Е. А. Кайгородова, В. К. Василин, Е. А. Сидорова, В. Е. Заводник, Г. Д. Крапивин

АЛКИЛИРОВАНИЕ 6-МЕТИЛ-4-МЕТОКСИМЕТИЛ-3-ЦИАНО-2(1Н)-ПИРИДОНА ГАЛОГЕНМЕТИЛЕНАКТИВНЫМИ СОЕДИНЕНИЯМИ. МОЛЕКУЛЯРНАЯ СТРУКТУРА 3-АМИНО-2-БЕНЗОИЛ-6-МЕТИЛ-4-МЕТОКСИМЕТИЛФУРО[2,3-*b*]ПИРИДИНА

Изучено алкилирование 6-метил-4-метоксиметил-3-циано-2(1Н)-пиридона галогенметиленактивными соединениями. Показано, что взаимодействие пиридона с метил- и этилхлорацетатами, фенацил- и *n*-бромфенацилбромидами протекает с образованием N- и О-структурных изомеров. При алкилировании пиридона иодацетамидом и Nзамещенными хлорацетамидами из реакционной смеси выделены лишь N-производные. Установлено, что 2-ароилметил-6-метил-4-метоксиметил-3-цианопиридины циклизуются под действием КОН в 3-амино-2-ароил-6-метил-4-метоксиметилфуро[2,3-*b*]пиридины. Молекулярная структура 3-амино-2-бензоил-6-метил-4-метоксиметилфуро[2,3-*b*]пиридина исследована методом PCA.

Ключевые слова: 2-ароилметокси-3-цианопиридины, фуро[2,3-*b*]пиридин, 3-циано-2(1H)-пиридоны, алкилирование, молекулярная структура.

Интерес к 3-циано-2(1Н)-пиридонам и их производным обусловлен широким спектром их практического использования (лекарственные препараты, витамины, пигменты, красители, полупродукты тонкого органическго синтеза) [1–4]. Алкилирование 6-метил-4-метоксиметил-3-циано-2(1Н)-пиридона (1) галогеналкилами, хлористым бензилом и аллилом исследовано нами ранее. Выявлена антивирусная активность ряда синтезированных продуктов [5]. Целью настоящей работы явилось изучение взаимодействия пиридона 1 с галогенметиленактивными соединениями.

3-Циано-2(1Н)-пиридоны в растворе в присутствии оснований образуют амбидентные анионы, алкилирование которых может проходить как по атому азота ("мягкий" нуклеофильный центр) по механизму $S_N 2$, так и по атому кислорода ("жесткий" нуклеофильный центр) по механизму $S_N 1$ [6, 7] (схема 1).

В качестве алкилирующих агентов нами использованы метиловый и этиловый эфиры хлоруксусной кислоты **2a** и **2b**, иодацетамид **2c**, замещенные амиды хлоруксусной кислоты **2d–k**, фенацил- и *n*-бромфенацилбромиды **2l** и **2m**. Реакцию проводили в ДМФА в присутствии эквимолярного количества КОН при соотношении реагентов пиридон–алкилирующий агент, 1:1.

Схема 1

2–4 a R = COOMe, **b** R = COOEt; **2**, **3 c** R = CONH₂, **d** R = CONHPh, **e** R = CONHC₆H₃Cl₂-2,4, **f** R = CONHC₆H₄CF₃-3, **g** R = CONHC₆H₄CF₃-2, **h** R = CONHC₆H₄F-4, **i** R = CONHC₆H₄OMe-4, **j** R = CONHC₆H₄COMe-4, **k** R = CONHC₁₀H₇-1; **2l**, **3l**, **4c** R = COPh, **2m**, **3m**, **4d** R = COC₆H₄Br-4; **2 a**, **b**, **d**-k X = Cl, **c** X = I, **l**, **m** X = Br

Как показали наши исследования, взаимодействие пиридона 1 с метили этилхлорацетатом и фенацилбромидом протекает по его двум реакционным центрам с образованием смеси N- и О-структурных изомеров соответственно **3a,b,l,m** и **4a–d**. Продукты удалось разделить, используя их различную растворимость в неполярных растворителях. Экстракцией горячим гексаном смеси структурных изомеров, образующихся в результате реакции, были выделены О-производные **4a–c**. Остатки после экстракции содержали N-замещенные пиридоны **3a,b,l,m**.

