Посвящается памяти дорогого учителя, основателя химии индола в Грузии, влюбленного в Грузию и горячо любимого ею, выдающегося русского ученого профессора Николая Николаевича Суворова

Т. Е. Хоштария, Л. Н. Курковская, Л. Т. Бочоидзе, К. Т. Бацикадзе, Н. Т. Мирзиашвили, И. Г. Абесадзе, М. И. Сихарулидзе, В. Г. Турабелидзе, В. О. Ананиашвили, Т. О. Джаши, М. Г. Маисурадзе,

ПИРРОЛОКУМАРИНЫ

1. СИНТЕЗ И СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ 7-ОКСО-, 1,2,7-ТРИОКСО-1,2-ДИГИДРОПИРАНО[3,2-*e*]ИНДОЛА И ИХ ПРОИЗВОДНЫХ

Предложен препаративный путь синтеза новых гетероциклических систем – 7-оксо- и 1,2,7-триоксо-1,2-дигидропирано[3,2-*e*]индола с использованием классических методов Фишера и Зандмейера соответственно. Изучены разные условия циклизации исходных 6-изонитрозоацетамида кумарина и 6-кумаринилгидразонов метилового и этилового эфиров пировиноградной кислоты. Соотношение *син*- и *анти*-форм последних, а также строение всех синтезированных соединений установлены на основании анализа спектральных данных.

Ключевые слова: 6-(изонитрозоацетамидо)кумарин, 7-оксо-1,2-дигидропирано[3,2-*e*]индол, реакция Зандмейера, реакция Фишера, *син(Z)*- и *анти(E)*-формы 6-кумаринилгидразонов эфиров пировиноградной кислоты, 1,2,7-триоксо-1,2-дигидропирано[3,2-*e*]индол, циклизация.

В продолжение исследований в области конденсированных содержащих пиррольный цикл [1-4], представлялось соединений, интересным построение трициклической системы. включаюшей индольный и кумариновый фрагменты. Внимание к такой системе обусловлено многообразием проявления различного рода физиологической активности среди производных индола и кумарина [5-12], а также возможностями ее использования в синтезе алкалоидов и алкалоидоподобных веществ.

Для "пристройки" пиррольного кольца к бициклической системе кумарина нами были применены классические реакции Зандмейера и Фишера (см. схему).

В первом случае исходный 6-аминокумарин (1) через изонитрозоацетамид 2 был превращен в "изатин" 3. Во втором – из того же амина через соль диазония был получен гидрохлорид гидразина 4, взаимодействие которого с метиловым и этиловым эфирами пировиноградной кислоты привело к соответствующим гидразонам 5а,b. Циклизацией последних были синтезированы целевые соединения 6a,b.

5a,6a R=Me; 5b,6b R=Et

239

С целью достижения высоких выходов продуктов **3** и **6а,b** было изучено действие различных конденсирующих средств: серной кислоты различной концентрации – для циклизации соединения **2**, серной кислоты в ледяной уксусной кислоте, спиртового раствора серной кислоты, спиртового раствора хлористого водорода, ZnCI₂ и этилового эфира полифосфорной кислоты (ЭПФК) – для циклизации соединений **5а,b**.

В первом случае наиболее эффективной оказалась концентрированная серная кислота, во втором – ЭПФК.

Строение синтезированных соединений было установлено с помощью спектральных методов исследования. Так, на основании данных $\text{ЯМP}^{-1}\text{H}$, ИК и УФ спектров было обнаружено, что гидразоны **5а,b** образуются каждый в виде смеси двух геометрических изомеров: *син-Z* и *анти-E*, которые нам удалось разделить и охарактеризовать. В количественном отношении значительно преобладают *анти-*формы.

В спектрах ЯМР ¹Н указанных изомеров сигнал протона группы NH *син*-формы наблюдается в более слабом поле ($\delta = 12.03$ и 12.00 м. д.) по сравнению с аналогичным сигналом протона *анти*-формы ($\delta = 9.36$ и 9.34 м. д.), что можно объяснить только участием этого протона в сильной внутримолекулярной водородной связи (табл. 1).

