В. Л. Королев, Т. В. Петухова^а, Т. С. Пивина, А. Б. Шереметев, Е. А. Мирошниченко⁶, В. П. Ившин^а

ИССЛЕДОВАНИЕ СТРОЕНИЯ И ТЕРМОХИМИЧЕСКИХ СВОЙСТВ НИТРО- И НИТРОЗОПИПЕРАЗИНОВ МЕТОДАМИ КВАНТОВОЙ ХИМИИ

В приближениях MNDO, PM3 и методом функционала плотности (6-31G^{*}) проведено квантово-химическое исследование строения и некоторых физико-химических свойств N-нитро- и N-нитрозопроизводных пиперазина, фуразано[3,4-*b*]пиперазина, бисфуразано[3,4-*b*;3',4'-*e*]пиперазина. Проанализированы структурные, электронные, термохимические характеристики, энтальпии образования соединений в газовой и твердой фазах. Выявлена корреляция прочности связи N–N с ее длиной, пирамидальностью атома азота пиперазинового цикла и размером энергетической щели между граничными орбиталями. На основе расчетов методом функционала плотности выполнен сравнительный анализ термохимических реакциях.

Ключевые слова: бисфуразано[3,4-*b*;3',4'-*e*]пиперазины, N-нитро- и N-нитрозопиперазины, фуразано[3,4-*b*]пиперазины, квантово-химические расчеты, термохимические характеристики.

Нитрамины (N-нитросоединения) занимают центральное место среди компонентов энергетических составов [1–5]. Большое внимание в области создания энергоемких веществ, в целом, и нитраминов, в частности, уделяется разработке методов теоретического анализа их строения и предсказания свойств этих соединений до стадии синтеза [2, 4, 6, 7].

Довольно широко в качестве базовой структуры при конструировании энергоемких веществ используется пиперазиновый цикл. Так, N-нитро- и N-нитрозопиперазины и их полиазотистые аннелированные производные предлагались в качестве компонентов взрывчатых составов, порохов и ракетных топлив [8–12]. Соединения этой группы в перспективе могут рассматриваться как компоненты газогенерирующих составов.

"Родоначальник" этого ряда – N,N'-динитропиперазин – является термически весьма стойким веществом с температурой разложения 190–200 °C [5]. Стабильность же его аналогов, содержащих при атомах углерода заместители или аннелированные гетероциклы, различна и определяется природой их структурных различий. Ниже представлены некоторые известные нитропиперазины и температуры их разложения:

Термический распад большинства вторичных N-нитраминов начинается с гомолитического разрыва связи N-NO₂ [14, 15]. Предполагается, что и в N-нитрозосоединениях распад также начинается с гомолитического разрыва связи N-N [16]. При этом, если атом азота, с которым связана нитрогруппа, вовлечен в процессы сопряжения или невалентные орбитальные взаимодействия с функциональной группой при соседнем атоме углерода, наблюдается уменьшение прочности связи N-N, что облегчает либо ее разрыв по радикальному механизму, либо 1,3-сигматропный сдвиг нитрогруппы. В результате, происходит снижение термической устойчивости таких соединений [17]. Не являются исключением в этом смысле и производные пиперазина, поэтому анализ взаимосвязей структурных вариаций и свойств производных нитрозо- и нитропиперазина представляет несомненный интерес. В развитие наших исследований энергоемких производных фуразана [18–20], для которых характерна высокая термическая стойкость [15, 21], представлялось интересным оценить характеристики нитро-, нитрозопроизводных и некоторых других полициклических соединений, включающих как фуразановый, так и пиперазиновый циклы. Различные аспекты химии фуразанопиперазинов обсуждались в недавнем обзоре [22].

Цель настоящей работы – исследование геометрического и электронного строения и энтальпий образования нитро- и нитрозопроизводных пиперазина **1**, фуразано[3,4-*b*]пиперазина **2**, бисфуразано[3,4-*b*;3',4'-*e*]пиперазина **3**, 5,6-диоксофуразано[3,4-*b*]пиперазина **4** и 5,6-дигидроксиминофуразано[3,4-*b*]пиперазина **5**. Оценка относительной прочности 1818 связей N–N, а также энтальпий реакций гомолитического распада соединений этих серий является неотъемлемой частью исследования:

Для расчетов использовались программные комплексы MOPAC [23] и WINMOPAC [24]. Геометрические параметры, равно как и зарядовые распределения, оценивались в рамках метода MNDO [23] – наиболее приемлемого при расчетах этих характеристик для N,O-содержащих молекул. Дипольные моменты, потенциалы ионизации и энергии граничных молекулярных орбиталей рассчитывались методами MNDO и PM3 [23], энтальпии образования соединений в газовой фазе оценивались на основе метода PM3, а в твердой фазе – с привлечением аддитивных схем [25–27]. В тех случаях, когда для молекулы возможно существование нескольких конформеров, оценивались характеристики только термодинамически наиболее устойчивого.

