Е. А. Кайгородова, В. К. Василин, М. М. Липунов, В. Е. Заводник, Г. Д. Крапивин

СИНТЕЗ И СВОЙСТВА (ТИЕНО[2,3-*b*]ПИРИДИН-3-ИЛ)ИМИНОТРИФЕНИЛФОСФОРАНОВ. МОЛЕКУЛЯРНАЯ СТРУКТУРА (2-БЕНЗОИЛ-6-МЕТИЛ-4-МЕТОКСИМЕТИЛТИЕНО[2,3-*b*]-ПИРИДИН-3-ИЛ)ИМИНОТРИФЕНИЛФОСФОРАНА

Иминофосфораны, содержащие тиено[2,3-*b*]пиридиновый фрагмент, получены рядом последовательных превращений: 1) алкилирование 3-циано-2(1Н)-пиридинтионов в щелочной среде α-галогенкарбонильными соединениями с последующей циклизацией полученных 2-тиоалкил-3-цианопиридинов по Торпу–Циглеру в 3-аминотиено[2,3-*b*]пиридины; 2) диазотирование аминогруппы и нуклеофильное замещение диазониевой группировки на азидогруппу, минуя стадию выделения диазониевых солей; 3) взаимодействие 3-азидотиено[2,3-*b*]пиридинов с трифенилфосфином.

Ключевые слова: 3-азидотиено[2,3-*b*]пиридины, 3-аминотиено[2,3-*b*]пиридины, (тиено[2,3-*b*]-пиридинил-3)-иминотрифенилфосфораны, 3-циано-2(1Н)-пиридинтионы, молекулярная структура, синтез.

Иминофосфораны в силу их электронного строения являются перспективными интермедиатами в синтезе большого числа соединений, принадлежащих различным классам органических веществ [1–3]. Целью настоящей работы являются направленный синтез иминофосфоранов тиено[2,3-*b*]пиридинового ряда, данные о которых в литературе отсутствуют, и исследование их физико-химических свойств.

В качестве исходных веществ для получения (тиено[2,3-*b*]пиридин-3-ил)иминотрифенилфосфоранов использовали пиридинтион 1, производные α-галогенуксусной кислоты **2а**–**d** и фенацилбромид **2е**.

Взаимодействие пиридинтиона 1 с α -галогенкарбонильными соединениями **2а–е** проводили в присутствии двухкратного количества КОН для связывания выделяющегося галогеноводорода и обеспечения изомеризации по Торпу–Циглеру промежуточных S-алкилпроизводных **3а–е** в 3-аминотиено[2,3-*b*]пиридины **4а–е**.

3-Аминотиено[2,3-*b*]пиридины **4** – ярко-желтые кристаллы, хорошо растворимые в полярных растворителях (табл. 1). Соединения **4a** и **4e** получены нами ранее, некоторые их свойства описаны соответственно в работах [4, 5].

