Т. С. Сафонова, М. П. Немерюк, Н. А. Гринева, А. Ф. Керемов^а, О. С. Анисимова, Н. П. Соловьева

ИССЛЕДОВАНИЕ АЗОТ- И СЕРУСОДЕРЖАЩИХ ГЕТЕРОЦИКЛОВ

54*. СВОЙСТВА И ПРЕВРАЩЕНИЯ ПИРИМИДО[4,5-*b*]-1,4-БЕНЗТИАЗЕПИНОВ. СИНТЕЗ НОВОЙ ГЕТЕРОЦИКЛИЧЕСКОЙ СИСТЕМЫ – ПИРИМИДО[5,4-*c*]ИЗОХИНОЛИНА

Исследованы некоторые свойства и превращения пиримидо[4,5-b]-1,4-бензтиазепинов: восстановление, окисление, реакции с нуклеофильными реагентами — метанолом, гидразином, гидроксиламином, o-метилгидроксиламином и тиосемикарбазидом. Синтезированы производные новой гетероциклической системы — пиримидо[5,4-c]изохинолина.

Ключевые слова: пиримидиларилсульфиды, пиримидо[4,5-b]-1,4-бензтиазепин, пиримидо[5,4-c]изохинолин.

Синтез производных трициклических систем 1,4-тиазина, среди которых обнаружены вещества, обладающие противоопухолевой и психотропной активностью, описан в [2, 3]. В продолжение этих исследований был разработан метод получения 4-алкокси(амино)-8-нитропроизводных пиримидо[4,5-*b*]-1,4-бензтиазепинов 1a-d [1]. Данная работа посвящена изучению свойств соединений 1a-d и синтезу новых производных этой гетероциклической системы, представляющих интерес для биологических испытаний.

На первом этапе работы было изучено восстановление пиримидобензтиазепинов 1a—c. Было установлено, что при обработке этих веществ боргидридом натрия в среде этанола при 18—20 °C гладко образуются дигидропиримидобензтиазепины 2a—c. Их строение подтверждено наличием в ИК спектрах соединений 2a,b полос поглощения группы NH в области 3280 и 3380 см $^{-1}$ соответственно.

На примере соединений **1b** и **2b** установлено, что их восстановление железными опилками в уксусной кислоте приводит к 8-аминопроизводным **2d** и **2e**. Соединение **2e** образуется также при обработке пиримидобензтиазепина **2d** боргидридом натрия в условиях синтеза производных **2a–c**. Реакции соединения **2d** с фенилизоцианатом и фенилизотиоцианатом дают производные **2f**,**g**.

^{*} Сообщение 53 см. [1].

1a, 2a R = OMe, 1b, 2b,d-g $R = NMe_2$, 1c, 2c R = NHMe, 1d $R = NH_2$; 2f X = O; 2g X = S

В работе исследована также реакционная способность азометиновой группы в пиримидобензтиазепинах **1**а-с по отношению к нуклеофильным реагентам. Обнаружено, что при нагревании соединения **1**а в метаноле в присутствии КОН происходит присоединение молекулы этого спирта к азометиновой группе –N=CH– с образованием связи –NH–CH(OMe) –. В результате соединение **1**а гладко превращается в соединение **2**h (выход 89%).

Соединение **2h** (выход 90%) было получено также встречным синтезом из 5-амино-4-метокси-6-меркаптопиримидина и 3-нитро-6-хлорбензальдегида в метаноле в присутствии 2 моль КОН.

$$1a \xrightarrow{\text{MeOH}} {}^{4} \xrightarrow{}^{5} \overset{\text{N-C}}{\text{N}} \overset{\text{OMe}}{\text{N}} \overset{\text{OMe}}{\text{N}} \overset{\text{OMe}}{\text{N}} \overset{\text{NH}_{2}}{\text{N}} \overset{\text{OHC}}{\text{N}} \overset{\text{NO}_{2}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{OHC}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{OHC}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{OHC}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{OHC}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text{N}}{\text{N}} \overset{\text$$