Расчет геометрических параметров молекул

Согласно результатам выполненного исследования по оценке геометрических характеристик соединений (табл. 1 и 2) как для нитро-, так и для нитрозопроизводных при переходе от моно- и далее к дифуразаноаннелированным соединениям длина связи N-N увеличивается, что свидетельствует о ее ослаблении в этом ряду. Так, в нитрозопроизводных **1b,d,e** ее длина составляет 1.34 Å, увеличиваясь в соединениях **2b,d,e** до 1.36 Å, в соответствующих производных серий **3** и **4** – до 1.38 Å. Аналогичные изменения были зафиксированы методом PCA, так длина связи N–N в N,N'-динитрозопиперазине (1d) [28] равна 1.34 Å, а в N,N'-динитрозофуразано[3.4-*b*]пиперазине (2d) [29] возрастает до 1.36 Å. В нитропроизводных 1, по данным расчетов, связь N–NO₂ равна 1.40 (1с), 1.42 (1e) и 1.41-1.42 Å (1f), увеличиваясь в соответствующих моно- и далее дифуразаноаннелированных производных до 1.44 (2c), 1.43 (2e) и 1.44 Å (2f). Данные расчетов подтверждаются результатами рентгеноструктурных исследований: так, в N,N'-динитропиперазине (1f) связь N-NO₂ имеет длину 1.37 Å*, а в N,N'-динитрофуразано[3.4-*b*]пиперазине (2f) – 1.38 Å [30].

^{*}Здесь и далее для соединения 1f данные R. Gillardi (частное сообщение) отмечены звездочкой.

Соеди- нение**	$l_{ m N-N},{ m \AA}$	i _{N-N} , %	Δ, град.
1a	_	_	26.63/27.24
1b	1.34	7.2	25.02/0.85
1c	1.40	0	24.64/10.36
1d	1.34	18.3/18.2	0.23/0.36
1e	1.34/1.42	17.5/ 6.3	0.15/11.87
1f	1.42/1.41	9.7/7.9	6.58/10.73
2a	_	-	18.50/18.54
2b	1.36	4.9	18.91/0.41
2c	1.44	0.1	17.55/8.10
2d	1.36	4.2/4.3	0.44/0.49
2e	1.37/1.43	3.4/11.5	0.34/10.18
2f	1.44	-2.5/-0.1	7.94/10.21
3a	_	_	16.77/17.32
3b	1.38	-5.9	16.90/0.02
3c	1.46	-18.1	14.18/15.03
3d	1.38	-6.7/-6.8	0/0.01
3e	1.38/1.46	-7.4/-15.1	0.08/4.94
3f	1.46	-18.6/-18.1	14.26/15.38
4a	-	-	-0.01/0
4b	1.38	-3.3	0.01/0
4c	1.44	-5.7	0.06/1.80
4d	1.38	-5.0/-4.1	0/0.02
4e	1.38/1.44	-4.9/-6.9	0.04/1.70
4f	1.44	-3.4/-2.9	2.77/4.33
5a	-	-	0.11/0.17
5b	1.37	-1.8	0.45/0
5c	1.44	-11.5	15.73/15.73
5d	1.37	-3.3/-3.2	0.63/0.86
5e	1.38/1.44	-3.0/-16.2	0.01/18.50
5f	1.45	-9.0/-9.6	15.02/15.03

Рассчитанные (MNDO-метод) характеристики пространственного строения и индексы изменения прочности [36, 37] связи N-N соединений 1-5*

* $l_{\rm N-N}$ – длина связи N–N; $i_{\rm N-N}$ – индекс изменения прочности связи N–N; Δ – пирамидальность атомов азота (т. е. разность между 360 ° и суммой углов при атоме N пиперазинового цикла). ** **1–5 а–с** $R^1 = H$, **d,e** $R^1 = NO$, **f** $R^1 = NO_2$; **a** $R^2 = H$, **b,d** $R^2 = NO$, **c,e,f** $R^2 = NO_2$.

Расчеты, представленные в табл. 1, позволяют заключить, что и для нитро-, и для нитрозопроизводных введение к атому углерода пиперазинового цикла любой функциональной группы, вовлекающей атом азота этого цикла в процессы сопряжения или невалентные орбитальные взаимодействия, сопровождается удлинением связи N–N и уменьшением ее прочности. Замена каждого фрагмента CH₂–CH₂ пиперазинового цикла на фуразановый цикл также приводит к удлинению связи N–N, в среднем, на 0.02 Å для нитрозопроизводных и на 0.04–0.06 Å для нитропроизводных. Полученные данные и выявленные тенденции согласуются с результатами экспериментальных исследований (1d [28], 1f*, 2d [29], 2f [30], 3a [31]). Сравнение квантово-химических расчетов геометрических параметров молекул в газовой фазе с результатами РСА кристаллов указывает на удлинение (на 1.3–3.6%) связей N–N в газовой фазе по сравнению с твердой.

Рассмотрим такую характеристику пространственного строения соединений как пирамидальность (Δ) (т. е. разность между 360° и суммой валентных углов при атоме N) атома азота пиперазинового цикла. Известно, что в пиперазине и его N-алкильных производных атом азота имеет пирамидальную конфигурацию [32]. В противоположность этому нитрозопиперазины (табл. 1) практически плоские (0–0.9°). Для нитропиперазинов пирамидальность атома азота цикла имеет достаточно отчетливый характер и зависит от структурных вариаций базовой молекулы. Так, угол отклонения связи N–NO₂ нитрогруппы от плоскости C–N–C пиперазинового цикла, который и характеризует пирамидальность атома азота, покрывает интервал от 1.7 (**4e**) до 18.5° (**5e**).