В ИК спектрах *син*-изомеров гидразонов **5а,b**, как правило, полосы поглощения групп С=О и NH сдвинуты в область низких частот по сравнению с полосами соответствующего *анти*-изомера (см. экспериментальную часть).

Наличие водородной связи вызывает резкое повышение интенсивности поглощения в УФ спектрах *син*-изомеров, а также сдвиг максимумов поглощения последних относительно максимумов *анти*-изомеров в сторону длинных волн (см. экспериментальную часть).

Получить 7-оксопирано[4,5-*e*]индол-2-карбоновую кислоту (7) омылением эфиров **6а,b** нам не удалось из-за неустойчивости лактонного цикла кумарина в щелочной среде; омыление же в кислой среде протекало медленно и даже при 20-часовом кипячении выход целевого продукта не превышал 2–5%. Кислота **7** была получена иным путем из синтезированного нами по известной методике [4] 6-кумаринилгидразона пировиноградной кислоты. Циклизация последнего под действием ЭПФК привела к кислоте **7**, которая без очистки была подвергнута декар-

Таблица 1

Соединение	Химические сдвиги протонов, б, м. д.									
	Н-3,	Н-4, д	Н-5, д	Н-7, д. д	Н-8, д	N=CCH ₃ c	R		NH,	КССВ (<i>J</i> , Гц)**
	д						CH ₂	CH ₃	уш. с	
2*	6.44	8.02	8.21	7.20	7.32	-	-	-	10.09	$J_{3,4} = 9.2; \ J_{5,7} = 2.6; J_{7,8} = 8.0$
син-Z-5а	6.41	7.94	7.50	7.49	7.28	3.84	_	2.14, c	12.03	$J_{3,4} = 9.8, J_{5,7} = 2.1, J_{7,8} = 8.5$
анти-Е-5а	6.40	7.94	7.50	7.53	7.27	3.79	-	2.12, c	9.36	$J_{3,4} = 9.8, \ J_{5,7} = 2.1, \ J_{7,8} = 8.5$
<i>син-Z</i> -5 b	6.39	7.93	7.51	7.52	7.30	3.53	4.34, к	1.34, т	12.00	$J_{3,4} = 9.5, \ J_{5,7} = 2.5, \ J_{7.8} = 8.5$
анти-Е-5ь	6.42	7.84	7.49	7.51	7.28	3.50	4.30, к	1.34, т	9.34	$J_{3,4} = 9.5, J_{5,7} = 2.5, J_{7,8} = 8.5$

Данные спектров ЯМР ¹Н соединения 2, *син-* и *анти-*изомеров соединений 5a,b (ацетон-d₆)

* Сигналы протонов группы N=CH и NOH имеют форму синглетов при 7.61 и 12.10 м. д. соответственно. ** Для протонов группы CH₂CH₃, *J* = 7.3.

Таблица 2

Соедине- ние			КССВ							
	H-1	Н-2	Н-3, уш. с	H-4	H-5	Н-8, д	Н-9	СН ₂ , к	CH ₃	(Ј, Гц)
3	_	_	11.29	7.29, д	7.59 д.д	6.69	8.48 д.д	-	-	$J_{4,5} = 9.0, {}^{5}J_{5,9} = 0.4, J_{8,9} = 9.8$
6a	7.62, c	_	11.49	7.80, д.д	7.31 д.д	6.50	8.48 д.д	_	3.93 c	$J_{8,9} = 9.4, \ J_{4,5} = 9.0, \ {}^{5}J_{5,9} = 0.4, \ {}^{5}J_{1,4} = 0.9$
6b	7.57, c	-	11.30	7.77, д.д	7.28 д	6.47	8.45 д	4.40	1.39 т	$J_{1,3} = 1.7, J_{4,5} = 9.0, {}^{5}J_{1,4} = 0.8, J_{8,9} = 9.8, J_{CH_2CH_3} = 7.3$
8	6.70, д. д	7.54, д. д	11.52	7.65, д	7.11 д	6.45	8.45 д	-	-	$J_{1,2} = 3.0, J_{1,3} = 2.1, J_{2,3} = 2.6, J_{4,5} = 9.0, J_{8,9} = 9.4$
9	_	-	13.62	7.82, д	7.48 д	6.58	8.43 д	4.42	1.35 т	$J_{4,5} = 9.0, J_{8,9} = 9.8, J_{CH_2CH_3} = 6.8$
10	5.6, уш. с**	-	11.11	7.54, д	7.25 д	6.47	8.65 д	4.35	1.38 т	$J_{4,5} = 9.0, J_{8,9} = 9.8, J_{\text{CH}_2\text{CH}_3} = 6.8$

