Г. Вейнберг, К. Диковская, М. Ворона, И. Туровский, И. Шестакова, И. Канепе, Э. Лукевиц

СИНТЕЗ ЦИТОТОКСИЧЕСКИХ ПРОИЗВОДНЫХ 2-ОКСОАЗЕТИДИНИЛ-1-АЦЕТАМИДА

Четырехкомпонентной конденсацией β-аминокислот с альдегидами и изонитрилами синтезированы новые производные 2-оксоазетидинил-1-ацетамида. Изучение их цитотоксической активности *in vitro* выявило цитотоксический эффект отдельных соединений в отношении раковых клеток фибросаркомы человека, мышинной гепатомы и мышинной нейробластомы.

Ключевые слова: N-циклогексил-α-(2-оксо-4-бензилоксикарбонилазетидинил-1)-α-(арил)ацетамиды, N-циклогексил-α-(2-оксо-4-фенилазетидинил-1)-α-(арил)ацетамиды, Nцикло- гексил-α-(2-оксо-3-бензилоксикарбониламиноазетидинил-1)-α-(4цианофенил)ацетамид, N-цик- логексил-α-(2-оксо-3-*трет*-бутоксикарбониламиноазетидинил-1)-α-(арил)ацетамиды, N-толил- сульфонил-α-(2-оксоазетидинил-1)-α-(4-нитро-2хлорфенил)ацетамид, цитотоксическая активность.

В продолжение исследований, посвященных синтезу 1,3,4-тризамещенных β-лактамов и анализу взаимосвязи между их структурой и цитотоксическими свойствами [1–3], в качестве очередного объекта нами были выбраны производные 2-оксоазетидинил-1-ацетамида.

Для их получения была применена одностадийная четырехкомпонентная конденсация Уги β-аминокислот с альдегидами и изонитрилами [4–7]. Ее преимущество по сравнению с другими методами получения 2-оксоазетидинил-1-ацетамида состоит в возможности одновременного направленного введения заместителей в 3С и 4С положения гетероцикла, а также замещения протонов в метиленовом и амидном фрагментах ацетамида.

Синтез новых азетидинонов 4a-j с помощью упомянутой конденсации был осуществлен взаимодействием структурных аналогов β -аминокислот 1a-e, альдегидов 2a-e и изоцианатов 3a,b.

Конденсация проводилась в метаноле при комнатной температуре в течение 3–5 сут. Окончание реакции контролировалось с помощью TCX. Вещества выделялись из реакционной смести с помощью колоночной хроматографии. Их строение доказано спектрами ЯМР ¹Н и элементным анализом, а однородность – ВЭЖХ.

Структурная специфика данной реакции характеризуется образованием хирального центра на атоме С-5 образующихся соединений **4***a*–*j*.

1 a R = H; $R^{1} = H$; b R = H, $R^{1} = CO_{2}CH_{2}Ph$; c R = H, $R^{1} = Ph$; d $R = Me_{3}COCONH$, $R^{1} = H$; e $R = PhCH_{2}OCONH$, $R^{1} = H$; **2** a 4-ClC₆H₄; b $R^{2} = 4$ -NCC₆H₄; c $R^{2} = 3$ -O₂NC₆H₄;

d R² = 1-нафтил; e R² = 2,4-Cl(O₂N)C₆H₃; **3** a R³ = C₆H₁₁, b R³ = SO₂C₆H₄Me-4; **4** a-e, j R = H; f R = PhCH₂OCONH; g-i R = BocNH; **4** a R¹ = CO₂CH₂Ph, R² = 4-ClC₆H₄; b R¹ = CO₂CH₂Ph,

 $R^2 = 4$ -NCC₆H₄, **с** $R^1 = CO_2CH_2Ph$, $R^2 = 1$ -нафтил; **d** $R^1 = Ph$, $R^2 = 4$ -ClC₆H₄, **e** $R^1 = Ph$, $R^2 = 4$ -NCC₆H₄; **f** $R^1 = H$, $R^2 = 4$ -ClC₆H₄; **g** $R^1 = H$, $R^2 = 4$ -NCC₆H₄; **h** $R^1 = H$, $R^2 = 3$ -O₂NC₆H₄; **i** $R^1 = H$, $R^2 = 1$ -нафтил; **j** $R^1 = H$, $R^2 = 2$,4-Cl(O₂N)C₆H₃; **a**-**i** $R^3 = C_6H_{11}$; **j** $R^3 = SO_2C_6H_4Me-4$.