При алкилировании пиридона 1 иодацетамидом и N-замещенными хлорацетамидами 2d-k из реакционной смеси удалось выделить лишь соответствующие N-производные 3c-k. Завершение реакции в этом случае проходит в гетерогенной системе. Анализ реакционной смеси методом TCX и сырых продуктов методом спектроскопии ЯМР ¹Н не обнаружил наличия О-структурных изомеров. Можно предположить, что атом углерода амидной группы иодацетамида и N-замещенных хлорацетамидов является более "мягким" электрофильным центром по сравнению с атомами углерода карбонильной группы фенацил- и *n*-бромфенацилбромидов и алкоксикарбонильной группы хлорацетатов и атакует "мягкий" нуклеофильный центр пиридона 1 с образованием изомеров только одного типа – N-алкилпроизводных.

Полученные N-замещенные 6-метил-4-метоксиметил-3-циано-2-пиридоны **За-т** и 6-метил-4-метоксиметил-3-циано-2-алкоксипиридины **4a-d** – бесцветные кристаллы, причем О-производные имеют более низкие температуры плавления, чем соответствующие им N-изомеры (табл. 1).

В ИК спектрах полученных N-алкилпроизводных наличие интенсивных полос $v_{C=0}$ при 1625–1660 см⁻¹ указывает на сохранение циклической амидной карбонильной группы в шестичленном цикле, в отличие от ИК спектров соответствующих алкоксипиридинов, где присутствует лишь полоса поглощения карбонильной группы заместителя в положении 2 (табл. 2).

Таблица 1

Физико-химические и спектральные характеристики соединений 3-5

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	УФ спектр, λ _{max} , нм (lg ε)	Выход, %
нение	формула	С	Н	Ν			
3 a	$C_{12}H_{14}N_2O_4$	<u>57.54</u> 57.59	<u>5.60</u> 5.64	<u>11.17</u> 11.19	138–139	218 (4.12), 2340 (4.02)	29
3b	$C_{13}H_{16}N_2O_4$	<u>59.26</u> 59.08	<u>6.13</u> 6.10	<u>10.55</u> 10.60	129–130	218 (4.14), 340 (4.01)	26
3c	$C_{11}H_{13}N_3O_3$	<u>56.31</u> 56.16	<u>5.59</u> 5.57	<u>17.79</u> 17.86	272–273	230 (4.35), 343 (4.15)	85
3d	$C_{17}H_{17}N_3O_3$	<u>65.56</u> 65.58	<u>5.48</u> 5.50	<u>13.47</u> 13.50	178–179	243 (4.40), 344 (4.08)	91
3 e	$C_{17}H_{15}Cl_2N_3O_3$	<u>53.65</u> 53.70	<u>3.99</u> 3.98	$\frac{11.01}{11.05}$	239–240	250 (4.17), 343 (4.01)	89
3f	$C_{18}H_{16}F_3N_3O_3$	<u>56.93</u> 56.99	<u>4.23</u> 4.25	<u>11.02</u> 11.08	195–196	209 (4.60), 245 (4.52), 343 (4.21)	86
3g	$C_{18}H_{16}F_3N_3O_3$	<u>56.94</u> 56.99	$\frac{4.19}{4.25}$	<u>10.99</u> 11.08	227–228	274 (3.61). 344 (3.94)	87
3h	$C_{17}H_{16}FN_{3}O_{3}$	$\frac{62.04}{62.00}$	$\frac{4.89}{4.90}$	$\frac{12.73}{12.76}$	193–194	247 (3.37), 345 (3.65)	65
3i	$C_{18}H_{19}N_3O_4$	$\frac{63.31}{63.33}$	<u>5.58</u> 5.61	$\frac{12.28}{12.31}$	240–241	250 (3.32), 294 (3.86), 344 (4.02)	79

