ., Vol. 4, 1952, p. 278.
- 2. H. Hettler, Adv. Heterocycl. Chem., 15, 233 (1973).
- 3. D. L. Pain, B. J. Peart, K. R. H. Wooldridge, in A. Katritzky and C. W. Rees (Eds.), Comprehensive Heterocyclic Chem., Vol. 6, Pergamon Press, Oxford, 1984, p. 132.
- 4. M. Davis, Adv. Heterocycl. Chem., 38, 105 (1985).
- 5. B. Schulze, K. Illgen, J. Prakt. Chem., 339, 1 (1997)
- 6. Р. В. Кавердин, В. И. Поткин, *Успехи химии*, **71**, 764 (2002).
- 7. Abdel-Sattar S. Hamad Elgazwy, Tetrahedron, 59, 7445 (2003).
- W. C. Groutas, M. J. Brubaker, R. Venkatamaran, J. B. Epp, N. Houser-Archield, I. S. Chong, J. J. McClenahan, *Bioorg. Med. Chem. Lett.*, 2, 175 (1992).
- W. C. Groutas, M. J. Brubaker, R. Venkatamaran, J. B. Epp, N. Houser-Archield, I. S. Chong, J. J. McClenahan, *Bioorg. Med. Chem. Lett.*, 3, 273 (1993).
- W. C. Groutas, N. Houser-Archield, L. S. Chong, R. Venkatamaran, J. B. Epp, He Huang, J. J. McClenahan, J. Med. Chem., 36, 3178 (1993).

- 11. D. J. Hlasta, M. R. Bell, N. W. Booz, J. J. Court, R. C. Desai, C. A. Franke, A. J. Mura, S. Subramanyam, R. P. Dunlap, *Bioorg. Med. Chem. Lett.*, **4**, 1801 (1994).
- 12. D. J. Hlasta, J. H. Ackerman, J. Org. Chem., 59, 6184 (1994).
- C. Subramanyam, M. R. Bell, P. Carabateas, J. J. Court, J. A. Dority, Jr., E. Ferguson, R. Gordon, D. J. Hlasta, V. Kumar, M. Saindane, *J. Med. Chem.*, 37, 2623 (1994).
- C. Desai, R. P. Dunlap, R. P. Farrell, E. Ferguson, C. A. Franke, R. Gordon, D. J. Hlasta, T. G. Talmi, *Bioorg. Med. Chem. Lett.*, 5, 105 (1995).
- D. J. Hlasta, M. R. Bell, J. J. Court, K. C. Cundy, R. C. Desai, E. Ferguson, R. J. Gordon, V. Kumar, *Bioorg. Med. Chem. Lett.*, 5, 331 (1995).
- 16. R. C. Desai, R. P. Farrell, J. J. Court, J. D. Weaver, Synth. Commun., 25, 2099 (1995).
- R. C. Desai, J. J. Court, E. Ferguson, R. Gordon, D. J. Hlasta, R. P. Dunlap, C. A. Franke, J. Med. Chem., 38, 1571 (1995).
- 18. D. J. Hlasta, E. D. Pagani, Ann. Rep. Med. Chem., Chapt. 21, 29 (1994).
- D. H. Ko, M. F. Maponja, M. A. Khalil, E. T. Oriaku, Z. You, J. Lee, J. Med. Chem. Res., 313, 8 (1998).
- 20. A. P. Kozikowski, P. D. Stein, J. Am. Chem. Soc., 104, 4023 (1982).
- 21. D. P. Curran, J. Am. Chem. Soc., 105, 5826 (1983).
- 22. B. H. Kim, Y. J. Chung , E. J. Ryu, Tetrahedron Lett., 34, 8465 (1993).
- 23. S. H. Andersen, K. K. Sharma, K. B. G. Torssell, Tetrahedron, 39, 2241 (1983).
- 24. P. G. Baraldi, A. Barco, S. Benetti, S. Manfredini, D. Simoni, Synthesis, 276 (1987).
- 25. J. W. Bode, E. M. Carreira, Org. Lett., 3, 1587 (2001).
- 26. A. P. Kozikowski, M. Adamczyk, Tetrahedron Lett., 23, 3123 (1982).
- 27. A. P. Kozikowski, Y. Y. Chen, J. Org. Chem., 46, 5248 (1981).
- 28. J. Müller, V. Jäger, Tetrahedron Lett., 23, 4777 (1982).
- 29. V. Jäger, H. Grund, Angew. Chem., Int. Ed. Engl., 15, 50 (1976).
- 30. S. Y. Lee, B. S. Lee, C. W. Lee, D. Y. Oh, J. Org. Chem., 65, 256 (2000).
- 31. G. W. Moersch, E. L. Wittle, W. A. Neuklis, J. Org. Chem., 32, 1387 (1967).
- 32. A. Yashiro, Y. Nishida, K. Kobayashi, M. Ohno, Synlett, 361 (2000).
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Cryst.*, 32, 115 (1999).
- 34. S. Mackay, C. J. Gilmone, C. Edwards, N. Stewart, K. Shankland, maXus Computer Program for the Solution and Refinement of Crystal Structures, Bruker Nonius, The Netherlands, Mac Science, Japan & The University of Glasgow (1999).
- 35. В. Дирненс, О. Слядевская, Э. Лукевиц, ХГС, 499 (2002).

Латвийский институт органического синтеза, Рига LV-1006

Поступило в редакцию 24.01.2005

e-mail: dirnens@osi.lv