Строение соединения **2h** подтверждается наличием в ИК спектре полосы поглощения группы NH при $3350~{\rm cm}^{-1}$. В спектре ЯМР 1 Н в пиридине- ${\rm d}_{5}$, помимо сигналов двух групп ОМе при $3.75~{\rm u}~3.37~{\rm m}$. д., наблюдаются два дублетных сигнала при $5.70~{\rm u}~6.54~{\rm m}$. д., каждый интенсивностью в одну протонную единицу. Эти сигналы обусловлены взаимодействием протонов H-5,6, что подтверждается при регистрации спектра в присутствии дейтерометанола. В этом случае за счет замены протона H-5 на дейтерий в спектре обнаруживается лишь синглетный сигнал протона H-6 при $5.74~{\rm m}$. д.

Реакции тиазепинов **1а-с** с гидразингидратом **3а** протекают с раскры-1864 тием тиазепинового кольца, в результате чего образуются пиримидиларилсульфиды 4a–c. Соединение 4a, а также вещества с подобной структурой 4d–f были получены нами при взаимодействии дигидротиазепина 2h с гидразингидратом, гидроксиламином (3b), О-метилгидроксиламином (3c) и тиосемикарбазидом (3d) соответственно.

1a-c
$$(3a)$$
 H_2NR^1
 H_2NR^1
 H_2NR^1
 NH_2
 NH_2

3 a
$$R^1 = NH_2$$
, b $R^1 = OH$, c $R^1 = OMe$, d $R^1 = NHCSNH_2$; 4 a,d-f $R = OMe$; b $R = NMe_2$, c $R = NHMe$, a-c $R^1 = NH_2$, d $R^1 = OH$, e $R^1 = OMe$, f $R^1 = NHCSNH_2$

Алкалоиды ряда дигидроизохинолина, содержащие азометиновую группу, при взаимодействии с фенилгидразином, гидроксиламином и рядом других подобных соединений образуют производные циклической формы, находящейся в равновесии с соответствующей открытой формой [4].

По аналогии с этими данными можно было полагать, что соединения ${\bf 4a-f}$ существуют как в открытой форме A, так и изомерной ей циклической форме Б или в виде равновесной смеси этих форм. Выбор между открытой и циклической структурами A и Б в пользу A был сделан нами на основании ИК, ЯМР 1 Н и масс-спектров соединений ${\bf 4a-e}$. Так, в ИК спектре o-метилоксима ${\bf 4e}$ имеются полосы поглощения группы NH_2 при 3400-3500 см $^{-1}$. Данные ИК спектра оксима ${\bf 3d}$ в области валентных колебаний группы NH_2 трудно интерпретировать из-за наличия гидроксильной группы. Однако наличие в соединении ${\bf 4d}$ свободной аминогруппы подтверждается значительным уменьшением интенсивности полосы поглощения деформационных колебаний этой группы при 1610 см $^{-1}$, наблюдающихся при дейтерировании. Кроме того, при регистрации ИК спектров соединений ${\bf 4d}$, в ${\bf CCl_4}$ не были обнаружены полосы поглощения группы ${\bf NH}$, характерной для циклической формы ${\bf 5d}$.

Существование соединений $4\mathbf{a}$ — \mathbf{d} преимущественно в открытой форме А подтверждается наличием в спектрах ЯМР 1 Н сигнала метинового протона при двойной связи с δ 8.24—8.44 м. д., характерного для формы А. Если бы соединения $\mathbf{4a}$ — \mathbf{d} имели циклическое строение Б или существовали в виде смеси форм А и Б, то в их спектрах ЯМР 1 Н должен был наблюдаться дублетный сигнал протона H-6, расщепленный за счет взаимодействия с протоном H-5, как это наблюдалось в случае соединения $\mathbf{2h}$.