3ј	$C_{19}H_{19}N_3O_4$	<u>64.53</u> 64.58	<u>5.39</u> 5.42	<u>11.84</u> 11.89	187–188	290 (4.31), 340 (4.06)	82
3k	$C_{21}H_{19}N_3O_3$	<u>69.76</u> 69.79	<u>5.31</u> 5.30	<u>11.58</u> 11.63	201-202	254 (4.17), 345 (4.07)	86
31	$C_{17}H_{16}N_2O_3$	<u>69.12</u> 68.91	<u>5.47</u> 5.44	<u>9.42</u> 9.45	143–144	215 (4.17), 340 (4.01)	33
3m	$C_{17}H_{15}BrN_2O_3$	<u>54.40</u> 54.42	$\frac{4.00}{4.03}$	<u>7.44</u> 7.47	163 (возг.)	214 (4.21), 261 (4.16), 345 (3.82)	25
4a	$C_{12}H_{14}N_2O_4$	<u>57.55</u> 57.59	<u>5.62</u> 5.64	<u>11.15</u> 11.19	69–70	207 (4.45), 242 (4.25), 295 (3.90)	29
4b	$C_{13}H_{16}N_2O_4$	<u>59.00</u> 59.08	<u>6.07</u> 6.10	$\frac{10.63}{10.60}$	49–50	207 (4.46), 242 (4.28), 295 (3.93)	18
4c	$C_{17}H_{16}N_2O_3$	<u>69.10</u> 68.91	<u>5.45</u> 5.44	<u>9.44</u> 9.45	79–80	208 (4.23), 234 (3.90), 293 (3.93)	24
4d	$C_{17}H_{15}BrN_2O_3$	<u>54.39</u> 54.42	$\frac{4.01}{4.03}$	<u>7.45</u> 7.47	119–120	210 (4.52), 259 (4.36), 294 (4.01)	26
5a	$C_{17}H_{16}N_2O_3$	<u>68.94</u> 68.91	<u>5.41</u> 5.44	<u>9.43</u> 9.45	132–133	209 (4.17), 253 (4.21), 304 пл. (4.18), 390 (4.20)	30
5b	$C_{17}H_{15}BrN_2O_3$	<u>54.38</u> 54.42	$\frac{4.03}{4.03}$	<u>7.43</u> 7.47	157–158	206 (4.22), 259 (4.19), 317 (4.07), 400 (4.18)	28

Таблица 2

Соели-	ИК спектр, v, см ⁻¹			Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)				м. д. (<i>J</i> , Гц)	
нение	C≡N	C=O	N–H	CH ₃ , c	О–СН ₃ , С	О–СН ₂ , с	СН ₂ СО–, с	H _{Py,} c	Другие сигналы
3a	2205	1725, 1645	-	2.44	3.47	4.49	4.85	6.43	3.77 (3H, c, COOCH ₃)
3b	2220	1725, 1660	-	2.38	3.47	4.52	4.78	6.42	1.30 (3H, т, <i>J</i> = 7.1, OCH ₂ <u>CH₃</u>); 4.25 (2H, кв, <i>J</i> = 7.1, O <u>CH₂</u> CH ₃)
3c	2215	1680, 1640	3360, 3200	2.39	3.40	4.52	4.94	7.03	7.26 (2H, уш. с, NH ₂)
3d	2205	1640, 1625	3310, 3130	2.49	3.44	4.49	4.90	6.42	7.03 (1H, \exists , \exists , $J_{4,3} = J_{4,5} = 8.5$, H-4); 7.34 (2H, \exists , $J_{3,4} = J_{3,2} = J_{5,4} = J_{5,6} = 8.5$, H-3,5); 7.57 (2H, \exists , $J_{2,3} = J_{6,5} = 8.5$, H-2,6); 10.23 (1H, ym. c, NH)
3e	2210	1650	3370, 3260	2.48	3.47	4.49	5.04	6.41	7.28 (1H, д, <i>J</i> = 8.6, H-6); 7.44 (1H, c, H-3); 7.90 (1H, д, <i>J</i> = 8.6, H-5); 9.82 (1H, уш. с, NH)
3f	2210	1650	3265, 3220	2.50	3.48	4.49	4.92	6.42	7.31 (1H, д, $J_{4,5}$ = 8.8, H-4); 7.47 (1H, д. д, $J_{5,4}$ = 8.8, $J_{5,6}$ = 8.8, H-5); 7.78 (1H, д, $J_{6,5}$ = 8.8, H-6); 8.02 (1H, c, H-2); 10.59 (1H, yш. c, NH)
3g	2210	1650	3270, 3220	2.44	3.44	4.47	4.98	6.39	7.37 (1H, м, <i>J</i> _{4,CF3} = 6.0, <i>J</i> _{4,3} = 9.0, H-4); 7.57 (1H, с, H-5); 7.59 (1H, уш. с, H-6); 7.65 (1H, д, <i>J</i> _{3,4} = 9.0, H-3); 9.80 (1H, уш. с, NH)
3h	2210	1630	3280, 3230, 3160	2.49	3.45	4.47	4.88	6.41	6.96 (2Н, д, <i>J</i> = 8.8, Н-3,5); 7.08 (2Н, д, <i>J</i> = 8.8, Н-2,6); 10.25 (1Н, уш. с, NH)
3i	2200	1630	3240, 3180	2.48	3.45	4.47	4.88	6.41	3.74 (3H, c, ArOCH ₃); 6.80 (2H, д, <i>J</i> = 8.8, H-3,5); 7.48 (2H, д, <i>J</i> = 8.8, H-2,6); 10.09 (1H, уш. c, NH)

