Т. И. Губина, А. Н. Панкратов^а, В. И. Лабунская, С. М. Рогачева⁶

АВТОКОЛЕБАТЕЛЬНАЯ РЕАКЦИЯ В РЯДУ ФУРАНОВ

Впервые обнаружено, что реакция кислотного гидролиза 2,5-диметилфурана в водноэтанольных растворах имеет автоколебательный характер. С помощью ГЖХ зафиксированы колебания концентраций двух продуктов: 2,5-гександиона и неидентифицированного соединения **X**. Определены диапазоны концентраций соляной кислоты и этанола, в которых эти колебания проявляются. Предполагается, что образование соединения **X** обусловлено таутомерными превращениями 2,5-гександиона в условиях реакции. С помощью квантово-химических расчетов показана равновероятность образования возможных таутомеров.

Ключевые слова: 2,5-диметилфуран, таутомеры, автоколебательная реакция, кислотный гидролиз.

В ходе разработки нового способа получения тиофенов и селенофенов рециклизацией фуранов в водно-этанольных средах в условиях кислотного катализа было показано, что реакция протекает по двум направлениям, одно из которых включает стадию образования дикетона, т. е. гидролиз. Кинетические исследования гидролиза 2,5-диметилфурана (1) в 50% этаноле под действием HCl выявили факт образования 2,5-гександиона (2) и неидентифицированного соединения **X**. Соотношение концентраций образующихся продуктов менялось в течение реакции с определенной периодичностью, т. е. при накоплении один продукт переходил в другой и эти превращения носили колебательный характер [1, 2].

Поскольку колебательные химические реакции имеют место в разнообразных процессах, определяющих жизнедеятельность живых организмов [3], а производные фурана являются физиологически активными веществами, изучение поведения фурановых соединений в водной и водноспиртовой средах в условиях кислотного катализа представляет большой теоретический и практический интерес.

В настоящей работе для определения граничных условий проявления указанных выше превращений с помощью ГЖХ исследована кинетика гидролиза диметилфурана 1 в 50% водном этаноле, при различных концентрациях соляной кислоты (1.5, 2.0, 3.0, 3.5 н.). Результаты опытов представлены на рис. 1. Как видно, колебания содержания диона 2 и соединения X в реакционной среде наблюдаются при концентрациях (*c*) HCl 1.5–2.0 моль/л. При c = 3 моль/л и выше образуются оба продукта, но соотношение их количеств в реакционной среде не меняется во времени.

Опыты в 60 и 80% этаноле при 2.0 и 2.5 н. концентрации HCl (в 40% спирте диметилфуран плохо растворим) показали, что в 80% спирте при указанных концентрациях кислоты образуется только гександион 2, а в 60% этаноле в обоих случаях концентрации соединения 2 и X колеблются (рис. 2).

Рис. 1. Кинетические кривые гидролиза диметилфурана **1** в 1.5 (*1*), 2.0 (*2*), 3.0 (*3*) и 3.5 н. (*4*) растворах HCl в 50% водном этаноле; c_2 – концентрация гександиона **2**; c_X – концентрация соединения **X**

Рис. 2. Кинетические кривые гидролиза диметилфурана **1** в 2.0 (*1*) и 2.5 н. (*2*) растворах HCl в 60% водном этаноле

Колебания концентраций гександиона 2 и соединения X, на наш взгляд, объясняются образованием диметилфурана 1 из продуктов реакции и последующим его гидролизом. Это подтверждалось следующим экспериментом: дион 2 выдерживали в 2 н. растворе HCl в 50% этаноле, при этом образовалось соединение X, содержание которого колебалось с очень небольшой амплитудой (рис. 3, *1*). Значительному увеличению последней способствовало добавление к реакционной смеси диметилфурана 1 (рис. 3, *2*).

Таким образом, нами обнаружено, что гидролиз диметилфурана 1 в кислых водно-этанольных средах представляет собой автокаталитическую реакцию.

При попытках установления структуры соединения X предполагалось, что оно может представлять собой кеталь или полукеталь гександиона 2, поскольку гидролиз проводился в водно-этанольной среде [1]. Однако при перегонке эфирного экстракта из реакционной смеси выделить соединение X не удалось: оно превращалось в гександион 2. В процессе гидролиза диметилфурана 1 в 2 н. водном растворе HCl, по данным ГЖХ, имело место в основном образование того же диона 2 и небольшого количества продукта X (~8–10%), но без колебания концентраций, что позволило исключить возможность образования кеталя или полукеталя гександиона.