Данные спектров ЯМР ¹Н соединений 3, 6а,b, 8, 9 и 10*

* Спектры соединений **3**, **6**а,**b** сняты в ацетоне-d₆, соединений **8–10** – в ДМСО-d₆. ** Сигнал протонов группы NH₂. боксилированию в атмосфере аргона. Продукт декарбоксилирования – незамещенный 7-оксопирано[4,5-*e*]индол **8** был выделен с выходом 50% методом колоночной хроматографии. Его состав и строение подтверждены данными ЯМР ¹Н, ИК, УФ, а также масс-спектров. Анализ спектра ЯМР ¹Н неочищенного продукта декарбоксилирования кислоты **7** подтвердил присутствие изомера линейного строения.

Нитрованием эфира **6b** конц. HNO₃ в ледяной уксусной кислоте было синтезировано его 1-нитропроизводное **9**. Восстановление последнего SnCl₂ в конц. HCl привело к соответствующему амину **10**. В спектрах ЯМР ¹Н соединений **9** и **10** по сравнению со спектром эфира **6b** отсутствует сигнал протона H-1, а в спектре продукта **10** имеется сигнал группы NH_2 при 5.55 м. д. (табл. 2).

Соединение 10 открывает широкие возможности получения ряда производных по амино- и сложноэфирной группам, представляющих интерес с фармакологической точки зрения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений осуществляли методом TCX на пластинках Silufol UV-254 с закрепленным слоем силикагеля. УФ спектры сняты на спектрофотометре Specord UV-vis в этаноле, ИК спектры – на приборе UR-20 с призмами из NaCI и LiF (в вазелиновом масле). Масс-спектр снят на приборе MX-1303 с непосредственным вводом образца в источник ионов, ток эмиссии катода –1.5 мкА, ионизирующее напряжение – 50 эВ. Спектры ЯМР ¹Н измерены на приборе Bruker VP-200 SY, (200 МГц). Внутренний стандарт – тетраметилсилан, растворитель ацетон-d₆ или ДМСО-d₆.

6-(Изонитрозоацетамидо)кумарин (2). К раствору 3.2 г (20 ммоль) хлоральгидрата в 20 мл воды последовательно прибавляют: 51.5 г (160 ммоль) кристаллического Na₂SO₄·10H₂O, раствор 3.2 г (20 ммоль) аминокумарина **1** в 200 мл горячей воды, содержащей 10 мл конц. HCl, и раствор 4.3 г (60 ммоль) гидрохлоида гидроксиламина в 20 мл воды. Полученную смесь быстро нагревают до кипения и кипятят при постоянном перемешивании 2 ч. После охлаждения реакционной массы продукт **2** отфильтровывают под вакуумом, тщательно промывают водой и сушат. Выход 3.5 г (76%). Т. пл. 175–177 °C. ИК спектр, v, см⁻¹: 1680 (C=O); 3290 (NH). УФ спектр, λ_{max} , нм (lg ϵ): 244(4.10), 288(4.10), 295(4.15), 333(4.25), 350 нм (4.00). Найдено, %: C 57.11; H 3.30; N 12.42. C₁₁H₈N₂O₄. Вычислено, %: C 56.89; H 3.44; N 12.06.