Согласно данным масс-спектров соединений 4а-d, они находятся в газовой фазе в виде смеси циклической Б и открытой А форм со

преобладанием последней. Так, В масс-спектрах* значительным соединений 4а-d помимо пика молекулярных ионов 320, 333, 319 и 321, соответственно, наблюдались ионы, характерные для открытой формы. Наиболее интенсивным в спектрах гидразонов 4а-с является пик иона $[M-NH_2]^+$, соответственно, 304, 317 и 303. Аналогичный распад наблюдается и для оксима 4d, в результате которого образуются ионы $[M-OH]^+$ 304 и $[M-H_2O]^+$ 303. Общим для фрагментации соединений **4а**–**d** является элиминирование из молекулярного иона группы NR¹, присутствующей в структуре A, с образованием ионов с m/z 320 (для веществ **4a,d**), 303 (для 4b) и 289 (для 4c). Правильность сделанного отнесения доказывает соответствующий сдвиг массового числа пика данного фрагмента при изменении заместителей R и R'. В масс-спектрах соединений 4а-d наиболее интенсивными являются также пики ионов с ти/z 157 (для веществ **4a,d**), 170 (для **4b**) и 156 (для **4c**). Этим ионам приписано строение А¹, что подтверждается изменением массового числа данных ионов в зависимости от заместителя R при атоме $C_{(4)}$. Фрагмент A^1 отсутствует в масс-спектрах пиримидобензтиазепина 1а-с, являющихся в данном случае модельными соединениями. Следовательно, наличие в масс-спектрах соединений 4a-d фрагмента A^1 может быть обусловлено распадом открытой формы А.

$$\begin{array}{c|c}
R & NH_2 & HC & R^1 \\
N & NH_2 & HC & NO_2 & NO_2$$

Кроме того, в масс-спектрах соединений ${\bf 4a-d}$ имеются пики ионов, отвечающих распаду циклической формы Б. Так, например, обнаруживаются малоинтенсивные пики ионов с m/z 288 (для веществ ${\bf 4a,d}$), 301 (для ${\bf 4b}$) и 287 (для ${\bf 4c}$). Эти ионы соответствуют отрыву из молекулярного иона группы NH_2R^1 , характерной для циклической формы Б. В случае оксима ${\bf 4d}$ был получен масс-спектр его дейтеропроизводного аналога D- ${\bf 4d}$. Было отмечено, что массовое число фрагмента 288 сохранилось таким же, как и в масс-спектре недейтерированного соединения ${\bf 4d}$. Эти данные свидетельствуют о том, что элиминируемая частица ND_2OD содержит все три подвижных атома водорода, присутствующих в циклической форме соединения ${\bf 4d}$.

Аналогичный распад наблюдается и для 2,6-диметоксипиримидобензтиазепина 2h, являющегося модельным соединением циклического строения.

^{*} Здесь и далее для пиков ионов даны значения m/z.

Фрагментация соединения 2h с образованием иона $[M-MeOH]^+$ с m/z 288 является преобладающей. Дальнейший распад иона $[M-MeOH]^+$, а также соединения 4d полностью совпадает с распадом 4-метоксипиримидобензтиазепина 1a, имеющего азометиновую группу.

Приведенные данные служат подтверждением того, что пики ионов $[M-NH_2R^1]^+$, обнаруживаемые в масс-спектрах гидразонов ${\bf 4a-c}$ и оксима ${\bf 4d}$, являются следствием фрагментации циклической формы Б для этих веществ.

Таким образом, с помощью спектральных данных было установлено, что соединения **4a–d** в кристаллах и растворах существуют преимущественно в открытой форме A, а в газовой фазе — в виде смеси циклической Б и открытой A форм с преобладанием последней.