Таблица 1 1853

Со- еди-	Брутто-	<u>I</u> Bi	<u>Найдено, 9</u> ычислено,	<u>%</u>	Т. пл., (т. разл.)	УФ спектр, λ_{max} , нм	Вы- хол.
не- ние	формула	С	Н	Ν	°C	(lg ε)	%
4a	$C_{13}H_{16}N_2O_3S$	<u>55.68</u> 55.70	<u>5.76</u> 5.75	<u>9.95</u> 9.99	147.5–148	208 (4.35), 240 (4.05), 288 (4.61), 373 (3.81)	78
4b	$C_{25}H_{25}N_3O_2S$	<u>69.53</u> 69.58	<u>5.84</u> 5.84	<u>9.70</u> 9.74	128–129	207 (4.56), 243 (3.93), 293 (3.27), 367 (3.59)	69
4c	$C_{23}H_{21}N_3O_2S$	<u>68.64</u> 68.46	<u>5.24</u> 5.25	<u>10.39</u> 10.41	187–188	207 (4.62), 298 (4.28), 393 (3.91)	90
4d	$C_{15}H_{19}N_3O_3S$	<u>56.02</u> 56.06	<u>5.94</u> 5.96	<u>13.05</u> 13.07	157–158	207 (4.33), 242 (3.95), 290 (4.27), 366 (3.61)	71
4e	$C_{17}H_{16}N_2O_2S$	<u>65.31</u> 65.36	<u>5.13</u> 5.16	<u>8.93</u> 8.97	137–138	212 (4.44), 283 (4.23), 311 (4.40), 415 (4.05)	92
6a	$C_{13}H_{14}N_4O_3S$	<u>50.97</u> 50.93	<u>4.61</u> 4.58	<u>18.29</u> 18.22	(118–119)	_	82
6b	$C_{25}H_{23}N_5O_2S$	<u>65.63</u> 65.59	<u>5.07</u> 5.00	<u>15.31</u> 15.27	56–58	_	82
6c	$C_{23}H_{19}N_5O_2S$	<u>64.32</u> 64.27	<u>4.46</u> 4.43	<u>16.31</u> 16.30	(177–178)		97
6d	$C_{15}H_{17}N_5O_3S$	<u>51.86</u> 51.85	<u>4.93</u> 4.91	<u>20.16</u> 20.14	(138–139)	_	50
6e	$C_{17}H_{14}N_4O_2S$	<u>60.28</u> 60.34	<u>4.17</u> 4.20	<u>16.49</u> 16.56	115–117		74
7a	$C_{31}H_{29}N_2O_3PS$	<u>68.82</u> 68.87	<u>5.38</u> 5.41	<u>5.14</u> 5.18	235–236	208 (4.83), 246 (4.32), 286 (4.37), 388 (3.99)	69
7b	$C_{43}H_{38}N_3O_2S$	<u>74.66</u> 74.65	<u>5.50</u> 5.54	<u>6.03</u> 6.07	214–215	209 (4.97), 217 (4.42), 340 (3.76)	47
7c	$C_{41}H_{34}N_3O_2PS$	<u>74.16</u> 74.19	<u>5.15</u> 5.16	<u>6.29</u> 6.33	289–290	206 (4.80), 250 (4.77), 394 (3.83)	72
7d	C ₃₃ H ₃₂ N ₃ O ₃ PS	<u>68.13</u> 68.14	<u>5.52</u> 5.54	<u>7.19</u> 7.22	238–239	208 (4.89), 263 (4.39), 340 (3.82)	64
7e	$C_{35}H_{29}N_2O_2PS$	<u>73.38</u> 73.41	<u>5.10</u> 5.10	<u>4.86</u> 4.89	215–216	208 (4.85), 280 (4.23), 322 (4.15), 442 (3.86)	56

Физико-химические характеристики 3-аминотиено[2,3-*b*]пиридинов 4а–е, 3-азидотиено[2,3-*b*]пиридинов 6а–е и (тиено[2,3-*b*]пиридин-3-ил)иминотрифенилфосфоранов 7а–е

2–4 а R = OEt, **b** R = N(CH₂Ph)₂, **c** R = NPh₂, **d** R = морфолино, **e** R = Ph; **a**, **e** X = Br, **b–d** X = Cl

Строение 3-аминотиено[2,3-*b*]пиридинов подтверждено данными ИК, УФ и ЯМР ¹Н спектров (табл. 2). В ИК спектрах веществ **4а**–е отсутствуют полосы поглощения нитрильной группы при 2210 и тиоамид-ной группы при 1215 см⁻¹, характерные для исходного пиридинтиона **1**, и имеются две полосы поглощения валентных колебаний связи N–H аминогруппы при 3465–3400 и 3330–3255 см⁻¹, а также полоса валентных колебаний сопряженной карбонильной группы эфира **4a** при 1660, амидов **4b–d** в области 1600–1590 и кетона **4e** при 1595 см⁻¹. В спектрах ЯМР ¹H соединений **4а–е** присутствуют сигналы всех групп протонов, причем уширенный синглет аминогруппы наблюдается в диапазоне 6.13–8.12 м. д.