Дополнительные хиральные центры образуются на атомах C-3 и C-4 **4**a–i благодаря наличию заместителей в α - или β -положениях исходных аминокислот **1b–e**. Теоретически это должно приводить к получению конечного продукта в виде сложной диастереоизомерной смеси. Однако, судя по данным ВЭЖХ и спектров ЯМР ¹H, большинство выделенных продуктов представлено равновесной смесью только двух изомеров. В случае азетидинона **4f** их соотношение оказалось сдвинутым в сторону одного представителя (1:4), а азетидиноны **4h** и **4j** оказались диастереоизомерными продуктами.

Биологическая часть исследований *in vitro* (табл. 1) включала определение цитотоксических свойств синтезированных веществ в отношении монослойных раковых клеток, а также их способности инициировать биосинтез радикалов оксида азота (TG₁₀₀), высокая реакционная способность которых является важной составляющей цитотоксического эффекта [8, 9].

Концентрации веществ, приводящие к гибели 50% клеток (TD₅₀) определялись по стандартной методологии на четырех линиях опухолевых клеток: HT-1080 (фибросаркома человека), MG-22A (мышинная гепатома), В 16 (мышинная меланома) и Neuro 2A (мышинная нейробластома) [9].

Согласно проявленному биологическому эффекту, синтезированные соединения можно разделить на две группы. К первой относятся соединения **4b**, **c**, **e**, **g**, **h** и **j**, характеризующиеся отсутствием цитотоксического эффекта или его слабым проявлением в отношении культур HT-1080 и MG-22A.

Соеди- нение	Цитотоксический эффект (мкг/мл) и специфическая NO-генерирующая способность в отношении опухолевых клеток								
		HT-1080*		MG-22A*					
	TD ₅₀ (CV)	TD ₅₀ (MTT)	TG ₁₀₀	TD ₅₀ (CV)	TD ₅₀ (MTT)	TG ₁₀₀			
4 a	0.9	0.6	150	55	51	100			
4b	>100	>100	8	>100	>100	9			
4c	44	45	250	60	59	250			
4d	0.9	0.7	250	39	35	125			
4 e	39	33	13	>100	>100	6			
4f	5.4	6.5	350	8.8	41	50			
4g	47	58	200	81	83	15			
4h	52	51	89	44	55	160			
4i	8.3	8.3	500	9.6	24	550			
4j	73	73	125	54.5	49	200			

Биологические свойства производных 1,3,4-тризамещенных азетидинонов-2

^{*}TD₅₀ – концентрация, обеспечивающая 50% гибель клеток (окрашивание CV – кристаллический фиолетовый, окрашивание МТТ – бромид 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолия); ТG₁₀₀ – специфическая NO· генерирующая способность [9]

Вторая группа, состоящая из азетидинонов **4a,d,f,** и **i**, проявила высокую цитотоксическую активность в отношении клеток фибросаркомы человека и более умеренную в отношении раковых клеток мышинной гепатомы (табл. 2). Дополнительное тестирование выявило хорошую активность соединения **4f** в отношении мышинной нейробластомы.

Таблица 2

Биологические свойства производных 1,3,	4-тризамещенных азетидинонов-2
---	--------------------------------

Соеди-	Цитотоксический эффект (мкг/мл) и специфическая NO генерирующая способность в отношении опухолевых клеток							
		B 16		Neuro 2A				
	TD 50 (CV)	TD 50 (MTT)	TG ₁₀₀	TD 50 (CV)	TD 50 (MTT)	TG ₁₀₀		
4 a	71	71	21	67	31	13		
4d	44	52.3	44	32	43.4	250		
4f	7.4	7.3	67	29	38	56		
4i	29	32	300	18	32	250		