Далее нами было исследовано окисление пиримидобензтиазепинов **1a**—**c** пероксидом водорода. Обнаружено, что действие на 4-метоксипроизводное **1a** пероксида водорода в уксусной кислоте при 60–65 °C приводит к образованию смеси соединений, из которой удалось выделить в индивидуальном состоянии сульфоксид **5a** и сульфон **5b**. Первичной стадией этой реакции является, вероятно, присоединение молекулы воды к азометиновой группе с образованием неустойчивого промежуточного соединения В. Окисление последнего протекает как по атому углерода в положении 6, так и по атому серы и приводит к образованию смеси соединений **5a** и **5b**.

$$1a \xrightarrow{H_2O_2} (+ H_2O) \begin{bmatrix} MeO & H & OH \\ N & N & NO_2 \end{bmatrix}$$

$$B$$

$$MeO & H & NO_2 \\ N & NO_2 & + NO_2 \end{bmatrix}$$

$$Sa & 5b$$

Неожиданные результаты были получены при окислении в указанных выше условиях ($H_2O_2 + AcOH$, 60-65 °C) 4-аминозамещенных 8-нитропиримидобензтиазепинов **1b-d**. В этом случае с удовлетворительными выходами были получены производные новой гетероароматической системы пиримидо[5,4-c]изохинолины **6a-c**.

Ранее были описаны производные изомерной системы – пиримидо[4,5-*c*]-изохинолина, полученные нагреванием 5-арил-4-аминопиримидинов с избытком муравьиной кислоты в присутствии треххлористого фосфора [5].

Соединения $6\mathbf{a}$ — \mathbf{c} не содержат атома серы, в их масс-спектрах имеются интенсивные пики молекулярных ионов с m/z 269, 255 и 241, отвечающие их структурам. В спектрах ЯМР 1 Н обнаруживается набор сигналов ароматических протонов в области 8.58—9.53 м. д., соответствующих по интегральной интенсивности пяти протонным единицам. Это свидетельствует о трициклическом строении соединений $\mathbf{6a}$ — \mathbf{c} и исключает альтернативную структуру шиффовых оснований Γ , в спектрах ЯМР 1 Н которых должны присутствовать сигналы шести ароматических протонов.

Образование пиримидоизохинолинов $6\mathbf{a}$ — \mathbf{c} при окислении соединений $1\mathbf{b}$ — \mathbf{d} является, очевидно, следствием элиминирования атома серы в тиазепиновом ядре с образованием связи C—C между пиримидиновым и бензольным кольцами \mathbf{c} одновременным сужением семичленного цикла до шестичленного.

На примере 8-нитропиримидоизохинолина **6a** было изучено его восстановление железными опилками в уксусной кислоте до соответствующего амина **6d**, ацилированием которого хлорацетилхлоридом получено хлорацетильное производное **6e**.

 $\mathbf{6} \mathbf{a} \mathbf{R} = \mathbf{NMe}_2, \mathbf{b} \mathbf{R} = \mathbf{NHMe}, \mathbf{c} \mathbf{R} = \mathbf{NH}_2$