Реакцию диазотирования 3-аминотиено[2,3-*b*]пиридинов **4а**–е проводили в среде уксусной кислоты в присутствии конц. H₂SO₄. Диазониевые соли **5а–е**, полученные в растворе, сразу после освобождения от избытка азотистой кислоты вводили в реакцию нуклеофильного замещения с азидом натрия.

5, 6 a R = OEt, b $R = N(CH_2Ph)_2$, c $R = NPh_2$, d $R = N(CH_2CH_2)_2O$, e R = Ph

Таблица 2

Соели	ИК спектр, v, см ⁻¹			Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)				
нение	C=O	NH ₂ (N ₃)	С-О-С	CH ₃ (3H, c)	O–CH ₃ (3H, c)	O–CH ₂ (2H, c)	Н _{Ру} (1Н, с)	другие сигналы
4a	1660	3420, 3330	1275*, 1190*, 1120	2.56	3.41	4.82	7.20	1.32 (3H, т, <i>J</i> = 7.2, CH ₂ CH ₃); 4.30 (2H, кв, <i>J</i> = 7.2, <u>CH</u> ₂ CH ₃); 6.92 (2H, уш. с, NH ₂)
4b	1595	3400, 3305	1145, 1100, 1070	2.80	3.43	4.81	7.08	4.71 (4H, c, N–CH ₂); 7.25–7.35 (10H, м, 2C ₆ H ₅); 6.62 (2H, уш. c, NH ₂)
4c	1600	3410, 3310	1110, 1070	2.50	3.40	4.80	7.14	7.20–7.44 (10Н, м, 2C ₆ H ₅); 7.25 (2Н, уш. с, NH ₂)
4d	1590	3420, 3310	1120, 1090, 1065	2.58	3.41	4.79	7.10	3.65–3.70 (8Н, м, морфолино); 6.13 (2Н, уш. с, NH ₂)
4 e	1595	3465, 3255	1095	2.66	3.45	4.80	7.0	7.27–7.89 (5H, м, C ₆ H ₅); 8.12 (2H, уш. с, NH ₂)
6a	1720	(2130)	1280*, 1190*, 1130, 1100, 1050	2.55	3.41	4.88		1.38 (3H, т, <i>J</i> = 7.2, CH ₂ CH ₃); 4.27 (2H, кв, <i>J</i> = 7.2, <u>CH</u> ₂ CH ₃)
6b	1620	(2115)	1120, 1085	2.59	3.52	4.93		4.67 (4H, с, N–CH ₂); 7.20–7.36 (11H, м, H _{Py} ,C ₆ H ₅)
6c	1635	(2120)	1120, 1090	2.54	3.46	4.92	7.22–7.45 (11H, м, H _{Ру} , C ₆ H ₅)	

Спектральные характеристики синтезированных соединений

1856

6d	1625	(2115)	1120, 1070	2.64	3.51	4.94	7.33	3.66–3.70 (8Н, м, ОСН ₂ , NCH ₂)
6e	1625	(2110)	1110	2.50	3.38	4.76	7.26	7.07–7.62 (5Н, м, C ₆ H ₅)
7a	1680	-	1255*, 1170*, 1120, 1080	2.50	3.08	4.86	7.18	0.79 (3H, т, <i>J</i> = 7.2, OCH <u>2CH</u> 3); 3.55 (2H, кв, <i>J</i> = 7,2, O <u>CH</u> 2CH3); 7.48–7.62 (15H, м, C ₆ H5)
7b	1620	-	1100, 1080	2.50	3.10	4.87		4.08 (4H, c, N–CH ₂); 7.00–7.67 (26H, м, H _{Py} , C ₆ H ₅)
7c	1640	-	1120, 1070	2.47	3.21	5.04		6.67–7.69 (26Н, м, Н _{Ру} , С ₆ Н ₅)
7 d	1605	-	1115, 1085	2.55	3.20	4.99	7.15	3.05 (4H, c, N–CH ₂); 3.42 (4H, c, O–CH ₂); 7.44–7.64 (15H, м, C ₆ H ₅)
7e	1600	-	1120, 1080	2.53	3.15	4.96		6.87–7.85 (21Н, м, Н _{Ру} , С ₆ Н ₅)

* Полосы поглощения С-О-С сложного эфира.