Спектральные характеристики соединений 3–5

1674

3j	2200	1690, 1660 1625	3280	2.49	3.47	4.49	4.93	6.42	2.50 (3H, c, ArCOCH ₃); 7.71 (2H, д, <i>J</i> = 8.7, H-2,6); 7.88 (2H, д, <i>J</i> = 8.7, H-3,5); 10.58 (1H, уш. c, NH)
3k	2200	1625	3295, 3200	2.52	3.47	4.49	5.12	6.41	7.47 (1H, μ , μ , $J_{6,5} = 8.3$, $J_{6,7} = 8.3$, H-6); 7.51 (1H, μ , μ , $J_{3,2} = 8.3$, $J_{3,4} = 8.3$, H-3); 7.55 (1H, μ , μ , $J_{7,6} = 8.3$, $J_{7,8} = 8.3$, H-7); 7.70 (1H, μ , $J_{2,3} = 8.3$, H-2); 7.79 (1H, μ , $J_{4,3} = 8.3$, H-4); 7.87 (1H, μ , $J_{5,6} = 8.3$, H-5); 8.18 (1H, μ , $J_{8,7} = 8.3$, H-8); 10.22 (1H, ym. c, NH)
31	2210	1680, 1630	-	2.35	3.50	4.54	5.53	6.46	7.48–8.08 (5Н, м, Н _{Рh})
3m	2200	1630	-	2.36	3.47	4.50	5.63	6.46	7.75 (2H, д, <i>J</i> = 8.9, H-3,5); 8.10 (2H, д, <i>J</i> = 8.9, H-2,6)
4 a	2210	1725, 1640	-	2.48	3.47	4.56	4.99	7.08	5.01 (3H, c, COOCH ₃)
4b	2220	1725, 1640	_	2.39	3.40	4.52	4.93	7.03	1.21 (3H, T , $J = 7.1$, OCH ₂ <u>CH₃</u>); 4.25 (2H, κ_B , $J = 7.1$, O <u>CH₂</u> CH ₃)
4c	2220	1705	-	2.35	3.43	4.58	5.84	7.07	7.55–8.00 (5Н, м, С ₆ Н ₅)
4d	2220	1695	-	3.35	3.45	4.58	5.75	7.03	7.70 (2H, д, <i>J</i> = 8.8, H-3,5); 7.92 (2H, д, <i>J</i> = 8.8, H-2,6)
5a	-	1610	3455, 3340	2.57	3.45	4.84	-	7.48	7.02 (2H, уш. с, NH ₂); 7.48–8.20 (5H, м, H _{Ph})
5b	-	1605	3330, 3460	2.60	3.46	4.84	-	7.12	7.05 (2H, уш. с, NH ₂); 7.67 (1H, д, <i>J</i> = 8.8, H-3,5); 8.11 (2H, д, <i>J</i> = 8.8, H-2,6)

Спектры ЯМР ¹Н продуктов алкилирования пиридона **1** неинформативны для установления их структуры (табл. 2). Однако сопоставление спектров N- и О-изомеров позволяет отметить, что сигнал протона пиридинового кольца О-производных **4а**–**d** находится в более слабом поле ($\Delta \delta = 0.61-0.65$ м. д.), что, очевидно, связано с образованием в цикле ароматической системы сопряжения.

Обращают на себя внимание необычное положение и мультиплетность сигналов протонов в орто-трифторметилфенильном заместителе соединения **3**g. Сигнал протона H-6 сильно уширен по сравнению с остальными сигналами. Уширение сигнала Н-6, возможно, обусловлено внутримолекулярным контактом с орто-карбонильной ациламидной группой. Необычны положение и мультиплетность сигнала протона H-4 фенильного кольца. Сигнал этого протона смещен в сильное поле по сравнению с другими протонами кольца, очевидно, в результате электронодонорного влияния расположенной в пара-положении аминогруппы. Высокая мультиплетность протона H-4, возможно, обусловлена, с одной стороны, спинспиновым взаимодействием с соседним орто-протоном Н-3 (сигнал последнего дублет с КССВ $J = 9.0 \, \Gamma \mu$ – типичной для *орто*-протонов), но не с соседним (тоже орто) протоном Н-5, сигнал которого – синглет. С другой стороны, дополнительное расщепление сигнала протона Н-4, вероятно, обусловлено дальним спин-спиновым взаимодействием через W₅ систему σ-связей с атомами фтора трифторметильной группы, КССВ имеет высокое значение ${}^{5}J_{H-F} = 6.0$ Гц.

В УФ спектрах N-замещенных 3-циано-2(1Н)-пиридонов (табл. 1) положение длинноволновой полосы поглощения, соответствующей π - π *-переходу системы сопряжения пиридонового цикла, практически не меняется по сравнению со спектром исходного 2(1Н)-пиридона, в то время как в спектрах О-производных λ_{max} смещается гипсохромно до 295–293 нм ($\Delta\lambda \sim 40$ нм). Появляющийся дополнительный максимум поглощения в области 234–242 нм в спектрах соединений **4a**-**d** связан с π - π *-переходом в ароматической системе сопряжения пиридинового кольца.