В отличие от предыдущих исследований [1–3], сравнительный анализ интенсивности внутриклеточной генерации радикалов окида азота и цитотоксических свойств синтезированых соединений позволил выявить взаимосвязь между этими показателями лишь для отдельных типов раковых клеток.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н сняты на спектрометре Bruker WH-90/DS (90 МГц) в CDCl₃, ДМСО-d₆, внутренний стандарт ТМС. Микроаналитические данные определены с помощью анализатора Carlo Erba 1108. Контроль за ходом реакции осуществлялся методом TCX на пластинках Merck Kieselgel с УФ проявлением. Данные ВЭЖХ получены на приборе Du-Pont Model 8800, снабженном УФ детектором ($\lambda = 254$ нм) и колонкой (4.6 × 250 мм), заполненной фазой Symmetry C₁₈ или Ultrasphere octyl в системе ацетонитрил – вода или ацетонитрил – 0.1 н фосфатный буфер с pH 2.5 (60:40), скорость 0.8–1.5 мл/мин. Для препаративной колоночной хроматографии применялся силикагель марки Merck Kieselgel (0.063–0.230 мм). В экспериментах использовались реагенты и материалы фирм Aldrich, Acros, Sigma и SIA BAPEKS.

Синтез 2-оксоазетидинил-1-ацетамидов 4а–j (общая методика). К суспензии 1 ммоль β-аланина 1а–е и 1 ммоль альдегида 2а–е в 4 мл метанола добавляют 1.2 ммоль изонитрила 3а,b. Смесь перемешивают при комнатной температуре до завершения реакции (3–5 дней), согласно данным ТСХ. Растворитель упаривают. Остаток фракционируют на хроматографической колонке с силикагелем системой этилацетат–петролейный эфир (1:2). Фракции, содержащие целевой продукт, объединяют и упаривают.

(35,*R*)-N-Циклогексил-α-(2-оксо-4-бензилоксикарбонилазетидинил-1)-α-(4хлорфенил)- ацетамид (4а) получают конденсацией α-бензилового эфира *D*,*L*аспарагиновой кислоты 1b, 4-хлорбензальдегида 2a и циклогексилизонитрила 3a. Целевой продукт, выделенный из фракций с R_f 0.27 в виде аморфного вещества, по данным ВЭЖХ, является смесью изомеров (1:1) с суммарным содержанием >98%. Выход 32%. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 0.78–2.04 (10H, м, циклогексил); 2.80–3.48 (1H, м, H-3); 3.57–3.88 (1H, м, циклогексил); 3.82 и 4.44 (1H, д. д. ${}^3J_{mpanc} = 2$, ${}^3J_{µuc} = 5$, H-4); 4.95 и 5.13 (2H, два с, CH₂); 5.24 и 5.31 (1H, два с, NCHCO); 6.08 (1H, д. *J* = 8, NH); 7.02–7.53 (10H, м, NH, C₆H₄, C₆H₅). Найдено, %: С 66.13; H 6.18; N 6.06. C₂₅H₂₇ClN₂O₄. Вычислено, %: С 66.00; H 5.98; N 6.16.

(3*S*,*R*)-N-Циклогексил- α -(2-оксо-4-бензилоксикарбонилазетидинил-1)- α -(4-цианофенил)ацетамид (4b) получают конденсацией соединения 1b, 4-цианобензальдегида 2b и соединения 3a. Целевой продукт, выделенный из фракций с R_f 0.32 в виде аморфного вещества, по данным ВЭЖХ, является смесью изомеров (1:1) с суммарным содержанием >98%. Выход 37%. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 0.73–2.08 (10H, м, циклогексил); 2.95 и 3.02 (1H, д. д. $^2J = 16$, $^3J_{mpanc} = 2$, H-3); 3.33 (1H, д. д. $^2J = 16$, $^3J_{µuc} = 5$, H-3); 3.57–3.88 (1H, м, циклогексил); 3.91 и 4.46 (1H, д. д. $^3J_{mpanc} = 2$, $^3J_{µuc} = 5$, H-4); 5.02 и 5.15 (2H, два с, CH₂); 5.24 и 5.33 (1H, два с, NCHCO); 6.35 (1H, д. J = 8, NH); 7.15–7.66 (10H, м, NH, C₆H₄, C₆H₅). Найдено, %: С 69.70; Н 6.13; N 9.28. C₂₆H₂₇N₃O₄. Вычислено, %: С 70.10; H 6.11; N 9.43.