При конденсации фуразанового цикла с пиперазиновым пирамидальность атомов азота, связанных с нитрогруппой, увеличивается (исключение составляют соединения 4) и сопровождается удлинением связи N–NO₂. Следствием этого является уменьшение прочности связи N–N, что соответствует экспериментальным данным по термической стабильности вторичных нитраминов [33–35].

Рассмотрим конформации пиперазинового цикла исследованных серий соединений на примере динитропроизводных. Результаты расчетов геометрии молекул 1 свидетельствуют о том, что пиперазиновый цикл в них имеет конформацию *кресла* (рис. 1). Это согласуется с данными PCA N,N'-динитрозопиперазина (1d) [28] и N,N'-динитропиперазина (1f).

Для соединений **2d,f** наблюдается уплощение пиперазинового цикла и его переход в конформацию *полукресла* **2d** и **2f** (рис. 2).

Результаты РСА соединений 2d [29] и 2f [30] также указывают на то, что в кристаллическом состоянии пиперазиновый цикл в этих соединениях имеет форму *полукресла*.

Соели-	μ, D		Потенциал ионизации, эВ		Δ, эΒ		$\Delta H_{\!f}^0,$ ккал/моль	
нение	MNDO	PM3	MNDO	PM3	MNDO	PM3	РМ3 (МОРАС) (газовая фаза)	Адд. схема (твердая фаза)
1	3	4	5	6	7	8	9	10
1a	2.02	2.04	9.908	9.224	-9.908/2.873 (12.781)	-9.224/2.562 (11.786)	-11.7	-10.9 (-10.9)**
1b	2.40	2.56	10.048	9.629	-10.048/0.512 (10.560)	-9.629/0.313 (9.942)	22.0	5.0
1c	3.97	3.24	10.585	9.854	-10.585/-0.233 (10.352)	-9.854/-0.012 (9.842)	5.8	-7.0
1d	0.02	0.00	10.417	9.956	-10.417/0.278 (10.695)	-9.956/0.042 (9.914)	26.6	22.2
1e	1.73	1.52	10.876	10.210	-10.876/-0.535 (10.341)	-10.210/-0.222 (9.988)	-3.9	8.0
1f	1.59	1.54	11.408	10.912	-11.408/-0.715 (10.693)	-10.912/-0.378 (10.534)	-33.5	-13.2 (-12.7)***
2a	5.01	5.19	9.819	9.502	-9.819/-0.259 (9.560)	-9.502/-0.510 (8.992)	55.0	38.0
2b	4.98	5.01	10.099	9.898	-10.099/-0.685 (9.414)	-9.898/-0.868 (8.982)	82.1	70.0
2c	5.65	5.18	10.570	10.087	-10.570/-1.223 (9.347)	-10.087/-1.082 (9.005)	52.3	59.0

Расчетные характеристики электронного строения и энтальпии образования соединений 1–5 в газовой и твердой фазах*

2d	3.92	3.59	10.371	10.307	-10.307/-0.949 (9.422)	-10.307/-1.225 (9.082)	110.7	105.0
2e	7.15	6.50	10.423	10.030	-10.423/-1.205 (9.218)	-10.030/-1.206 (8.824)	79.3	91.0
2f	4.24	4.00	11.286	10.799	-11.286/-1.675 (9.611)	-10.799/-1.479 (9.320)	84.0	84.0
3 a	1.79	0.99	10.184	9.801	-10.184/-1.261 (8.923)	-9.801/-1.528 (8.273)	130.5	93.4
3b	1.41	1.53	10.335	10.063	-10.335/-1.370 (8.965)	-10.063/-1.640 (8.423)	162.1	135.0
3c	2.99	1.52	10.794	10.128	-10.794/-1.987 (8.807)	-10.128/-1.849 (8.279)	130.3	124.0
3d	0.07	0.06	9.919	9.718	-9.919/-1.042 (8.877)	-9.718/-1.350 (8.368)	194.3	187.0
3e	1.97	0.29	10.933	10.391	-10.933/-2.090 (8.843)	-10.391/-1.988 (8.403)	168.0	173.0
3f	0.39	0.39	11.396	10.490	-11.396/-2.366 (9.030)	-10.490/-1.997 (8.493)	141.3	184.9
4 a	0.07	0.41	10.402	10.130	-10.402/-1.305 (9.097)	-10.130/-1.564 (8.566)	-27.2	-51.3
4b	1.43	1.33	10.707	10.423	-10.707/-1.458 (9.249)	-10.423/-1.640 (8.783)	5.8	-35.2
4c	2.92	1.16	10.976	10.428	-10.976/-1.768 (9.208)	-10.428/-1.829 (8.599)	28.9	-21.1
4d	0.35	0.09	11.016	10.815	-11.016/-1.563 (9.453)	-10.815/-1.628 (9.187)	39.3	-19.0