Полученные 3-азидотиено[2,3-*b*]пиридины **6а**–**е** – бесцветные или светло-желтые вещества, разлагающиеся при хранении (табл. 1).

Наиболее информативными для установления структуры 3-азидотиено[2,3-*b*]пиридинов **6** явились данные ИК спектров (табл. 2). Замещение аминогруппы в положении 3 тиено[2,3-*b*]пиридинов **4** на азидную приводит к исчезновению в ИК спектрах двух полос валентных колебаний связи N–H, смещению полос поглощения карбонильной группы в высокочастотную область: у эфира **6a** – на 60, амидов **6b–d** – на 25–65, кетона **6e** – на 30 см⁻¹, а также появлению характеристичной полосы поглощения азидогруппы при 2130–2110 см⁻¹. В спектрах ЯМР ¹Н азидов **6** в сравнении с таковыми для исходных тиенопиридинов **4** отсутствует сигнал протонов аминогруппы (табл. 2).

Взаимодействие 3-азидотиено[2,3-*b*]пиридинов **6** с трифенилфосфином проводили в бензоле. Реакция сопровождается выделением азота из реакционной смеси. Окончание реакции удобно контролировать по прекращению выделения азота.

7 a R = OEt, b R = N(CH₂Ph)₂, c R = NPh₂, d R = N(CH₂CH₂)₂O, e R = Ph

Синтезированные иминофосфораны **7а,с,е** – желтые, а **7b,d** – бесцветные высокоплавкие кристаллические вещества (табл. 1). Наличие гетероароматического заместителя при атоме азота трифенилиминофосфоранов **7** обеспечивает их устойчивость к действию воды. Соединения **7** не растворяются в алканах, диэтиловом эфире, умеренно растворимы в спирте, растворимы в ДМФА и ДМСО.

В ИК спектрах иминофосфоранов 7 (табл. 2) по сравнению со спектрами соответствующих азидов отмечены отсутствие полос поглощения азидогруппы и усиление интенсивности валентных колебаний связи С– H_{Ar} . Структура иминофосфоранов 7 подтверждена данными спектров ЯМР ¹Н (табл. 2).

Проведено рентгеноструктурное исследование иминофосфорана 7е, имею-щего в положении 2 тиофенового цикла бензоильный заместитель (рисунок, табл. 3 и 4).

Проекция пространственной структуры молекулы соединения 7

Таблица З

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
S(1)–C(3)	1.723(3)	C(12)–C(13)	1.378(4)
S(1)-C(2)	1.763(3)	C(13) –C(14)	1.373(4)
P(1)–N(2)	1.575(2)	C(14)–C(15)	1.365(5)
P(1)-C(24)	1.799(3)	C(15)–C(16)	1.357(5)
P(1)-C(30)	1.814(3)	C(16)–C(17)	1.386(5)
P(1)–C(18)	1.817(3)	C(18)–C(23)	1.379(4)
O(1)–C(9)	1.404(4)	C(18)–C(19)	1.379(4)
O(1)-C(10)	1.416(4)	C(19)–C(20)	1.377(5)
O(2)–C(11)	1.231(3)	C(20)–C(21)	1.366(6)
N(1)–C(4)	1.330(4)	C(21)–C(22)	1.368(6)
N(1)–C(3)	1.346(3)	C(22)–C(23)	1.384(5)
N(2)–C(1)	1.354(3)	C(24)–C(29)	1.382(4)
C(1)–C(2)	1.403(4)	C(24)–C(25)	1.391(4)
C(1)–C(7)	1.458(4)	C(25)–(26)	1.375(5)
C(2)–C(11)	1.432(4)	C(26)–C(27)	1.359(6)
C(3)–C(7)	1.397(4)	C(27)–C(28)	1.370(6)
C(4)–C(5)	1.394(4)	C(28)–C(29)	1.388(5)
C(4)–C(8)	1.502(4)	C(30)–C(35)	1.386(4)
C(5)–C(6)	1.374(4)	C(30)–C(31)	1.389(4)
C(6)–C(7)	1.405(4)	C(31)–C(32)	1.381(5)
C(6)–C(9)	1.495(4)	C(32)–C(33)	1.359(6)
C(11)–C(12)	1.498(4)	C(33)–C(34)	1.364(6)
C(12)–C(17)	1.376(4)	C(34)–C(35)	1.388(5)