1,2,7-Триоксо-1,2-дигидропирано[3,2-е]индол (3). К 34 мл (300 ммоль) конц. H_2SO_4 , предварительно нагретым до 50 °C, при постоянном перемешивании, небольшими порциями добавляют 3.4 г (15 ммоль) сухого соединения **2.** Полученную смесь выдерживают 2 ч при 90 °C, затем медленно охлаждают, выливают на 10–12-кратное количество колотого льда и выдерживают 16 ч при комнатной температуре. Далее осадок отфильтровывают, тщательно промывают водой до нейтральной реакции, сушат и кристаллизуют из АсОН. Полученные кристаллы промывают водой и сушат. Получают 2.3 г соединения **3.** Выход 70%. Т. пл. 255–257 °C. ИК спектр, v, см⁻¹: 3415 (NH), 3259 (NH[…]O=C), 1700 (C=O). Найдено, %: C 61.33; H 2.22; N 6.20. C₁₁H₅NO₄. Вычислено, %: C 61.39; H 2.32; N 6.51.

6-Кумаринилгидразон метилового эфира пировиноградной кислоты (5а). К перемешиваемой смеси 3.7 г (20 ммоль) 6-аминокумарина (1), 100 мл воды и 20 мл конц. HCI прибавляют по каплям в течение 20 мин при -5 - -10 °C раствор 1.6 г (23 ммоль) NaNO₂ в 7 мл воды, после чего перемешивание продолжают в течение 1.5 ч при -5 °C. К полученному раствору соли диазония при температуре от -5 до -10°C медленно прибавляют 9.02 г (40 ммоль) SnCI_{2.}2H₂O в 30 мл конц. HCI, перемешивают при этой температуре еще 3 ч, выпавший осадок гидрохлорида гидразина 4 отфильтровывают, растворяют в кипящей воде и раствор быстро фильтруют. К фильтрату при комнатной температуре добавляют насыщенный раствор ацетата натрия до рН 3 и далее по каплям при интенсивном перемешивании – раствор 2.5 мл (20 ммоль) метилового эфира пировиноградной килоты в 4 мл этанола. Желтый осадок продукта **5a** отфильтровывают, промывают водой и сушат. Получают 4.0 г (67.7%) смеси *син*- и *анти*-изомеров гидразона **5a**, которую разделяют на колонке (l = 500 мм, ø=20 мм), заполненной силикагелем Сhemapol (L 100/250) элюент эфир-гексан, 3:1. Последовательно выделяют 0.38 г (11%) *син*-изомера **5a** и 1.7 г (50%) *анти*-изомера **5a**.

Син-Z-**5а**. Т. пл. 195–198 °С. ИК спектр, v, см⁻¹: 1680 (С=О), 3410 (NH). УФ спектр, λ_{max} , нм (lg ε): 219(4.44), 239(4.67), 251(4.88), 273(4.35), 312(4.62), 320(4.30). Найдено, %: С 60.13; Н 4.80; N 10.47. С₁₃H₁₂N₂O₄. Вычислено, %: С 60.00; Н 4.61; N 10.76.

Анти-E-**5**а. Т. пл. 166–169 °С. ИК спектр, v, см⁻¹: 1710 (C=O), 3410 (NH). УФ спектр, λ_{max} , нм (lg ϵ): 221(4.42), 236(4.60), 248(4.84), 278(4.65), 293(4.75), 312(4.66), 320(4.35). Найдено, %: С 60.32; H 4.53; N 10.74. С₁₃H₁₂N₂O₄. Вычислено, %: С 60.00; H 4.61; N 10.76.

6-Кумаринилгидразон этилового эфира пировиноградной кислоты (5b) Из 3.7 г (20 ммоль) 6-аминокумарина 1 по методике синтеза соединения **5a** (см. выше) получают. 5.5 г (88%, считая на 1) смеси *син-* и *анти-*изомеров **5b**, которую разделяют колоночной хроматографией, последовательно выделяя 0.77 г (14%) *син-Z-***5b** и 3.0 г (55%) *анти-E-***5b**.