Окончание таблицы 2

1	3	4	5	6	7	8	9	10
4e	1.76	0.28	11.315	10.851	-11.315/-1.945 (9.370)	-10.851/-1.956 (8.895)	8.2	-34.7
4f	0.28	0.17	11.618	10.886	-11.618/-2.374 (9.244)	-10.886/-2.097 (8.807)	-21.6	-50.4
5a	4.27	3.79	9.771	9.554	-9.771/-0.783 (8.988)	-9.554/-1.118 (8.436)	70.5	82.2
5b	4.99	4.60	10.052	9.831	-10.052/-0.861 (9.191)	-9.831/-1.168 (8.665)	100.2	98.3
5c	5.47	4.33	10.278	9.839	-10.278/-1.449 (8.829)	-9.839/-1.422 (8.417)	70.6	82.6
5d	4.95	4.52	10.374	10.264	-10.374/-1.028 (9.346)	-10.274/-1.259 (9.015)	131.4	114.5
5e	4.79	4.25	10.661	10.362	-10.661/-1.554 (9.107)	-10.362/-1.572 (8.790)	101.3	98.8
5f	4.06	3.92	11.143	10.460	-11.143/-1.801 (9.342)	-10.460/-1.646 (8.814)	76.5	83.1

* μ – дипольный момент; Δ – энергии ВЗМО/НВМО; ΔH_f^0 – энтальпия образования; заряды на атомах (MINDO) приведены на с. 1822, 1823. ** В скобках представлено экспериментальное значение ΔH_f^0 в твердой фазе [26, 40].

*** Значение ΔH_f^0 в твердой фазе [41].

3d

5f

Рис. 1. Пространственное строение молекулы N,N'-динитропиперазина 1f

При введении второго фуразанового цикла в соединениях серии **3** пиперазиновый цикл имеет конформацию *ванны* (**3а,с,f**) или *полукресла* (**3b,e**) (рис. 3). Отметим, что из соединений этой серии известны рентгеноструктурные данные лишь для бисфуразано[3.4-*b*;3'4'-*e*]пиперазина (**3a**) [31], в кристаллическом состоянии вся трициклическая система плоская. Выполненные нами расчеты геометрии молекулы **3d** указывают на то, что в этом соединении трициклическая система плоская (рис. 3*b*).

Рис. 2. Пространственное строение молекул: *a* – N,N'-динитрозофуразано[3,4-*b*]пиперазина **2d**; *b* – N,N'-динитрофуразано[3,4-*b*]пиперазина **2f**

Рис. 3. Пространственное строение молекул: *a* – N,N'-динитробисфуразано-[3,4-*b*;3',4'-*e*]пиперазина **3f**; *b* – N,N'-динитрозобисфуразано[3,4-*b*;3',4'-*e*]пиперазина **3d**

В соединениях серии **4a,b** фуразановый и пиперазиновый циклы, а также оба карбонильных атома кислорода находятся в одной плоскости. Наличие нитро- и нитрозогрупп в молекулах **4c**-**f** (рис. 4) приводит к незначительному искажению *твист*-конформации пиперазинового фрагмента. При этом двугранные углы O=C-C=O последовательно увеличиваются в ряду: **4c** (4.8°) < **4d** (5.1°) < **4e** (15.2°) < **4f** (23.6°).

Замена карбонильных атомов кислорода (серия 4) гидроксииминными группами (серия 5) приводит к значительному искажению геометрии молекул. Так, в серии 5 плоской оказалась только структура 5а, не содержащая заместителей при обоих атомах азота пиперазинового цикла. Все нитро- и нитрозопроизводные этой серии имеют *твист*-конформацию пиперазинового цикла. Гидроксииминные группировки *скошены* по отношению к друг другу на 9.5 (5b), 41.5 (5c), 57.4 (5d), 33.0 (5e), 60.1° (5f, рис. 5).

Рис. 4. Пространственное строение молекулы N,N'-динитро-5,6-диоксофуразано[3,4-*b*]-пиперазина **4f**

Рис. 5. Пространственное строение молекулы N,N'-динитро-5,6-дигидроксиминофуразано[3,4-*b*]пиперазина **5**f

Валентный угол O–N–N нитрозогруппы исследованных нитрозопроизводных находится в пределах $117.9-119.0^{\circ}$. Валентный угол O–N–O нитропроизводных **1с,е,f** меняется от 119.4 до 122.2°, в **2с,е,f** – от 127.7 до 121.8°, в **3с,е,f** – от 125.1 до 127.5°, в **4с,е,f** – от 123.7 до 125.0°, а в **5с,е,f** – от 123.3 до 124.1°. Эти данные могут быть использованы при квантовохимических расчетах пространственного строения и оценке некоторых физико-химических свойств однотипных соединений без выполнения процедуры полной оптимизации геометрических параметров, что существенно сокращает затраты на выполнение расчетов. Отметим, что варьирование заместителей (H, NO, NO₂) у атомов азота пиперазинового цикла не влияет на длины связей и валентные углы гетероцикличеких каркасов молекул (рис. 6).

Сопоставив результаты оптимизации геометриического строения исследуемых соединений, можем заключить, что конформация *кресла* является наиболее выгодной для пиперазинового фрагмента. При аннелировании с фуразановым пиперазиновый цикл уплощается.

На рис. 6 представлены средние рассчитанные значения внутримолекулярных параметров базовых каркасов молекул серий 1–5.