Так как гидролиз соединения 1 включает стадию протонного переноса, мы предположили, что образование соединения X – результат проявления кето-енольной таутомерии гександиона 2, а вещество X – его таутомер.

Рис. 3. Кинетические кривые протолитической реакции: *1* – гександиона **2** в 2.0 н. растворе HCl в 50% водном этаноле; *2* – после добавления в реакционную смесь диметилфурана **1**

Была предложена следующая схема взаимопревращений: из диметилфурана 1 в кислой среде образуется гександион 2, который может существовать в виде нескольких таутомеров, самопроизвольно превращающихся друг в друга. В свою очередь, енольная форма диона 2 легко превращается в диметилфуран 1, который снова подвергается гидролизу:

Для подтверждения приведенной схемы нами были сняты электронные спектры соединений **1** и **2** в 50 и 96% этаноле, воде и гексане, а также электронные спектры изучаемой реакционной среды через различные промежутки времени (рис. 4). Диметилфуран **1** имеет полосы поглощения при 216 (в 50% этаноле), 218 (в 96% этаноле), 216 (в воде) и 224 нм (в гексане). Гександион **2** в воде и водно-этанольном растворе поглощает при 264, в гексане – при 280, в 96% этаноле – при 266 нм. Полоса поглощения диметилфурана **1** (216–224 нм) характеризуется высокой интенсивностью и отвечает разрешенному π - π *-переходу. Полоса поглощения гександиона **2** при 264–280 нм имеет малую интенсивность и относится к n- π *-перехода (n- π *) при этом подтверждается гипсохромным сдвигом абсорбционной полосы при увеличении полярности растворителя.

Рис. 4. Электронные спектры диметилфурана **1** (1) – гександиона **2** (2) в 50 % этаноле и реакционной смеси (3) через 40 мин от начала реакции

В водно-этанольном растворе полоса поглощения субстрата при 218 нм со временем становится более слабой, но не исчезает в течение всего периода наблюдений (5 ч.). Появляется малоинтенсивная полоса $n-\pi^*$ -пе-

рехода при 288 нм, отвечающая по-видимому, карбонильному хромофору. Спектры свидетельствуют о том, что гидролиз диметилфурана 1 с образованием насыщенного дикетона 2 в водно-этанольной среде происходит при большом разбавлении растворителем даже в отсутствие кислоты. При проведении изучаемой реакции в кювете (50% этанол, 2 н. HCl) в реакционной смеси зарегистрированы три полосы поглощения: одна из них (216 нм) соответствует диметилфурану 1, вторая (264 нм) – гександиону 2, а третья (283 нм) относится к неизвестному продукту. По данным [4], эта последняя полоса может соответствовать 2-гидрокси-2,5диметил-3-дигидрофурану. Таким образом, данные электронной спектроскопии косвенно свидетельствуют о таутомерных превращениях гександиона 2 в условиях изучаемой реакции.

Для установления возможных таутомеров, а также для сравнения ацетона и его енола, проведены квантово-химические расчеты стандартных энтропий, теплот образования, энергий образования Гиббса, дипольных моментов электронных структур гександиона 2, его таутомеров 2А–F (таблица).

)Н Ме *транс*-**2**F

Дипольные моменты (μ), стандартные теплоты образования (ΔH_f), энтропии (S), энергии образования Гиббса (ΔG_f) (метод МЗ)

Соединение	μ, D	Δ <i>H_f</i> , ккал/моль	<i>S</i> , ккал/моль•К	ΔG_{f} , ккал/моль
2	2.45	-96.59	99.92	-62.81
2A	3.06	-89.11	94.37	-53.68
2B	2.15	-88.93	95.24	-53.60
2C	2.49	-88.48	96.23	-53.76
2D	1.24	-88.44	88.64	-51.30
2 E	2.52	-84.62	96.28	-49.76
2 F	0.026	-83.16	98.26	-48.89
Ацетон	2.78	-53.32	70.93	-38.03
Енол ацетона	1.95	-38.78	70.88	-23.48

Согласно расчетам, гександион 2 наиболее термодинамически устойчив. Его способность подвергаться енолизации выше, чем монокетона – ацетона. *цис*- и *транс*-Кетоенолы **2А**–С также, как и их изомер – 2-гидрокси-2,5-диметил-2,3-дигидрофуран **2D**, энергетически эквивалентны, что не противоречит возможности их существования в реакционной среде. Образование диенольных таутомеров гександиона **2E**,**F** менее вероятно по сравнению с моноенолизацией. Возникновение диенолов энергетически сопоставимо с енолизацией ацетона.