Таблица 1 **Характеристики синтезированных соединений**

Сое-	Брутто-	<u>Найдено, %</u> Вычислено, %		Т. пл., °С*	Выход,		
ние	формула	С	Н	N	S	· · · · · ·	%
2a	$C_{12}H_{10}N_4O_3S$	49.86 49.66	3.39 3.45	19.73 19.31	11.04 11.03	216–218	89
2b	$C_{13}H_{13}N_5O_2S$	51.52 51.48	4.33 4.29	23.20 23.10	10.64 10.56	190–192	93
2c	$C_{12}H_{11}N_5O_2S$	49.93 49.90	3.65 3.81	24.17 24.20	11.20 11.10	262–264	92
2d	$C_{13}H_{13}N_5S$	<u>57.29</u> 57.56	4.79 4.79	25.67 25.83	11.72 11.80	179–181	43
2 e	$C_{13}H_{15}N_5S$	<u>57.20</u> 57.14	<u>5.51</u> 5.49	25.68 25.64	_	169–171	66–83
2f	$C_{20}H_{18}N_6OS$	61.46 61.54	4.39 4.82	<u>21.64</u> 51.54	8.44 8.20	215–216	54
2g	$C_{20}H_{18}N_6S_2$	<u>58.96</u> 59.11	4.62 4.43	20.45 20.68	15.37 15.76	167–170	52
2h	$C_{13}H_{12}N_4O_4S$	49.01 48.70	3.87 3.76	17.56 17.50	10.14 10.00	195–200	89–90
4a	$C_{12}H_{12}N_6O_3S$	44.85 45.00	3.60 3.75	26.42 26.25	_	199–201	76–90
4b	$C_{13}H_{15}N_7O_2S$	47.01 46.84	4.46 4.50	29.79 29.42	_	190–192	76
4c	$C_{12}H_{13}N_7O_2S$	44.96 45.14	4.02 4.07	31.01 30.72	_	213–214	87
4d	$C_{12}H_{11}N_5O_4S$	44.89 44.86	3.44 3.43	22.00 21.81	_	177–179	80
4e	$C_{13}H_{13}N_5O_4S$	46.86 46.57	3.96 3.88	21.00 20.89	_	170–172	96
4f	$C_{13}H_{13}N_7O_3S_2$	41.73 41.16	3.12 3.43	_	16.80 16.88	329–331 (разл.)	91
5a	$C_{12}H_8N_4O_5S$	44.72 45.00	2.57 2.50	17.57 17.50	10.19 10.00	140–142	36
5b	$C_{12}H_8N_4O_6S$	43.09 42.85	2.55 2.37	16.61 16.67	9.84 9.52	250–252	52
6a	$C_{13}H_{11}N_5O_2$	58.00 58.00	4.01 4.08	26.36 26.10	_	246–248	63
6b	$C_{12}H_9N_5O_2$	56.30 56.47	3.48 3.52	27.42 27.45	_	251–253	67
6c	$C_{11}H_7N_5O_2$	54.60 54.77	2.74 2.90	28.89 29.00	_	>300	66
6d	$C_{13}H_{13}N_5$	65.18 65.40	<u>5.78</u> 5.45	29.70 29.40	_	219–221	25
6e	$C_{15}H_{14}ClN_5O$	<u>57.61</u> 57.05	4.00 4.43	<u>22.21</u> 22.18	_**	199–201	58

^{*} Растворители для кристаллизации: метанол (соединения **2a,d-f,h, 4b,e**), этанол (соединения **2b,c,g, 4a,d, 5a,b, 6a,b,d**), ДМФА-вода, 1:1 (соединения **4c,f**) и ДМФА (соединения **6c,e**)

нения **6с,е**).

** Найдено, %: Cl 11.19; вычислено, %: Cl 11. 30.

Таблица 2 Спектральные характеристики синтезированных соединений

Соеди-	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, δ, м. д.*	Масс-спектр, $M^+, m/z$
2a	3380	7.48 (1H, д, NH), 7.61 (2H, д, CH ₂)	
2 b	3280		
2c	3340		
2h	3350	5.76 (1H, д, NH), 6.55 (2H, д, CH ₂ -6), 3.75 (3H, с, OCH ₃ -4), 3.37 (3H, с, OCH ₃ -6)	320, 288, 157
4a	3400, 3300,	8.24 (1H, c, CH=NR ¹), 8.12 (1H, c, H-2),	320, 304, 288, 157
4b	1630	8.74 – 7.74 (протоны бензольного ядра) 8.24 (1H, c, CH=NR 1), 7.24 (1H, c, H-2), 8.82 – 7.74 (протоны бензольного ядра)	333, 317, 303, 301, 170
4c		8.42 (1H, c, CH=NR ¹), 8.29 (1H, c, H-2), 8.72–7.74 (протоны бензольного ядра)	319, 303, 289, 287, 156
4d	3310, 3230, 1610	8.34 (1H, c, CH=NR ¹), 7.92 (1H, c, H-2), 8.50–8.00 (протоны бензольного ядра)	379, 320, 304, 303, 288, 157
4e	3500, 400, 1600	8.44 (1H, c, CH=NR ¹), 7.90 (1H, c, H-2), 8.08–8.05 (протоны бензольного ядра)	,
5a	3200, 1650, 1065	о.00-о.03 (протоны оснаольного ядра)	
5b	3170, 1660, 1160		
6a	1100	8.58-9.36 (аром. протоны)	
6b	3360	8.60–9.42 (аром. протоны)	
6c	3470, 3400	8.70–9.53 (аром. протоны)	