Электронное строение соединений

Нами выполнены квантово-химические расчеты параметров электронного строения соединений: зарядов на атомах азота цикла, дипольных моментов молекул, потенциалов ионизации, энергий граничных молекулярных орбиталей (ВЗМО и НСМО) и энергетической щели между ними (Δ), а также энтальпий образования соединений в газовой и твердой фазах (табл. 2).

Из полученных результатов следует, что введение в молекулы исследованных соединений нитрозогрупп увеличивает электронную плотность на атоме N пиперазинового цикла. В среднем для соединений рассмотренных серий "прирост" электронной плотности на атоме N цикла по сравнению с электронной плотностью соответствующего атома в

Рис.6. Средние значения длин связей и валентных углов молекул в соединениях 1-5

пиперазине (1a) составляет в 1 - 0.080, для серии 2 - 0.082, для 3 - 0.097, для 4 - 0.023, а в соединениях серии 5 - 0.048. Введение нитрогрупп приводит к увеличению отрицательного заряда на связанном с ней атоме азота в соединениях 1 на 0.026 и в 4 - на 0.013. Для соединений остальных серий, напротив, наблюдается понижение заряда на этом атоме – в серии 2 на 0.013, в 3 на 0.027, а в соединениях 5 на 0.035.

Аннелирование с акцепторным фуразановым циклом моно- и динитрозопроизводных пиперазина **2с,е,f** приводит к делокализации отрицательного заряда на атоме азота пиперазинового цикла и уменьшению его, в среднем, на 0.077. Для мононитропроизводных это уменьшение составляет 0.125, а в динитропроизводных – 0.110. Переход к бисфуразанопиперазинам **3** уменьшает отрицательный заряд на атоме азота пиперазинового цикла в нитрозосоединениях еще на 0.086 по сравнению с соответствующими соединениями серии **2** и на 0.114 в нитропроизводных.

Введение карбонильных групп в пиперазиновый цикл пиперазинофуразанов 2 повышает электронную плотность на атоме азота пиперазинового цикла как для моно-, так и для динитрозопроизводных на 0.010, тогда как для моно- и динитропроизводных (серия 4) прирост составляет 0.096.

Электронная плотность на пиперазиновом атоме азота в дигидроксииминах 5 ниже, чем в соединениях группы 2, для нитропроизводных на 0.034, а для нитрозопроизводных на 0.041.

Рассмотрим вычисленные значения μ как интегральной характеристики полярности молекул. Введение одной группы NO или NO₂ увеличивает дипольный момент молекул (табл. 2), исключение составляют соединения **2b** и **3b** (расчеты MNDO). Введение двух одинаковых (либо нитро-, либо нитрозогрупп) заместителей понижает μ молекул (за исключением соединений **4d**,**f** и **5d**).

Согласно полученным результатам, дикетоны 4 менее полярны, чем пиперазины 1, диоксимы 5 менее полярны, чем моноаннелированные соединения 2, но более полярны, чем дианнеллированные 3.

Результаты расчетов потенциалов ионизации, граничных молекулярных орбиталей (ВЗМО и НСМО) и энергетической щели (Δ) между МО (табл. **2**) свидетельствуют о том, что конденсация пиперазинового цикла к фуразановому не влияет на потенциал ионизации, но уменьшает Δ между граничными орбиталями в нитрозопроизводных на 1.210, по данным расчетов методами МNDO, и 0.896 эВ – РМЗ. В нитро-производных Δ равна, соответственно, 1.044 и 1.026 эВ. Введение второго фуразанового цикла дополнительно усиливает этот эффект, в среднем, на 0.542 (MNDO) и 0.706 эВ (РМЗ).

Для диоксопроизводных **4** Δ между B3MO и HCMO меньше Δ в фуразано[3,4-*b*]пиперазинах **2**, в среднем, на 1.287 (MNDO) и 1.214 (PM3), а для дигидроксииминов **5** – на 1.398 (MNDO) и 1.330 эВ (PM3). Эти данные могут быть полезны для анализа реакционной способности изученных соединений в зярядово- и орбитально-контролируемых реакциях.

Термохимические характеристики производных пиперазина и их взаимосвязь со строением соединений

Прочность химических связей. Для оценки термохимических характеристик производных пиперазина были рассчитаны энтальпии образования, а также индексы прочности [36, 37] связи N–N, отражающие изменения относительной термодинамической устойчивости соединений при структурных изменениях в молекулах.

Термический распад большинства N-нитро- [13–15] и N-нитрозоаминов [15, 16] начинается с гомолитического разрыва связи N–N, поэтому рассматривалась именно эта связь. Индексы изменения прочности связи N–N в нитро- и нитрозопроизводных 1–5, рассчитывались по формуле:

$$i_{\rm N-N} = \frac{E_{\rm N-N} - E_{\rm N-N} ({\rm эталон})}{E_{\rm N-N} ({\rm эталон})} \times 100\%,$$

где E_{N-N} – двухцентровая компонента полной энергии [23] химической связи. В качестве "эталона" (0%) выбрана прочность связи N–N в N-нитропиперазине (1c).

Результаты расчетов (табл. 1) свидетельствуют, что N-нитрозопроизводные более устойчивы, чем соответствующие N-нитропроизводные. В соединениях 1–5 наиболее прочной является связь N–N в моноциклических пиперазинах (серия 1). При аннелировании с фуразановым циклом связи N–NO₂ и N–NO становятся менее прочными (серия 2), что еще более заметно при введении второго фуразанового кольца (серия 3). Такое изменение прочности связи N–N при введении в систему акцепторных фуразановых фрагментов можно объяснить делокализацией электронов неподеленных электронных пар атомов азота пиперазинового цикла.