(35,*R*)-N-Циклогексил-α-(2-оксо-4-бензилоксикарбонилазетидинил-1)-α-(1-нафтил)ацетамид (4c) получают конденсацией соединения 1b, 1-нафтилальдегида 2d и соединения За. Целевой продукт, выделенный из фракций с R_f 0.35 в виде аморфного вещества, по данным ВЭЖХ, является смесью изомеров (45:55) с суммарным содержанием >97%. Выход 12%. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 0.95–2.07 (10H, м, циклогексил); 2.73–3.40 (1H, м, H-3); 3.55–3.93 (2H, м, циклогексил, H-3); 4.51 (1H, уш. с, NCHCO); 5.07 и 5.49 (2H, два д, *J* = 6, CH₂); 6.28 (1H, д, *J* = 8, NH); 6.87–7.82 (13H, м, NH, C₁₀H₇, C₆H₅). Найдено, %: С 73.80; H 6.55; N 5.70. C₂₉H₃₀N₂O₄. Вычислено, %: С 74.02; H 6.43; N 5.95. (3*S*,*R*)-N-Циклогексил-α-(2-оксо-4-фенилазетидинил-1)-α-(4-хлорфенил)ацетамид (4d) получают конденсацией *D*,*L*-3-амино-3-фенилпропионовой кислоты 1с, 4-хлорбензальдегида 2а и соединения 3а. Целевой продукт, выделенный из фракций с R_f 0.45 в виде аморфного вещества, по данным ВЭЖХ, является смесью изомеров (1:1) с суммарным содержанием >99%. Выход 42%. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 0.73–2.04 (10H, м, циклогексил); 2.93 и 3.02 (1H, д. д. ²*J* = 15, ³*J*_{пранс} = 2, H-3); 3.42 и 3.48 (1H, д. д. ²*J* = 15, ³*J*_{цис} = 5, H-3); 3.68–3.95 (1H, м, циклогексил); 4.55 и 4.84 (1H, д. д. ³*J*_{пранс} = 2, ³*J*_{цис} = 5, H-4); 4.91 и 4.93 (1H, два с, NCHCO); 6.46, 6. 84 (1H, два д, *J* = 8, NH); 7.06–7.46 (9H, м, C₆H₄, C₆H₅). Найдено, %: C 69.19; H 6.38; N 7.02. C₂₃H₂₅ClN₂O₂(0.1H₂O). Вычислено, %: C 69.19; H 6.38; N 6.92.

(3*S*,*R*)-N-Циклогексил-α-(2-оксо-4-фенилазетидинил-1)-α-(4-цианофенил)ацетамид (4е) получают конденсацией соединения 1с, 4-цианобензальдегида 2b и соединения 3а. Целевой продукт, выделенный из фракций с R_f 0.53 в виде аморфного вещества, по данным ВЭЖХ, является смесью изомеров (1:1) с суммарным содержанием >98%. Выход 38%. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 0.73–2.00 (10H, м, циклогексил); 2.91 и 3.00 (1H, д. д, ²*J* = 15, ³*J*_{*mpanc*} = 2, H-3); 3.40 и 3.46 (1H, д. д, ²*J* = 15, ³*J*_{*щис*} = 5, H-3); 3.48–3.88 (1H, м, циклогексил); 4.55 и 4.77 (1H, д. д, ³*J*_{*mpanc*} = 2, ³*J*_{*щис*} = 5, H-4); 4.89 и 4.93 (1H, два с, NCHCO); 6.64 и 6.91 (1H, два д, *J* = 8, NH); 7.30 и 7.58 (4H, два д, *J* = 9, C₆H₄); 7.02–7.50 (5H, м, C₆H₅). Найдено, %: С 73.57; H 6.56; N 10.60. C₂₄H₂₅N₃O₂(0.25H₂O). Вычислено, %: С 73.39; H 6.50; N 10.72.