На основании наших исследований схема колебательной реакции может иметь вид:

 $1 \longleftrightarrow [2E \longleftrightarrow 2A \Longleftrightarrow 2D] \longleftrightarrow 2$

Нами изучены колебательные процессы в протолитической реакции гидролиза диметилфурана 1. Колебания концентраций продуктов реакции (гександиона 2 и соединения X) происходят только в определенных условиях проведения реакции (при концентрации HCl 1.5–2.5 моль/л в 50 и 60% этаноле). Выделить неизвестный продукт и установить его структуру обычными химическими методами не удается. Электронные спектры указывают на возможность образования таутомеров гександиона 2. Данное явление требует более глубоких исследований, которые будут нами продолжены.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций, качественный и количественный анализ состава реакционных смесей осуществляли с помощью метода ГЖХ и УФ спектроскопии. ГЖХ анализ проводили на хроматографе Цвет-101 с пламенно-ионизационным детектором на колонках (*l* 1 м, Ø 3 мм; *l* 3 м, Ø 3мм) с 15% Апиезоном-L, на хроматоне N-AW. Температура термостата 100 °С, скорость газа-носителя (гелий) 2 л/ч.

УФ спектры записывали на спектрофотометре HP 8452A в области 200–300 нм с шагом x = 2 нм. Квантово-химические расчеты методом ССП МО ЛКАО РМЗ проводили по программе из пакета МОРАС аналогично работе [5].

Соединения 1, 2 синтезированы по известным методикам [6].

Кинетические исследования гидролиза 2,5-диметилфурана (1) (общая методика). В реактор объемом 50 мл, снабженный термостатированной рубашкой (температура реакции 40 °C) и установленный на виброскоп, помещают 0.48 г (5 ммоль) диметилфурана 1, 0.15 г о-ксилола (внутренний стандарт) и рассчитанное количество бидистиллированной воды, 96% этанола и 12 н. HCl, создавая в растворе объемом 20 мл концентрацию спирта (80, 60, 50%) и кислоты (3.5, 3.0, 2.5, 2.0, 1.5 н.). Через определенные промежутки времени из реакционной смеси отбирают пробы объемом 1 мл, к каждой добавляют 2 мл конц. КОН (NaOH) и экстрагируют 1 мл эфира. Содержание компонентов в смеси анализируют с помощью ГЖХ, используя для расчетов метод внутренней нормализации.

Гидролиз 2,5-диметилфурана (1) в 2 н. водном растворе HCl проводят по описанной выше методике (0.48 г (5 ммоль) диметилфурана 1 в 20 мл раствора). Качественный контроль за ходом реакции осуществляют с помощью ГЖХ.

2,5-Гександион (2) выдерживают в 2 н. водном растворе HCl в 50% этаноле в условиях, аналогичных описанным выше, используя 0.57 г (5 ммоль) гександиона **2**. Через 2 ч к раствору добавляют 0.48 г (5 ммоль) диметилфурана **1** (рис. 3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. И. Губина, В. И. Лабунская, Г. К. Корниенко, Л. А. Бородина, В. Г. Харченко, *XTC*, 624 (1995).
- 2. T. I. Gubina, A. N. Pankratov, V. I. Labunskaya, V. G. Kharchenko, in *Abstr. of 36-th Congr. IUPAC*, Geneva, Swizerland, 1997, p. 494.
- 3. Д. Гарел, О. Гарел, Колебательные химические реакции, Мир, Москва, 1986.
- 4. А. Гиллем, Е. Штерн, Электронные спектры поглощения органических соединений, Изд-во иностр. лит., Москва, 1957.
- 5. Т. И. Губина, А. Н. Панкратов, В. И. Лабунская, С. П. Воронин, В. Г. Харченко, *XTC*, 1035 (1997).
- 6. В. Г. Харченко, Т. И. Губина, И. А. Маркушина, *ЖОрХ*, **18**, 394 (1982).

Саратовский государственный технический университет, Саратов 410054, Россия e-mail: aus@sstu.saratov.su Поступило в редакцию 03.01.2002 После доработки 25.10.2002

^аСаратовский государственный университет, Саратов 410026, Россия

⁶Саратовский военный институт радиационной, химической и биологической защиты, Саратов 410005, Россия