Син-Z-**5b**. Т. пл. 195–198 °С. ИК спектр, v, см⁻¹: 1690 (С=О), 3400 (NH). УФ спектр, λ_{max} , нм (lg є): 220(4.54), 211(4.65), 251(4.88), 277(4.35), 293(4.45), 316(4.58), 320(4.25). Найдено, %: С 61.19; Н 4.84; N 10.43. С₁₄Н₁₄N₂O₄. Вычислено, %: С 61.31; Н 5.10; N 10.21.

Анти-E-5b. Т. пл. 166–167 °С. ИК спектр, v, см⁻¹: 1700 (С=О), 3410 (NH). УФ спектр, λ_{max} , нм (lg ϵ): 215(4.45), 229(4.55), 259(4.90), 280(4.82), 284(4.65), 328(4.60), 320(4.38). Найдено, %: С 61.03; Н 5.12; N 10.53. С₁₄Н₁₄N₂O₄. Вычислено, %: С 61.31; Н 5.10; N 10.21.

Метиловый эфир 7-оксопирано[3,2-*е*]индол-2-карбоновой кислоты (6а). К 50 г ЭПФК предварительно нагретым до 50 °C прибавляют 2.6 г (10 ммоль) гидразона **5**а. Далее реакционную смесь нагревают до 90 °C, перемешивают при этой температуре 1 ч, затем охлаждают до комнатной температуры и выливают на лед. Выпавший осадок продукта **6**а отфильтровывают, промывают водой, сушат и затем очищают на колонке (l = 500 мм, $\sigma=20$ мм), заполненной силикагем Chemapol (L 100/250), элюент эфир-гексан, 5:2. Получают 1.22 г (50%) соединения **6**а. Т. пл. 245–248 °C. ИК спектр, v, см⁻¹: 1720 (С=О), 3410 (NH). УФ спектр, λ_{max} , нм (lg ε): 274(4.04), 285(4.17), 295(4.38), 305(4.51), 312(3.95), 320(3.62), 320(4.38). Найдено, %: С 64.42; Н 3.92; N 5.55. С₁₃H₉NO₄. Вычислено, %: С 64.19; Н 3.70; N 5.76.

Этиловый эфир 7-оксопирано[3,2-е]индол-2-карбоновой кислоты (6b) получают аналогично соединению ба из гидразона 5b. Выход 55%. Т. пл. 215–216 °C. ИК спектр, v, см⁻¹: 1700 (C=O), 3400 (NH). УФ спектр, λ_{max} , нм (lg ϵ): 268(4.14), 275(4.22), 290(4.44), 305(4.50), 318(3.74), 325(3.60). Найдено, %: C 65.23; H 4.04; N 5.54. С₁₄H₁₁NO₄. Вычислено, %: C 65.36; H 4.28; N 5.44.

7-Оксопирано[3,2-*е*]индол (8). 7-Оксопирано[3,2-*е*]индол-2-карбоновую кислоту 7, полученную индолизацией 6-кумаринилгидразона пировиноградной кислоты аналогично соединению 5а (см. выше) в количестве 1 г (40 ммоль), без предварительной очистки выдерживают при температуре 150–160 °С в токе аргона до окончания выделения CO₂ (~2–3 мин). Продукт декарбоксилирования очищают на колонке с окисью алюминия (элюент эфир–гексан, 1:3). Получают 0.4 г (50%) соединения 8. Т. пл. 146–147 °С. ИК спектр, v, см⁻¹: 3410 (NH). УФ спектр, λ_{max} , нм (lg ε): 249(4.33), 255(4.66), 263(4.88), 279(4.95), 295(4.95), 315(4.55), 329(4.35). Найдено, %: С 71.23; Н 4.00; N 7.46. С₁₁Н₇NO₂. Вычислено, %: С 71.35; Н 3.78; N 7.56.