Нами обнаружено, что при алкилировании пиридона 1 фенацил- и *n*-бромфенацилбромидом в присутствии основания (КОН или EtONa) в большем количестве, чем эквимолярное, в реакционной смеси образуются фуро[2,3-*b*]пиридины **5**a,b – продукты изомеризации по Торпу–Циглеру соответствующих О-алкилпроизводных. Подобное отмечали также авторы [8]. В то же время нами не обнаружено циклизации N-алкилпроизводных в индолизины, на что указывали авторы работы [8] (схема 2).

По нашим данным, при использовании алкилхлорацетатов для алкилирования пиридона 1 реакция заканчивается на стадии образования продуктов алкилирования, но не циклизации последних, независимо от того, применяли ли избыток щелочи или нет.

Фуро[2,3-*b*]пиридины **5** в отличие от нециклических изомеров **4** – яркожелтые кристаллические вещества, хорошо растворимые в полярных растворителях. Появление полосы поглощения в видимой области 390–400 нм в спектрах фуропиридинов **5** характеризует π - π *-переход в образовавшей-ся единой системе сопряжения в молекуле (табл. 1).

ИК спектры фуропиридинов 5 содержат полосы поглощения амино- и карбонильной групп, однако сигнал последней под влиянием аминосоставляющей сопряженной системы смещается в область более низких частот (1610–1605 см⁻¹).

В спектрах ЯМР ¹Н продуктов циклизации **5а,b** по сравнению со спектрами соответствующих О-алкилпроизводных **4с,d** взамен сигналов протонов группы О–СН₂ появляется уширенный сигнал протонов аминогруппы, соответственно, при 7.02 и 7.05 м. д. Кроме того, наблюдаются характерные изменения в положении сигналов соответствующих протонов до и после циклизации.

Схема 3

В масс-спектрах соединений **5а,b** имеются интенсивные пики молекулярных ионов, положительный заряд которых локализован, вероятно, преимущественно на аминофурильном фрагменте. Процесс распада ионов $[M]^+$ **5а,b** (схема 3) протекает однотипно с элиминированием на первой стадии метильной группы (Φ_1) или метанола (Φ_2). Стабилизация этих

ионов осуществляется за счет *пери*-взамодействия с аминогруппой. Далее ион Φ_1 элиминирует молекулу ароматического заместителя с образова-

нием иона Φ_3 , а в ионе Φ_2 распадается фурановое кольцо с выбросом фрагмента ArCOCO с миграцией атомов водорода и образованием иона Φ_4 .

Как и следовало ожидать, в масс-спектрах обоих соединений присутствуют также интенсивные пики ионов ArCO⁺ и Ar⁺.

Структура 3-амино-2-бензоил-6-метил-4-метоксиметилфуро[2,3*b*]пири-дина (**5a**) исследована методом РСА (рисунок).

Проведенное исследование позволило выявить в кристаллическом состоянии четыре внутримолекулярных контакта, два из которых O(1)...H(15) и O(3)...H(11), видимо, следует трактовать как необычные внутримолекулярные водородные связи с участием атома водорода, связанного с sp^2 -гибридизованным атомом углерода, в то время как O(2)...H(2n) и O(3)...H(3n) – типичные водородные связи. Шестичленный экзоцикл, содержащий водородную связь O(3)...H(3n), неплоский и имеет следующие параметры: длина 2.218 Å, угол N(2)–H(3n)...O(3) 122.5°, угол C(9)–O(3)...H(3n) 104.4°. Параметры других внутримолекулярных контактов: длина связи O(1)...H(15) 2.176 Å, углы C(6)–O(1)...H(15) и O(1)...H(15)–C(15), соответственно, 100.0 и 127.9°. Длина водородной связи O(2)...H(2n): 1.957 Å, угол C(8)–O(2)...H(2n) 111.2°, угол N(2)–H(2n)...O(2) 155.0°; длина контакта O(3)...H(11) 2.392 Å, угол C(9)–O(3)...H(11) 84.0°, угол C(11)–H(11)...O(3) 100.8°.