Анализ расчетов индексов прочности связи N–N в соединениях групп 4 и 5 указывает на то, что прочность связи группы NO с атомом N цикла выше прочности аналогичной связи группы NO₂. Моно- и динитрозопроизводные серии 4 менее устойчивы, чем соединения серии 5. Для моно- и динитропроизводных эта зависимость имеет обратный характер.

Энтальпии образования (ΔH_f^0). Как указывалось выше, оценка энтальпий образования соединений в газовой фазе проводилась полуэмпирическим методом РМЗ, а в твердой фазе – с использованием аддитивных схем [25–27].

Сопоставляя результаты расчетов ΔH_f^0 (табл. 2), можем отметить, что при переходе от соединений серии 1 к соединениям серии 2, т. е. при конденсации с фуразановым циклом, как для мононитрозо-, так и для мононитропроизводных пиперазина наблюдается увеличение ΔH_f^0 примерно на 46–60 (в газовой) и 65–66 ккал/моль (в твердой фазах). Введение в молекулу второго фуразанового фрагмента дополнительно увеличивает ΔH_f^0 на 78–80 (для газа) и 65 ккал/моль (для твердой фазы). Для динитрозопроизводных пиперазина увеличение энтальпии образования при каждом аннелировании с фуразановым циклом составляет 82–84 ккал/моль, как для газа, так и для твердого вещества. Для динитропроизводных аналогичный прирост еще выше – в твердой фазе до 100 ккал/моль, а в газовой фазе – при введении первого фуразанового цикла ΔH_f^0 повышается на 117 ккал/моль, а при конденсации со вторым фуразановым фрагментом прирост энтальпии образования составляет 57 ккал/моль. Введение карбонильных заместителей в соединения серии **2** понижает энтальпии их образования, как в газообразном, так и в твердом состоянии в широком диапазоне: от 23 до 106 ккал/моль (газ) и от 80 до 134 ккал/моль (твердая фаза). Модификация фуразано[3,4-*b*]пипаразинов **2** в дигидроксиимины серии **5** повышает энтальпию образования мононитрозо- и мононитропроизводных на 18 (газ) и 24–28 ккал/моль (твердая фаза). В динитрозопроизводных повышение ΔH_f^0 для твердой фазы составляет ~10 ккал/моль, а для газовой – 20 ккал/моль. Энтальпия образования динитропроизводных в твердой фазе практически не меняется, а в газовой понижается на 7 ккал/моль.

Таким образом, энтальпия образования N-нитропроизводных в сериях 1–5 ниже, чем соответствующих N-нитрозопроизводных. Введение второй группы NO в молекулу мононитропроизводного увеличивает энтальпии образования соединений 1–5. Эти результаты, в целом, соответствуют некоторым из имеющихся экспериментальных данных [15, 20].

Энтальпии реакций гомолитического распада (ΔH_p). Для сравнительной оценки термодинамической устойчивости соединений рассматривались энтальпии реакций их гомолитического разложения, рассчитанные методом функционала плотности DFT B3LYP в базисе 6–31 G^{*}:

$$\Delta H_{\rm p} = \sum \Delta H^0_{\rm прод.} - \sum \Delta H^0_{\rm ucx. \ Beull.}$$

Для нейтральных молекул расчеты выполнялись на основе ограниченного метода Хартри–Фока (RHF), а для радикалов – с использованием неограниченного метода Хартри–Фока (UHF) [38]. В качестве наиболее вероятного пути распада выбран гомолитический разрыв связи N–N с образованием двух радикалов [15]. Реакции распада и соответствующие им значения (ΔH_p) производных пиперазина **1** представлены на схеме 1.

Для соединения **1f** экспериментальное [39] значение энтальпии реакции разрыва связи N–N составляет 38.2 ккал/моль, что близко к рассчитанному нами значению $\Delta H_p = 40.69$ ккал/моль).

Нитропроизводные пиперазина менее устойчивы (реакции (3), (4), схема 1), чем их нитрозоаналоги (реакции (1), (2)). Различие в энтальпиях реакций гомолиза составляет ~2 ккал/моль. N-Нитропиперазин (1c) и соединение 1f мало различаются по устойчивости, что справедливо и для нитрозопроизводных 1b и 1d. Для N-нитрозо-N'-нитропиперазина (1e), в принципе, возможны два варианта распада (реакции (5) и (6), схема 1). Представленные на схеме 1 данные показывают, что наиболее вероятен отрыв группы NO₂.

Схема 1*

Здесь и далее приведенные на схемах над стрелками значения измерены в ккал/моль

Пути распада производных фуразанопиперазина 2 представлены на схеме 2.

Различие энтальпий реакций распада нитрозо- и нитропроизводных фуразано[3,4-*b*]пиперазина составляет ~4 ккал/моль. Как и для производных пиперазина, нитропроизводные этой серии менее устойчивы, чем нитрозопроизводные. Для N-нитрозо-N'-нитрофуразано[3,4-*b*]пиперазина (**2e**) наиболее выгоден распад с отрывом нитрогруппы (реакции (11) и (12), схема 2). Заметим, что введение фуразанового фрагмента в произ-водные пиперазина понижает устойчивость нитрозопроизводных в 1.5, а нитропроизводных – в 1.7 раза.