Длины связей (d) в молекуле соединения 7е, полученные методом PCA

Таблица 4

Угол	θ, град	Угол	θ, град
C(3)-S(1)-C(2)	91.16(13)	C(17)-C(12)-C(13)	118.6(3)
N(2)-P(1)-C(24)	115.74(13)	C(17)-C(12)-C(11)	124.0(3)
N(2)-P(1)-C(30)	114.34(13)	C(13)-C(12)-C(11)	117.3(3)
C(24)-P(1)-C(30)	113.59(13)	C(14)-C(13)-C(12)	120.8(3)
N(2)-P(1)-C(18)	104.81(13)	C(15)-C(14)-C(13)	120.0(4)
C(24)-P(1)-C(18)	104.56(13)	C(16)-C(15)-C(14)	120.1(3)
C(30)-P(1)-C(18)	101.74(13)	C(15)-C(16)-C(17)	120.3(3)
C(9)-O(1)-C(10)	111.8(3)	C(12)-C(17)-C(16)	120.1(3)
C(4)-N(1)-C(3)	115.2(3)	C(23)-C(18)-C(19)	118.7(3)
C(1)-N(2)-P(1)	137.5(2)	C(23)–C(18)–P(1)	123.4(3)
N(2)-C(1)-C(2)	130.9(2)	C(19)–C(18)–P(1)	117.9(2)
N(2)-C(1)-C(7)	118.3(2)	C(20)-C(19)-C(18)	120.9(4)
C(2)-C(1)-C(7)	110.8(2)	C(21)-C(20)-C(19)	119.9(4)
C(1)-C(2)-C(11)	127.5(2)	C(20)-C(21)-C(22)	120.1(4)
C(1)-C(2)-S(1)	112.5(2)	C(21)-C(22)-C(23)	120.1(4)
C(11)-C(2)-S(1)	119.3(2)	C(18)-C(23)-C(22)	120.3(4)
N(1)-C(3)-C(7)	126.5(3)	C(29)-C(24)-C(25)	118.5(3)
N(1)-C(3)-S(1)	120.4(2)	C(29)–C(24)–P(1)	124.4(2)
C(7)–C(3)–S(1)	113.1(2)	C(25)-C(24)-P(1)	117.0(2)
N(1)-C(4)-C(5)	122.7(3)	C(26)-C(25)-C(24)	120.9(4)
N(1)-C(4)-C(8)	117.2(3)	C(27)-C(26)-C(25)	120.1(4)
C(5)-C(4)-C(8)	120.2(3)	C(26)-C(27)-C(28)	120.2(4)
C(6)-C(5)-C(4)	121.9(3)	C(27)-C(28)-C(29)	120.5(4)
C(5)-C(6)-C(7)	116.8(3)	C(24)-C(29)-C(28)	119.8(4)
C(5)-C(6)-C(9)	120.7(3)	C(35)-C(30)-C(31)	119.2(3)
C(7)-C(6)-C(9)	122.5(2)	C(35)–C(30)–P(1)	119.5(2)
C(3)-C(7)-C(6)	116.9(2)	C(31)–C(30)–P(1)	121.1(2)
C(3)-C(7)-C(1)	112.5(2)	C(32)-C(31)-C(30)	119.8(3)
C(6)-C(7)-C(1)	130.6(2)	C(33)-C(32)-C(31)	120.7(4)
O(1)-C(9)-C(6)	110.5(2)	C(32)-C(33)-C(34)	120.1(4)
O(2)–C(11)–C(2)	122.4(3)	C(33)-C(34)-C(35)	120.6(4)
O(2)-C(11)-C(12)	117.8(3)	C(30)-C(35)-C(34)	119.6(3)
C(2)-C(11)-C(12)	119.7(2)		