^{*} Спектры ЯМР 1 Н снимали в пиридине- d_{5} (соединения 2a,h и 4a-d) и в ДМСО- d_{6} (соединения 6a-c).

Биологические исследования синтезированных соединений показали, что пиримидобензтиазепины $\mathbf{1a}$, \mathbf{b} и $\mathbf{2d}$ обладают нейролептическим действием. Тиосемикарбазон пиримидобензальдегида $\mathbf{4f}$ и пиримидоизохинолин $\mathbf{6b}$ в опытах *in vitro* подавляют рост туберкулезной палочки, а соединение $\mathbf{4f}$, кроме того, угнетает рост молочнокислых бактерий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрометре Perkin–Elmer 457 в вазелиновом масле и в растворе CCl_4 . Спектры ЯМР 1 Н записаны на приборе Varian XL-200 (200 МГц), внутренний стандарт ТМС. Масс-спектры получены на масс-спектрометре МХ-1303 с вводом вещества непосредственно в ионный источник при энергии ионизирующих электронов 30 эВ и температуре 125 °C.

Контроль за ходом реакций и индивидуальностью соединений осуществлялся методом TCX на пластинках Silufol UV-254 в системе бензол-этилацетат-этанол, 5:5:1.5. Проявление в УФ свете.

Физико-химические и спектральные характеристики полученных соединений приведены в табл. 1 и 2.

- **4-Метокси**(диметиламино, метиламино, амино)-8-нитропиримидо[4,5-b]-1,4-бензтиазепины 1а-d получают по методу [1].
- **4-Метокси-8-нитро-5,6-дигидропиримидо**[**4,5-***b*]-**1,4-бензтиазепин** (**2a**). К суспензии 0.57 г (2 ммоль) 4-метокси-8-нитропиримидо[**4,5-***b*]-1,4-бензтиазепина (**1a**) в 10 мл безводного этанола добавляют при энергичном перемешивании 0.19 г (5 ммоль) NаВН $_4$. Смесь перемешивают 3 ч при 20 °C и упаривают в вакууме досуха. К остатку добавляют 5 мл воды, подкисляют 10% HCl до pH 5–6, выделившийся осадок отфильтровывают, промывают водой, сушат. Получают 0.52 г соединения **2a**.

Соединения 2b,с получают аналогично.