Вероятные первичные реакции распада соединений группы **3** (производные бисфуразано[3,4-*b*;3',4'-*e*]пиперазина) и характеризующие их энтальпии представлены на схеме 3.

Для соединений **3** наблюдается заметное различие в термодинамической устойчивости нитро- и нитрозопроизводных, причем последние соединения устойчивее. Разница энтальпий в реакциях распада этих соединений составляет ~5 ккал/моль. Так, N-нитрозобисфуразано[3,4-*b*;3',4'-*e*]-пиперазин (**3b**) более устойчив ($\Delta H_p = 11.91$ ккал/моль), чем соответствующее мононитропроизводное **3c** ($\Delta H_p = 6.73$ ккал/моль). N,N'-Динитрозобисфуразано[3,4-*b*;3',4'-*e*]пиперазин (**3d**) ($\Delta H_p = 14.04$ ккал/моль устойчивее динитропроизводного (**3f**) с $\Delta H_p = 9.02$ ккал/моль. Для N-нитро-N'-нитрозобисфуразано[3,4-*b*;3',4'-*e*]пиперазина (**3e**) наиболее вероятен первичный разрыв связи N–NO₂ (реакция (18), схема 3).

Схема 2

Введение второго фуразанового фрагмента в 2–2.5 раза понижает устойчивость N-нитрозо-, N,N'-динитрозо- и N,N'-динитропроизводных. Энтальпия реакции гомолитического разложения N-нитробисфуразано-[3,4-*b*;3',4'-*e*]пиперазина **3b** (реакция (15), схема 3) ниже в 3.6 раза энтальпии реакции соответствующего производного N-нитрофуразано[3,4-*b*]- пиперазина **2c** (реакция (9), схема 2).

Схема 3

Результаты оценки энтальпий ΔH_p соединений **4** (схема 4) показывают, что N-нитрозо-5,6-диоксофуразано[3,4-*b*]пиперазин (**4b**) устойчивее ($\Delta H_p = 23.82$ ккал/моль) соответствующего N-нитропроизводного (**4c**) с $\Delta H_p = 20.35$ ккал/моль.

Схема 4

Как и в случае соединений серий 1–3, нитрозопроизводные серии 4 устойчивее нитропроизводных. Заметим, что введение в структуру нитрои нитрозопроизводных фуразанопиперазина 2 двух карбонильных атомов кислорода понижает устойчивость соответствующих молекул 4 в реакциях разложения, однако не столь сильно, как введение второго фуразанового кольца (соединения серии 3).

Сравнение результатов расчетов энтальпий реакций гомолитического разложения соединений серий **5** и **3** позволяет заключить, что введение в молекулы нитро- и нитрозофуразанопиперазинов двух групп NOH вместо фуразанового цикла существенно понижает ΔH_p . Так, соединения **5b** (схема 5, реакция (21)) и **5c** (реакция (22)) менее устойчивы, чем соответствующие производные бисфуразано[3,4-*b*;3',4'-*e*]пиперазина (реакции (13) и (15), схема 3).