Валентные углы (0) в молекуле соединения 7е, полученные методом РСА

Пространственная перегруженность молекулы на участке O(2)–C(11)– C(2)–C(1)–N(2)–P(1) приводит к значительным искажениям валентных углов при атомах данного фрагмента. Так, увеличение валентных углов C(24)–P(1)–C(30), N(2)–P(1)–C(24), N(2)–P(1)–C(30), соответственно, до 113.59, 115.74 и 114.34° является, очевидно, результатом взаимного отталкивания бензольных колец C(24)...C(29), C(30)...C(35) и карбонильной группы C(1)–O(1). С этим фактом связано и значительное отклонение валентного угла при атоме N(2) (17.5°) от стандартного значения, характерного для sp^2 -гибридного состояния.

Атом фосфора находится в sp^3 -гибридизованном состоянии: среднее значение валентных углов у атома фосфора составляет 109.12°.

Фенильное кольцо бензоильного заместителя выведено из плоскости гетероциклического остова молекулы на 65.2° в результате взаимного отталкивания между атомом серы и атомом водорода при C(17).

Связь S(1)-C(3) вследствие смещения пары электронов атома серы в сторону π -дефицитного пиридинового цикла укорочена в сравнении со связью S(1)-C(2) (1.723 и 1.763 Å соответственно).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры записаны на приборах Specord UV-vis и Specord M-40 в диапазоне 200–700 нм в кварцевых кюветах толщиной 10 мм в этаноле. ИК спектры сняты на спектрофотометре Specord 71 UR-20 в области 3600–650 см⁻¹, призмы NaCl, KBr; кристаллических веществ – в виде взвеси в вазелиновом масле. Спектры ЯМР ¹Н сняты на приборе Bruker WM-250 (250 МГц) в ДМСО-d₆, внутренний стандарт ТМС.

N,N-Дифенил-3-амино-6-метил-4-метоксиметилтиено[2,3-*b*]пиридин-2-карбоксамид (4с). К суспензии 1.94 г (10 ммоль) 3-циано-2(1Н)-пиридинтиона 1 в 20 мл ДМФА прибавляют 5.6 мл (10 ммоль) 10% водного раствора КОН. Затем при перемешивании вносят 2.46 г (10 ммоль) N,N-дифенилхлорацетамида (2с), выдерживают 10–15 мин при комнатной температуре. Далее прибавляют еще 5.6 мл (10 ммоль) 10% водного раствора КОН и перемешивают реакционную смесь в течение 6 ч при температуре 80–85 °C. После охлаждения реакционной смеси образовавшийся осадок отделяют, промывают последовательно водой и смесью этанол–вода, 1:1, сушат на воздухе. Фильтрат разбавляют двухкратным количеством воды, выпавший хлопьевидный осадок отделяют, промывают водой, сушат. Продукт перекристаллизовывают из смеси этанол–ДМФА. Суммарный выход 3.63 г (90%).

Соединения 4b, d, е получают аналогично.

N,N-Дифенил-3-азидо-6-метил-4-метоксиметилтиено[2,3-b]пиридин-2-карбоксамид

(6c). Растворяют 2.02 г (5 ммоль) соединения 4c в 12 мл ледяной уксусной кислоты, добавляют 0.6 мл конц. H_2SO_4 . Охлаждают реакционную смесь на ледяной бане до 5–8 °C и медленно, небольшими порциями, вносят раствор 0.48 г (7 ммоль) NaNO₂ в 2 мл воды. Перемешивают в течение 20 мин, затем нейтрализуют избыток азотистой кислоты мочевиной (контроль по иодкрахмальной бумаге) и по каплям в течение 10 мин вводят раствор 0.46 г (7 ммоль) NaNO₃ в 2 мл воды. Перемешивают в течение 10 мин вводят раствор 0.46 г (7 ммоль) NaN₃ в 2 мл воды. Перемешивают в течение 1 ч, затем реакционную массу медленно выливают в воду с тонкоизмельченным льдом. Осадок азида 6c отделяют, промывают на фильтре холодной водой до нейтральной реакции промывных вод, сушат над конц. H_2SO_4 в отсутствие света. Выход 2.08 г (97%).