- **8-Амино-4-диметиламинопиримидо[4,5-***b***]-1,4-бензтиазепин (2d)**. К суспензии 0.8 г (2.7 ммоль) 4-диметиламино-8-нитропиримидо[4,5-*b*]-1,4-бензтиазепина (**1b**) в 65 мл метанола добавляют 1.6 г железных опилок и 2 мл ледяной уксусной кислоты. Смесь кипятят 8 ч, фильтруют, раствор упаривают в вакууме досуха. К остатку добавляют 20 мл воды, подщелачивают водным NaOH до pH 6–7 и экстрагируют этилацетатом. Раствор сушат Na₂SO₄, фильтруют, упаривают в вакууме досуха. Получают 0.31 г соединения **2d**.
- **8-Амино-4-диметиламино-5,6-дигидропиримидо[4,5-***b*]**-1,4-бензтиазепин** (2e). А. К суспензии 1.0 г (3.3 ммоль) 4-диметиламино-8-нитро-5,6-дигидропиримидо[4,5-*b*]-1,4-бензтиазепина (2b) добавляют 2 г железных опилок и 2 мл ледяной уксусной кислоты. Смесь кипятят 12 ч и далее поступают как указано при синтезе соединения 2d. Получают 0.6 г (66%) соединения 2e.
- Б. К суспензии 0.6 г (2.2 ммоль) соединения 2d в 10 мл безводного этанола добавляют при энергичном перемешивании 0.19 г (5 ммоль) $NaBH_4$. Смесь перемешивают 4 ч при 20 °C и далее поступают как описано при синтезе соединения 2a. Получают 0.5 г (83%) соединения 2e, идентичного по температуре плавления и спектральным характеристикам соединению, синтезированному по методу A.
- **4-Диметиламино-8-(3-фенилурендо)пиримидо[4,5-***b*]-**1,4-бензтиазепин (2f)**. К суспензии 0.5 г (1.8 ммоль) соединения **2d** в 20 мл этилацетата добавляют 0.22 г (1.8 ммоль) фенилизоцианата. Смесь кипятят 3 ч, охлаждают, выделившийся осадок отфильтровывают, сушат. Получают 0.39 г соединения **2f**.
- **4-Диметиламино-8-(3-фенилтиоуреидо)пиримидо[4,5-***b***]-1,4-бензтиазепин (2g)**. К суспензии 0.22 г (0.81 ммоль) соединения **2d** в 10 мл этанола добавляют 0.22 г (1.6 ммоль) фенилизотиоцианата. Смесь кипятят 20 мин, охлаждают, выделившийся осадок отфильтровывают, сушат. Получают 0.17 г соединения **2g**.
- **4,6-Диметокси-8-нитро-5,6-дигидропиримидо**[**4,5-***b*]**-1,4-бензтиазепин** (**2h**). А. Суспензию 0.5 г (1.73 ммоль) соединения **1a** в 23 мл МеОН, содержащего 0.12 г (2.14 ммоль) КОН, нагревают 2 ч при 65 °С, охлаждают, выделившийся осадок отфильтровывают, сушат. Получают 0.5 г (89%) соединения **2h**.
- Б. К раствору 0.5 г (3.18 ммоль) 5-амино-4-метокси-6-меркаптопиримидина в 25 мл МеОН, содержащего 0.3 г (5.37 ммоль) КОН, добавляют раствор 0.59 г (3.18 ммоль) 3-нитро-6-хлорбензальдегида в 20 мл МеОН. Смесь нагревают 2 ч при 65 °C, охлаждают, выделившийся осадок отфильтровывают, сушат. Получают 0.9 г (90%) соединения 2h, идентичного по температуре плавления и спектральным характеристикам соединению, синтезированному по методу A.
- Гидразон 6-(5-амино-4-метоксипиримидил-6)-3-нитромеркаптобензальдегида (4а). А. Смесь 0.5 г (1.73 ммоль) соединения 1а, 40 мл МеОН и 1 мл гидразингидрата нагревают 4 ч при 60–63 °C, охлаждают, осадок отфильтровывают, сушат. Получают 0.42 г (76%) соединения 4а.

Гидразоны 4b,с получают аналогично из соединений 1b,с.

Б. Смесь 0.5 г (1.57 ммоль) соединения 2h, 60 мл МеОН и 1 мл гидразингидрата нагревают и обрабатывают, как описано выше. Получают 0.42 г соединения 4a. Упариванием маточного раствора выделяют дополнительно 0.1 г этого вещества. Общий выход 0.45 г (90%). Соединение 4a идентично по температуре плавления и спектральным характеристикам веществу, синтезированному по методу A.

К смеси 0.2 г (2.88 ммоль) солянокислого гидроксиламина, 10 мл этанола и 1 мл пиридина добавляют 0.5 г (1.57 ммоль) соединения **2h**. Раствор кипятят 4 ч, упаривают в вакууме досуха, остаток растирают с 5 мл воды. Нерастворившийся осадок отфильтровывают, промывают водой, сушат. Получают 0.4 г соединения **4d**.