Проекция пространственной структуры молекулы 3-аминофуро[2,3-b]пиридина 5а

Chara	<i>d</i> , <i>1</i>	Å	Cogay	<i>d</i> , Å	
Связь	PCA	AM1	Связь	PCA	AM1
C(1)–C(2)	1.400(6)	1.421	C(6)–C(9)	1.412(6)	1.449
C(1)-C(16)	1.498(7)	1.496	C(9)–C(10)	1.507(4)	1.477
C(2)–C(3)	1.380(6)	1.396	C(10)–C(11)	1.390	1.402
C(3)–C(4)	1.407(5)	1.395	C(11)-C(12)	1.390	1.393
C(3)–C(8)	1.507(6)	1.493	C(12)-C(13)	1.390	1.395
C(4)–C(5)	1.447(5)	1.462	C(13)-C(14)	1.390	1.395
C(4)–C(7)	1.385(5)	1.440	C(14)–C(15)	1.390	1.394
C(5)–C(6)	1.391(5)	1.403	C(15)-C(10)	1.390	1.399
N(1)–C(1)	1.336(5)	1.355	O(1)–C(7)	1.354(5)	1.394
N(1)–C(7)	1.326(5)	1.352	O(2)–C(8)	1.383(5)	1.430
N(2)–C(5)	1.344(5)	1.362	O(2)–C(17)	1.416(6)	1.419
O(1)–C(6)	1.409(4)	1.419	O(3)–C(9)	1.247(4)	1.247

Экспериментальные (PCA) и рассчитанные (AM1) межатомные расстояния в молекуле фуро[2,3-*b*]пиридина 5а

Таблица 4

· · · · · ·								
Игол	θ, гра	ад.	VEOR	θ, град.				
91051	PCA		91051	PCA	AM1			
C(7)–O(1)–C(6)	105.9(3)	105.7	N(2)-C(5)-C(4)	127.1(4)	126.4			
C(7)–N(1)–C(1)	113.9(4)	114.1	C(6)-C(5)-C(4)	106.6(4)	106.3			
N(1)-C(1)-C(2)	122.6(4)	123.9	C(5)-C(6)-O(1)	109.7(3)	111.4			
C(3)–C(2)–C(1)	122.3(5)	120.9	C(5)-C(6)-C(9)	127.8(4)	128.7			
C(2)-C(3)-C(4)	115.6(4)	117.0	N(1)-C(7)-C(4)	128.8(4)	126.3			
C(7)–C(4)–C(3)	116.8(4)	117.8	O(1)-C(7)-C(4)	112.7(4)	111.0			
C(7)–C(4)–C(5)	105.1(4)	105.5	O(3)–C(9)–C(6)	117.4(4)	119.0			
C(3)-C(4)-C(5)	138.1(4)	136.8	O(3)-C(9)-C(10)	118.5(4)	120.9			
N(2)-C(5)-C(6)	126.2(4)	127.1	C(15)-C(10)-C(9)	123.8(2)	122.2			
O(3)-C(9)-C(10)-C(11)*	-7.0	-30.8	O(2)-C(8)-C(3)-C(4)*	33.6	58.3			
H(2n)-N(2)-C(5)-C(4)*	-11.8	-26.4	C(5)-C(6)-C(9)-O(3)*	-2.8	-2.4			

Некоторые валентные (θ) и торсионные (ψ) углы в молекуле соединения 5а

* Торсионные углы и их значения.

Атом	Электронная плотность	Атом	Электронная плотность	Атом	Электронная плотность
C(1)	0.031	C(9)	0.356	C(16)	-0.179
C(2)	-0.214	C(10)	-0.133	C(17)	-0.080
C(3)	0.033	C(11)	-0.078	N(1)	-0.125
C(4)	-0.172	C(12)	-0.147	N(2)	-0.319
C(5)	0.141	C(13)	-0.105	O(1)	-0.068
C(6)	-0.226	C(14)	-0.145	O(2)	-0.282
C(7)	0.106	C(15)	-0.074	O(3)	-0.343
C(8)	0.004				

Распределение электронной плотности в молекуле соединения 5а (по результатам расчета методом AM1)*

* HyperChem вычисляет плотность заряда на атоме как сумму молекулярных орбитальных плотностей, каждая из которых является квадратом орбитальной волновой функции.

Таблицаб

Координаты атомов*	(×10 ⁴) и эквивалентные изотропные тепловые параметры
	$U_{ m eq}$ (×10 ³) в молекуле соединения 5а