3-Азидотиено[2,3-b]пиридины 6а,b,d получают аналогично.

(2-Бензоил-6-метил-4-метоксиметилтиено[2,3-*b*]пиридин-3-ил)иминотрифенилфосфоран (7е). К раствору 3.38 г (10 ммоль) 3-азидотиено[2,3-*b*]пиридина бе в 100 мл бензола прибавляют 2.62 г (10 ммоль) трифенилфосфина. Реакционную смесь перемешивают до прекращения выделения пузырьков газа и оставляют на ночь. Выпавший осадок отфильтровывают, промывают бензолом, сушат на воздухе. Фильтрат упаривают в вакууме,

остаток затирают с диэтиловым эфиром. Образовавшиеся кристаллы отфильтровывают, промывают бензолом и сушат на воздухе. Продукт перекристаллизовывают из смеси спирт– ДМФА. Суммарный выход 3.2 г (56%). Желтые моноклинные кристаллы соединения **7e** получают кристаллизацией из этанола; параметры элементарной ячейки: a = 9.869(2), b = 16.644(3), c = 17.853(4) Å, $\beta = 92.58(3)^{\circ}$, V = 2929.6(10) Å³, пространственная группа P2(1)/n, Z = 4. Параметры элементарной ячейки и интенсивности 2293 независимых отражений измерены на автоматическом дифрактометре САD-4 (Мо K_{α} -излучение, β -фильтр, $\theta/2\theta$ -сканирование до $2\theta_{max} = 44.6^{\circ}$). Структура расшифрована прямым методом с помощью пакета программ SHELXTL [6] и уточнена в анизотропном (изотропном для атомов водорода) приближении до факторов расходимости $R_1 = 0.0268$ и $R_{\omega} = 0.0709$.

Соединения 7а,с получают аналогично.

(N-Морфолил-2-карбамоил-6-метил-4-метоксиметилтиено[2,3-*b*]пиридин-3-ил)иминотрифенилфосфоран (7d). К раствору 3.47 г (10 ммоль) 3-азидотиено[2,3-*b*]пиридина 6d в 100 мл бензола прибавляют 2.62 г (10 ммоль) трифенилфосфина. Реакционную смесь перемешивают до прекращения выделения газа и оставляют на ночь. Реакционную смесь упаривают в вакууме приблизительно на 4/5 и прибавляют 10 мл гексана. Образовавшиеся кристаллы отфильтровывают, промывают гексаном и сушат на воздухе. Продукт перекристаллизовывают из смеси спирт–ДМФА. Суммарный выход 3.66 г (63%).

Соединение 7b получают аналогично.

Работа выполнена при финансовой поддержке РФФИ (грант № 03–03– 96636).

СПИСОК ЛИТЕРАТУРЫ

- 1. J. Schweng, E. Zbiral, Tetrahedron, 31, 1823 (1975).
- 2. J. Schweng, E. Zbiral, Monatsh. Chem., 107, 537 (1976).
- 3. Г. Олкок, Фосфоразотистые соединения, пер. с англ., Мир, Москва, 1976, с. 177, 355.
- 4. Е. А. Кайгородова, Л. Д. Конюшкин, М. Е. Ниязымбетов, С. Н. Квак, В. Н. Заплишный, В. П. Литвинов, Изв. АН, Сер. хим., 2215 (1994).
- С. Н. Михайличенко, Н. Я. Губанова, Е. А. Кайгородова, В. А. Ковардаков, Л. Г. Богачук, В. Н. Заплишный, Изв. вузов, Химия и хим. технол., 41, вып. 1, 63 (1998).
- 6. G. M. Sheldrick, *Computational Crystallography*, Oxford Univ. Press, New York, Oxford, 1982, 506 p.

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: organics@kubstu.ru Поступило в редакцию 05.07.2002 После доработки 10.05.2004