Этиловый эфир 1-нитро-7-оксопирано[3,2-е]индол-2-карбоновой кислоты (9). К 1.0 г (4 ммоль) эфира 6b в 15 мл ледяной уксусной кислоты при 30 °C по каплям добавляют 3 мл (40 ммоль) HNO₃ (d = 1.4). Далее реакционную смесь нагревают до 80 °C, перемешивают при этой температуре 1 ч и фильтруют горячей. Выпавшие при охлаждении кристаллы отфильтровывают, тщательно промывают водой, сушат. Получают 0.8 г сырого продукта, который очищают на колонке, заполненной Al₂O₃ (элюент хлороформ). Выход чистого эфира 9 0.3 г (30%). Т. пл. 265–267 °C. ИК спектр, v, см⁻¹: 1710 (C=O), 3410 (NH). УФ спектр, λ_{max} , нм (lg ε): 288(4.14), 295(4.25), 315(4.41), 310(4.10), 320(3.92). Найдено, %: С 55.54; H 3.52; N 9.50. C₁₄H₁₀N₂O₆. Вычислено, %: C 55. 62; H 3.31; N 9.27.

Этиловый эфир 1-амино-7-оксопирано[3,2-е]индол-2-карбоновой кислоты (10). К 2.0 г (6 ммоль) эфира 6b в 15 мл ледяной АсОН по каплям добавляют 4.0 г (8 ммоль) SnCl₂ · 2H₂O в 5 мл конц. НСI и смесь перемешивают при кипении 2 ч. Выпавшие при охлаждении кристаллы отфильтровывают, растворяют в воде при нагревании и высаживают продукт 10 раствором NaHCO3. Получают 1.4 г сырого амина, который очищают переосаждением. Выход чистого продукта 10 1.1 г (61.1%). Т. пл. 190 °С (разл). ИК спектр, v, см⁻¹: 1690 (С=О), 3400 (NH). УФ спектр, λ_{max} , нм (lg ϵ): 278(4.00), 285(4.22), 299(4.54), 325(4.58), 335(3.90). Найдено, %: С 62.00; Н 4.25; N 10.13. С₁₄H₁₂N₂O₄. Вычислено, %: С 61.76; Н 4.41; N 10.29.

Работа выполнена по гранту № G-865, ISTC (МНТЦ), за что авторы приносят свою благодарность.

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. Е. Хоштария, М. Л. Кахабришвили, М. И. Сихарулидзе, Л. Н. Курковская, Н. Н. Суворов, ХГС, 355 (1985).
- Т. Е. Хоштария, Т. О. Джаши, Л. Н. Курковская, ХГС, 627 (1999). 2.
- Т. О. Джаши, Т. Е. Хоштария, Л. Н. Курковская, Н. Т. Мирзиашвили, М. И. Сихарулидзе, 3. XFC, 1419 (1999).
- 4. Т. Е. Хоштария, Л. Т. Бочоидзе, К. Т. Бацикадзе, ХГС, 624 (2004).
- 5. М. Д. Машковский, Лекарственные средства, Медицина, Москва, 1984, ч. 2, с. 190.
- 6. Е. В. Науменко, Н. К. Попова, в кн. Серотонин и мелатонин в регуляции эндокринной системы, Наука, Сиб. отд-ние, Новосибирск, с. 145 (1975).
- 7. М. Д. Машковский, Лекарственные средства, Медицина, Москва, 1984, ч. 1, с. 112.
- T. O. Soine, *J. Pharm. Sci*, **53**, No. 3, 231 (1964).
 H. Bayerle, R. Marx, *Biochem. Z.*, **319**, 18 (1948).
- 10. Z. Prochaska, Ceskosl. Farm., 3, 221 (1954).
- 11. C. Schroeder, S. Preis, K. P. Link, Tetrahedron Lett., 23 (1960).
- 12. J. K. Sugden, T. O. Yolove, Pharm. Acta Helv., 53, No. 3/4, 65 (1978).

Грузинский технический университет, Кафедра технологии органических веществ, Тбилиси 380075 e-mail: t khoshtaria@yahoo.com

Поступило в редакцию 30.10.2002 После доработки 09.10.2004