Атом	x	у	Z	$U_{ m eq},{ m \AA}^2$
O(1)	4641(2)	2622(4)	3526(1)	58(1)
O(2)	3169(2)	-902(4)	4853(1)	76(1)
O(3)	5396(2)	5431(4)	4461(1)	60(1)
N(1)	3975(3)	-54(6)	3196(1)	62(1)
N(2)	4452(3)	2087(7)	4713(1)	60(1)
C(1)	3556(3)	-1751(7)	3271(2)	62(1)
C(2)	3338(3)	-2407(8)	3700(2)	58(1)
C(3)	3562(3)	-1367(6)	4078(1)	50(1)
C(4)	4016(3)	411(6)	4004(1)	47(1)
C(5)	4419(3)	1958(6)	4266(1)	47(1)
C(6)	4806(3)	3262(6)	3965(1)	50(1)
C(7)	4187(3)	912(6)	3565(1)	51(1)
C(8)	3357(4)	-2261(8)	4526(2)	65(1)
C(9)	5308(3)	4971(6)	4061(1)	50(1)
C(10)	5749(2)	6244(4)	3712(1)	48(1)
C(11)	6136(2)	7969(4)	3863(1)	62(1)
C(12)	6566(2)	9220(4)	3564(1)	78(2)
C(13)	6610(2)	8746(5)	3114(1)	79(2)
C(14)	6223(2)	7021(5)	2963(1)	78(2)
C(15)	5793(2)	5770(4)	3262(1)	67(1)
C(16)	3358(6)	-2964(13)	2868(2)	93(2)
C(17)	2944(5)	-1745(9)	5269(2)	74(2)

* Координаты атомов водорода не приведены и могут быть получены у авторов.

Связь C(5)–N(2) вследствие участия неподеленной электронной пары атома азота аминогруппы в системе сопряжения значительно укорочена (1.344(5) Å). Связь C=O, напротив, несколько удлинена, что во многом определяется взаимным влиянием этих группировок. Угол между плоскостями бензольного и фуропиридинового цикла составляет 6.3°. В свою очередь, фуропиридиновый фрагмент является практически плоским (среднее отклонение от плоскости 0.016 Å). Угол между плоскостями фуранового и пиридинового циклов равен 2.6°.

Геометрические параметры в молекуле соединения **5a** были определены также путем квантово-химического расчета. Для проведения расчетов выбран полуэмпирический метод AM1 (пакет прикладных программ HyperChem v.5.01), дающий наиболее достоверные результаты именно для гетероциклических соединений [9].

Экспериментальные (PCA) и рассчитанные (AM1) межатомные расстояния (за исключением связей С–Н) представлены в табл. 3. В табл. 4 приведены некоторые валентные и торсионные углы рассматриваемой молекулы.

Сопоставление геометрических параметров молекулы соединения **5a**, полученных методами PCA и AM1, показывает их высокую сходимость. Значительное расхождение с экспериментальными значениями отмечено лишь для торсионных углов C(4)-C(3)-C(8)-O(2) и O(3)-C(9)-C(10)-C(11) (реальная молекула в существенно большей степени уплощена, чем ее AM1 структура), что вероятно, является результатом межмолекулярного взаимодействия в кристалле, которое не учитывается при расчете.

Суммарные заряды на атомах исследуемой молекулы, вычисленные по методу АМ1, приведены в табл. 5.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры записаны на приборах Specord UV-vis и Specord M-40 в этаноле. ИК спектры сняты на спектрофотометре Specord 71 UR-20 для суспензий в вазелиновом масле, спектры ЯМР ¹H – на приборе Bruker WM-250 (250 МГц) в ДМСО-d₆, масс-спектры – на приборе Varian MAT (70 эВ). Контроль за ходом реакции и индивидуальностью конечных продуктов осуществлялся методом TCX на пластинках Silufol UV-254; элюенты диоксан–ацетон–аммиак, 10:10:3; гексан–ацетон, 1:1. Проявление парами иода.

Рентгеноструктурное исследование монокристалла соединения 5а с линейными размерами 0.52 × 0.26 × 0.05 мм проведено при 20 °С на автоматическом 4-кружном дифрактометре Enraf–Nonius CAD-4 (Мо K_{α} -излучение, отношение скоростей сканирования $\omega/2\theta = 1.36$, $\theta = 22.85^{\circ}$, сегмент сферы $0 \le h \le 15$, $-0 \le k \le 7$, $-0 \le l \le 30$). Всего было собрано 1535 отражений, из которых 925 являются симметрически независимыми ($R_{int} = 0.0358$). Кристаллы соединения 5а *орто*-ромбические, a = 14.378(3), b = 6.9020(10), c = 29.985(6) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 2975.6(10) Å³, M = 296.32, Z = 8, $d_{выч} = 1.323$ г/см³, $\mu = 0.092$ мм⁻¹, пространственная группа *Pbca*. Структура расшифрована прямым методом и уточнена MHK в полноматричном анизотропном приближении с использованием комплекса программ SHELXTL [10] и уточнена с использованием 925 независимых отражений с $I > 2\sigma(I)$ до факторов расходимости $R_1 = 0.0387$ и $wR_2 = 0.0958$. Координаты атомов приведены в табл. 6.