Схема 5

1837

На основании анализа первой стадии реакции распада исследуемых соединений можно сделать вывод о том, что введение в систему нитро- и нитрозопроизводных пиперазина 1 фуразанового фрагмента (серия 2) понижает их термодинамическую устойчивость в реакциях распада. Аннелирование со вторым фуразановым кольцом еще более снижает устойчивость этих соединений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. А. Орлова. Химия и технология бризантных взрывчатых веществ, Химия, Ленинград, 1980.
- 2. G. A. Olah, R. Squire, in *Chemistry of Energetic Materials*, G. A. Olah (Ed.), Acad. Press, San Diego, 1991, p. 212.
- 3. J. Kohler, R. Meyer, Explosives. 4 rev. and extended ed., Weinheim: VCH, 1993, 457 p.
- 4. P. L. Marinkas, in *Organic Energetic Compounds*, P. L. Marinkas (Ed.), Nova Sci. Publ. Inc., New York, 1996, p. 425.
- 5. Энергетические конденсированные системы, под ред. Б. П. Жукова, изд. 2-е, Янус-К, Москва, 2000.
- A. A. Porollo, D. E. Lushnikov, T. S. Pivina, V. P. Ivshin, J. Mol. Struct. (THEOCHEM), 391, 117 (1997).
- M. S. Molchanova, T. S. Pivina, E. A. Arnautova, N. S. Zefirov, J. Mol. Struct. (THEOCHEM), 465, 11 (1999).
- 8. R. L. Willer, Propellants, Explosives, Pyrotech., 8, 65 (1983).
- 9. Hu Rongzu, Sun Lixia, Fu Xiayun, Liang Yanjun, Wu Shanxiang, Wang Yuan, *Thermochim. Acta*, **171**, 31 (1990).
- M. Vedachalam, V. T. Ramakrishnan, J. H. Boyer, I. J. Dagley, K. A. Nelson, H. G. Adolph, R. Gilardi, C. George, J. L. Flippen-Anderson, J. Org. Chem., 56, 3413 (1991).
- A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, D. J. Vanderah, R. D. Gilardi, C. F. George, J. L. Flippen-Anderson, *Tetrahedron*, 54, 11793 (1998).
- 12. R. L. Willer, D. W. Moove, J. Org. Chem., 50, 5123 (1985).
- 13. J. M. Burov, G. M. Nazin, in *Proceedings of the Theory and Practice of Energetic Materials*, Shenzhen, China, 1997.
- 14. Ch. K. Lowe-Ma, J. W. Fischer, R. L. Willer, Acta Crystallogr., C46, 1853 (1990).
- 15. Г. Б. Манелис, Г. М. Назин, Ю. И. Рубцов, В. А. Струнин, *Термическое разложение и горение взрывчатых веществ и порохов*, Наука, Москва, 1996.
- О. Ф. Голованова, Г. В. Ситонина, В. И. Пепекин, Б. Л. Корсунский, Ф. И. Дубовицкий, Изв. АН СССР. Сер. хим., 1012 (1988).
- 17. В. П. Ившин, А. А. Поролло, Т. С. Пивина, в кн. Структура и динамика молекулярных систем, Химия, Москва, 1998, с. 8.
- Yu. N. Surikova, T. S. Pivina, A. B. Sheremetev, I. L. Yudin, N. Shubina, V. L. Korolev, V. P. Ivshin, in *Proc. 33rd Intern. Ann. Conf. ICT - Energetic Materials: Synthesis, Production, and Application.*, June 25–June 28, Karlsruhe, Germany, 2002, p. 59/1–7.
- М. Ю. Антипин, А. Б. Шереметев, Б. Б. Аверкиев, в сб. Энергетические конденсированные системы, Всероссийская конференция, 28–31 октября 2002, Черноголовка, Янус-К, Москва, 2002, с. 7.
- A. B. Sheremetev, I. L. Yudin, N. S. Aleksandrova, S. M. Aronova, I. A. Kryazhevskikh, in Proc. 34th Intern. Ann. Conf. ICT – Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, June 24–June 27, Karlsruhe, Germany, 2003, p. 101/1.
- 21. T. B. Brill, T. B. Patil, Termochim. Acta, 235, 225 (1994).
- 22. А. Б. Шереметев, И. Л. Юдин, Успехи химии, 72, 93 (2003).
- 23. Т. Кларк, Компьютерная химия, Мир, Москва, 1990, 383 с. [T. Clark, A Handbook of Computational Chemistry, J. Wiley and Sons, New York, 1985].
- 24. Р. Щепин, Д. Литвинов, WinMOPAC 7.21.

25. Е. А. Мирошниченко, В. П. Лебедев, Ю. Н. Матюшин, А. Б. Воробьев, 1838

Я. О. Иноземцев, В. Н. Воробьева, Хим. физ., 21, № 6, 8 (2002).

- 26. J. B. Pedley, R. D. Naylor, C. P. Kirby, *Thermochemical Data of Organic Compounds*, Chapman and Hall, London, New York, 1986.
- 27. Ю. Н. Матюшин, В. И. Пепекин, Ю. А. Лебедев, Изв. АН СССР. Сер. хим., 1786 (1974).
- 28. K. Sekido, K. Okamoto, S. Hirokawa, Acta Crystallogr., C41, 741 (1985).
- 29. C. K. Lowe-Ma, J. W. Fischer, R. L. Willer, Acta Crystallogr., C46, 1853 (1990).
- 30. Y. Oyumi, A. L. Rheingold, T. B. Brill, J. Phys. Chem., 90, 4686 (1986).
- 31. И. Б. Старченков, В. Г. Андрианов, А. Ф. Мишнев, ХГС, 250 (1997).
- Р. Гиллеспи, И. Харгиттаи, Модель отталкивания электронных пар валентной оболочки и строение молекул, Мир, Москва, 1992.
- 33. T. B. Brill, Y. Oyumi, J. Phys. Chem., 90, 2679 (1986).
- 34. Г. М. Назин, В. Г. Прокудин, Г. Б. Манелис, Изв. АН. Сер. хим., 231 (2000).
- 35. Ю. Шу, Б. Л. Корсунский, Г. М. Назин, Усп. химии, 73, 320 (2004).
- 36. N. D. Chuvylkin, G. M. Zhidomirov, V. B. Kazansky, J. Catal., 38, 214 (1975).
- 37. Л. И. Беленький, Н. Д.Чувылкин, ХГС, 1535 (1996).
- Программный комплекс "Gaussian-98" Центра компьютерного обеспечения химических исследований РАН.
- 39. Ю. М. Буров, Г. Н. Назин, Кинетика и катализ, 23, 12 (1982).
- 40. J. D. Cox, G. Pilcher, *Thermochemistry of Organic and Organometallic Compounds*, Acad. Press, London, 1970.
- 41. В. И. Пепекин, М. Н. Махов, Ю. А. Лебедев, ДАН СССР, 232, 852 (1977).

Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991 e-mail: tsp@ioc.ac.ru Поступило в редакцию 29.07.2004

^а Марийский государственный университет, Йошкар-Ола 424000, Россия

⁶ Институт химической физики им. Н. Н. Семенова РАН, Москва 117977