(4*S***,***R***)-N-Циклогексил-α-(2-оксо-3-бензилоксикарбониламиноазетидинил-1)-α-(4-хлорфенил)ацетамид (4f)** получают конденсацией соединения 1e, 4-хлорбензальдегида 2a и соединения 3a. Целевой продукт выделяют из фракций с R_f 0.50 в виде кристаллического вещества с т. пл. 188–189 °C. По данным ВЭЖХ, он является смесью изомеров (1:4) с суммарным содержанием >99%. Выход 35%. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 0.90–2.01 (10H, м, циклогексил); 3.27 (1H, м, циклогексил); 3.37–3.88 (H, м, H-4); 4.13–4.68 (1H, м, H-3); 5.03 (2H, с, CH₂); 5.06 и 5.09 (1H, два с, NCHCO); 5.26 и 5.42 (1H, два д, *J* = 8, NH); 6.41 (1H, м, OCONH); 7.01–7.57 (9H, м, C₆H₄, C₆H₅). Найдено, %: C 63. 88; H 6.00; N 8. 88. C₂₅H₂₈ClN₃O₄. Вычислено, %: C 63.89; H 6.01; N 8.94.

(4*S*,*R*)-N-Циклогексил-α-(2-оксо-3-*трет*-бутоксикарбониламиноазетидинил-1)-α-(4-цианофенил)ацетамид (4g) получают конденсацией *D*-2-*трет*-бутоксикарбониламино-3-аминопропионовой кислоты (1d) и соединений 2b и 3a. Целевой продукт выделяют из фракций с R_f 0.45 в виде кристаллического вещества с т. пл. 118–120 °С. По данным ВЭЖХ, он является смесью изомеров (56:44) с суммарным содержанием >97%. Выход 42%. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 1.04–2.09 (10H, м, циклогексил); 1.44 (9H, с, C₄H₉); 3.11 (2H, два д, *J* = 5, H-4); 3.44–4.00 (2H, м, H-4, циклогексил); 4.13–4.60 (1H, м, H-3); 5.00 и 5.69 (1H, два с, NCHCO); 5.07–5.38 (1H, м, NH); 7.22–7.71 (4H, м, C₆H₄) 7.87 (1H, м, OCONH). Найдено, %: C 64.98; H 7.43; N 13.38. C₂₃H₃₀N₄O₄. Вычислено, %: C 64.77; H 7.09; N 13.14.

N-Циклогексил-α-(2-оксо-3-*трет*-бутоксикарбониламиноазетидинил-1)-α-(3-нитрофенил)ацетамид (4h) получают конденсацией соединения 1d, 3-нитробензальдегида 2c и соединения 3a. Целевой продукт, выделенный из фракций с R_f 0.40 в виде аморфного вещества вещества, по данным ВЭЖХ, является одним из стереоизомеров. Выход 16%. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 1.06–2.04 (10H, м, циклогексил); 1.49 (9H, с, C₄H₉); 3.11 (1H, д. д. ²*J* = 5, ³*J*_{µµc} = 5, H-4); 3.67 (1H, д. д. ²*J* = 5, ³*J*_{µµc} = 2, H-4); 3.75–4.08 (1H, м, циклогексил); 4.08–4.35 (1H, м, H-3); 5.05 (1H, д. *J* = 7, NH); 5.62 (1H, с, NCHCO); 7.42–7.67 (2H, м, C₆H₅); 7.87 (1H, д. *J* = 7, OCONH); 8.11–8.29 (2H, м, C₆H₅). Найдено, %: С 59.40; H 7.12; N 12.00. C₂₂H₃₀N₄O₆(0.1EtOAc). Вычислено, %: С 59.09; H 6.82; N 12.31.