Соединения 4е, f синтезируют аналогично.

Сульфоксид 4-метокси-8-нитро-6-оксо-5,6-дигидропиримидо[4,5-b]-1,4-бензтиазепина (5а) и сульфон 4-метокси-8-нитро-6-оксо-5,6-дигидропиримидо[4,5-b]-1,4-бензтиазепина (5b). К суспензии 0.2 г (0.695 ммоль) 1а в 20 мл ледяной уксусной кислоты добавляют 1 мл 30% водного раствора H_2O_2 . Смесь нагревают при перемешивании 4 ч при 63–65 °C, охлаждают, выделившийся осадок отфильтровывают. Получают 0.12 г сульфона 5b. Фильтрат упаривают в вакууме досуха, твердый остаток растирают с 5 мл этанола, осадок отфильтровывают, промывают 3 мл этанола, сушат. Получают 0.08 г сульфоксида 5а.

4-Диметиламино-8-нитропиримидо[**5,4**-c]изохинолин (**6a**). К суспензии 0.52 г (1.8 ммоль) соединения **1b** в 40 мл ледяной уксусной кислоты добавляют 2 мл 30% водного раствора H_2O_2 . Смесь нагревают 3 ч при 60–63 °C, упаривают в вакууме досуха, остаток растирают с водой, нерастворившийся осадок отфильтровывают, промывают водой, сушат. Получают 0.30 г соединения **6a**.

Соединения 6b,с получают аналогично.

8-Амино-4-диметиламнопиримидо[5,4-*c***]изохинолин** (**6d**). К суспензии 0.9 г (3.35 ммоль) нитросоединения **6a** в 50 мл МеОН добавляют 0.9 г железных опилок и 2 мл ледяной уксусной кислоты. Смесь кипятят 12 ч, фильтруют от шлама, фильтрат упаривают в вакууме досуха, остаток растворяют в 10 мл воды, раствор подщелачивают водным раствором NаОН до рН 6–7 и экстрагируют этилацетатом. Экстракт сушат Na₂SO₄, фильтруют, фильтрат упаривают в вакууме досуха. Получают 0.2 г соединения **6d**.

4-Диметиламино-8-хлорацетиламинопиримидо[5,4-*c***]изохинолин** (**6e**). К суспензии 0.2 г (0.83 ммоль) соединения **6d** в 20 мл ацетона добавляют по каплям раствор 0.12 г (1.23 ммоль) хлорацетилхлорида. Смесь перемешивают 6 ч при 18–20 °C, упаривают в вакууме досуха, остаток растирают с 5 мл воды, осадок отфильтровывают, промывают водой, сушат. Получают 0.15 г соединения **6e**.

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. С. Сафонова, М. П. Немерюк, Н. А. Гринева, М. А. Керемов, М. М. Лиховидова, *XГС*, 270 (2001).
- 2. Т. С. Сафонова, в кн. *Целенаправленный поиск новых противораковых и противовирусных препаратов*, Зинатне, Рига, 1978, с. 51.
- 3. А. М. Полежаева, Л. Ф. Рощина, А. С. Соколова, М. П. Немерюк, М. В. Пыхова, Т. С. Сафонова, М. Д. Машковский, *Хим.-фарм. журн.*, **15**, № 11, 45 (1981).
- 4. D. Beke, in *Advances in Heterocyclic Chemistry*, A. R. Katritzky (Ed.), Acad. Press, New York, London, 1963, 6, p. 167.
- 5. T. Koyama, T. Hirota, I. Shinohara, S. Fukuoka, M. Yamato, S. Ohmori, *Chem. Pharm. Bull.*, 23, 494 (1975).

Центр по химии лекарственных средств — Всероссийский научно-исследовательский химико-фармацевтический институт, Москва 119815 e-mail: sedov@drug.org.ru

^аДагестанский государственный университет, Махачкала 367010, Россия Поступило в редакцию 25.03.2002