N-Бензоилметил-6-метил-4-метоксиметил-3-циано-2-пиридон (31) и 2-бензоилметил-6-метил-4-метоксиметил-3-цианопиридин (4с). К суспензии 3.56 г (0.02 моль) пиридона 1 в 35 мл ДМФА добавляют 11.2 мл 10% водного раствора КОН (0.02 моль) и перемешивают реакционную массу при температуре 50–55 °C до гомогенизации. Затем вносят 3.98 г (0.02 моль) фенацилбромида и перемешивают еще 1 ч. Растворитель упаривают наполовину и после охлаждения реакционную массу разбавляют 15 мл воды. 1681 Выпавший осадок отделяют, сушат и экстрагируют горячим петролейным эфиром. После упаривания петролейного эфира получают 1.42 г (24%) соединения **4c**. Остаток перекристаллизовывают из этанола и получают 1.98 г (33%) продукта N-алкилирования **3l**.

Соединения За,b,т и 4а,b,d получают аналогично.

N-(N-Фенилкарбамоилметил)-6-метил-4-метоксиметил-3-циано-2-пиридон (3d). Смесь 1.78 г (0.01 моль) пиридона 1, 25 мл ДМФА, 5.6 мл 10% водного раствора КОН (0.01 моль) и 1.70 г (0.01 моль) N-фенилхлорацетамида кипятят в течение 7 ч. После охлаждения реакционную смесь разбавляют двукратным количеством воды. Осадок отделяют, промы-вают водой, сушат и перекристаллизовывают из спирта. Выход 2.83 г (91%).

Соединения Зс,е-к получают аналогично.

3-Амино-2-бензоил-6-метил-4-метоксиметилфуро[2,3-*b***]пиридин** (**5a**). К суспензии 3.56 г (0.02 моль) пиридона **1** в 35 мл ДМФА добавляют 11.2 мл 10% водного раствора КОН (0.02 моль) и перемешивают реакционную массу при температуре 50–55 °С до гомогенизации. Затем вносят 3.98 г (0.02 моль) фенацилбромида и перемешивают 30 мин. Далее прибавляют 11.2 мл 10% водного раствора КОН (0.02 моль) в течение 30 мин. Через 10 мин после охлаждения реакционной массы образовавшиеся кристаллы фуропиридина **5a** отделяют, промывают горячей водой и перекристаллизовывают из этанола. Выход 1.78 г (30%). Масс-спектр, *m/z* (*I*, %): 296 [М]⁺ (58), 295 (40), 281 (10), 265 (12), 264 (6), 263 (19), 235 (12), 203 (13), 131 (9), 119 (5), 105 (44), 104 (14), 78 (10), 77 (100), 65 (11).

Фуро[2,3-*b*]**пиридин 5b** получают аналогично. Масс-спектр, *m/z* (*I*, %): 374* (73), 359* (12), 342* (28), 263 (8), 203 (10), 183* (100), 155* (37), 131 (9), 119 (3) (звездочкой обозначены ионы, содержащие ⁷⁹Вг).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. П. Литвинов, С. Г. Кривоколыско, В. Д. Дяченко, *ХГС*, 579 (1999).
- V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, A. Senning, *Sulfur Reports*, No. 13, 1 (1992).
- 3. V. P. Litvinov, Phosphorus, Sulfur and Silicon, 74, 139 (1993).
- 4. Т. П. Косулина, Е. А. Кайгородова, В. Г. Кульневич, А. Я. Сапунов, С. В. Говорова, *Хим.-фарм. журн.*, № 4, 30 (1990).
- 5. В. Г. Кульневич, Е. А. Кайгородова, И. С. Арустамова, Л. В. Коробченко, Г. В. Владыко, Е. И. Бореко, *Хим.-фарм. журн.*, № 2, 132 (1990).
- 6. З. А. Бомика, М. Б. Андабурская, Э. Ю. Пелчер, Г. Я. Дубур, *XГС*, 1089 (1976).
- 7. N. Kornblum, R. A. Smiley, R. K. Blackwood, J. Am. Chem. Soc., 77, 6269 (1955).
- 8. K. Gewald, H. J. Jansch, J. Prakt. Chem., 318, 313 (1976).
- 9. В. И. Минкин, Б. Я. Симкин, Р. М. Миняев, *Теория строения молекул*, Феникс, Ростовна-Дону, 1979.
- G. M. Sheldrick, *Computational Crystallography*, Oxford Univ. Press, New York, 1982, 506.

Кубанский государственный технологический университет, Краснодар 350072, Россия e-mail: organics@kubstu.ru Поступило в редакцию 06.02.2003