(4*S*,*R*)-N-Циклогексил-α-(2-оксо-3-*трет*-бутоксикарбониламиноазетидинил)1)-α-(1-нафтил)ацетамид (4i) получают конденсацией соединения 1d, 1-нафтальдегида 2d и соединения 3a. Целевой продукт, выделенный из фракций с R_f 0.35 в виде аморфного вещества, по данным ВЭЖХ, является смесью изомеров (56:44) с суммарным содержанием >97%. Выход 42%. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 1.11–2.04 (10H, м, циклогексил); 1.38 и 1.49 (9H, два с, C₄H₉); 3.07 (1H, д. д. ²*J* = 5, ³*J*_{цис} = 5, H-4); 3.60 (1H, д. д. ²*J* = 5, ³*J*_{транс} = 2, H-4); 3.70–4.04 (2H, м, H-4, циклогексил); 4.04–4.33 и 4.58–4.82 (1H, м, м, 3-H); 4.93–5.24 (1H, м, NH); 5.33 и 5.67 (1H, два с, NCHCO); 6.28–6.60 (1H, м, OCONH); 7.26–7.33 (7H, м, C₁₀H₇). Найдено, %: С 68.53; H 7.52; N 8.93. C₂₆H₃₃N₃O₄(0.25H₂O). Вычислено, %: С 68.45; H 7.41; N 9.21.

111

N-Толилсульфонил-α-(2-оксоазетидинил)-1-α-(4-нитро-2-хлорфенил)ацетамид (4j) полу- чают конденсацией 3-аминопропионовой кислоты (1a), 4-нитро-2-хлорбензальдегида (2e) и толилсульфонилизонитрила (3b). Целевой продукт, выделенный из фракций с R_f 0.36 в виде аморфного вещества, по данным ВЭЖХ, является одним из стереоизомеров. Выход 6%. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 2.40 (3H, с, CH₃); 2.80–3.04 (2H, м, H₂-4); 3.17 (1H, д. д. ²*J* = 6, ³*J*_{транс} = 3, H-3); 3.46 (1H, д. д. ²*J* = 6, ³*J*_{цис} = 6, H-3); 5.37 (2H, д. *J* = 7, CH₂SO₂); 5.62 (1H, с, NCHCO); 7.17–7.84 (7H, м, C₆H₃); 8.26 (1H, два д. *J* = 7, NH). Найдено, %: С 50.72; H 4.18 ; N 9.36. C₁₉H₁₈ClN₃O₆S. Вычислено, %: С 50.50; H 4.01; N 9.30.

СПИСОК ЛИТЕРАТУРЫ

- G. Veinberg, R. Bokaldere, K. Dikovskaya, M. Vorona, D. Musel, H. Kazhoka, I. Turovsky, I. Shestakova, I. Kanepe, I. Domrachova, E. Lukevics, *Chem. Heterocycl. Comp.*, 34, 1266 (1998).
- Г. Вейнберг, Р. Бокалдере, К. Диковская, М. Ворона, И. Шестакова, И. Канепе, Э. Лукевиц, ХГС, 680 (2003).
- Г. Вейнберг, М. Ворона, Д Мусел, Р. Бокалдере, И. Шестакова, И. Канепе, Э. Лукевиц, ХГС, 949 (2004).
- 4. R. Obrecht, S. Toure, I. Ugi, Heterocycles, 21, 271 (1984).
- 5. K. Kehagia, I. Ugi, Tetrahedron, 51, 9523 (1995).
- 6. R. Bossio, C.F. Marcos, S. Maraccini, R. Pepino, Tetrahedron Lett., 38, 2519 (1997).
- 7. A. Domling, M. Starnecker, I. Ugi, Angew. Chem. Int. Ed. Engl., 34, 2238 (1995).
- 8. J. F. Jr. Kerwin, F. R. Jr. Lancaster, P. L. Feldman, J. Med. Chem., 38, 4343 (1995).
- G. A. Veinberg, I. Shestakova, N. Grigan, D. Musel, I. Kanepe, I. Domrachova, V. Grigoryeva. O. Zharkova, I. Turovskis, I. Kalvinsh, A. Strakovs, E. Lukevics, *Eur. J. Med. Chem.*, 33, 755 (1998).

Латвийский институт органического синтеза, Pura LV 1006 e-mail: veinberg@osi.lv Поступило в редакцию 10.01.2003