Е. О. Гогричиани, Е. А. Кацадзе, Н. Г. Гавтадзе, Ш. А. Самсония, Х. Дюрр^а

ПРОИЗВОДНЫЕ ИНДОЛА

143*. СИНТЕЗ ФОТОХРОМНЫХ ПРОИЗВОДНЫХ 2-АРИЛИНДОЛОВ

Синтезированы новые производные 2-арилиндолов, содержащие (4-пиридил)алкильные заместители в различных положениях пиррольного цикла, которые реагируют с 2,3-диметоксикарбонилпирофлуоренилциклопропеном с образованием светочувствительных систем, принадлежащих к классу фотохромных дигидроиндолизинов.

Ключевые слова: 2-арилиндолы, дигидроиндолизины, пиридилиндолы, фотохромизм.

Фотохромные дигидроиндолизины составляют богатый и разносторонний класс светочувствительных соединений [2, 3]. Среди множества фотохромных материалов они отличаются высокой эффективностью, экономичностью и доступностью, что является основой возможности их потенциального применения в оптических линзах, для записи и хранения информации [4], в дентальных материалах [5].

В настоящей работе описаны синтез и фотохромные свойства новых 2-арилиндольных систем, содержащих дигидроиндолизиновое кольцо. Нам представлялось актуальным сочетание качественных особенностей 2-арилиндолов, являющихся фундаментальным звеном многих биологически активных систем [6, 7], и фотохромных молекул. Модельные системы такого типа перспективны для применения в качестве маркермолекул при изучении биологических процессов.

Стандартным и эффективным методом получения фотохромных дигидроиндолизинов является присоединение электроноизбыточных N-гетероциклических оснований к спироциклопропену. Такими основаниями для нас послужили синтезированные нами 1- и 3-(4-пиридил)алкилзамещенные 2-арилиндолы **4a–d**, **5a–c**.

Индолпиридин является основным структурным элементом многих природных продуктов [8], среди которых имеются противоопухолевые [9], антидиабетические [10] агенты. Исходя из этого, соединения **4a**–**d**, **5a**–**c** интересны сами по себе как возможные биологически активные вещества.

Синтез исходных оснований **4а–d**, **5а–с** осуществлен путем алкилирования соответствующих 2-арилиндолов, полученных по методу Фишера [11] (схема 1).

^{*} Сообщение 142 см. [1].

1, 4, 5 a R = H, **b** R = Ph, **c** R = Br; **1, 4 d** $R = NO_2$

1-(Пирид-4-илметил)-2-арилиндолы **4а**-**d** получены N-алкилированием 2-арилиндолов **1** 4-(хлорметил)пиридином в двухфазовой системе 50% водный КОН-бензол в присутствии бромида тетрабутиламмония.

Известно, что в кислой среде 4-винилпиридин алкилирует индольное кольцо в положении 3 [12]. И в нашем случае кипячением 2-арилиндолов **1а-с** с 4-винилпиридином (**3**) были получены соответствующие 3-[2-(пирид-4-ил)этил]производные **5а-с**.

Основания **4a–d** и **5a–c** реагируют с 2',3'-диметоксикарбонилспирофлуоренилциклопропеном (6) в темноте, при комнатной температуре с образованием светочувствительных соединений **9a–d** и **10a–c** (схема 2).

При облучении УФ светом светло-желтые растворы соединений **9а**–**d** и **10а**–**c** окрашиваются в темно-зеленый цвет, за счет раскрытия дигидроиндолизинового кольца и перехода в бетаиновые формы **7а–d** и **8а–c**. В темноте цвет растворов восстанавливается в результате 1,5-электроциклизации бетаинов с образованием исходных дигидроиндолизинов **9а–d** и **10а–c**.

9a–d

10а-с

7–10 a R = H, **b** R = Ph, **c** R = Br; **7**, **9 d** $R = NO_2$

Таблица 1

Спектры ЯМР ¹Н соединений 4а-d, 5а-с, 9а-d, 10а-с

нение	Химические сдвиги, б, м. д. (Ј, Гц)					
1	2					
4a	5.50 (2H, c, CH ₂), 6.69 (1H, c, H-3), 6.85 (2H, μ , $J_{\alpha\beta}$ = 5.3, β -H), 7.08–7.10 (2H, M, H-5, H 6), 7.34 (1H, μ , J_o = 8.0, H-7), 7.39–7.49 (5H, M, Ar-H), 7.62 (1H, μ . μ , J_m = 1.3, J_o = 7.1, H-4), 8.41 (2H, μ . μ , $J_{\alpha\alpha}$ = 1.3, $J_{\alpha\beta}$ = 5.7, α -H)					
4b	5.56 (2H, c, CH ₂), 6.76 (1H, c, H-3), 6.89 (2H, π , $J_{\beta\alpha}$ = 5.7, β -H), 7.12 (2H, kB, J_m = 1.8, J_o = 7.5, H-5, H-6), 7.34 (1H, π , J_o = 8.0, H-7), 7.38 (1H, π , J_o = 7.5, H-1"), 7.48 (2H, π , J_o = 8.0, H-2", H-6"), 7.57 (2H, π , J_o = 8.0, H-3", H-5"), 7.64 (1H, π . π , J_m = 1.8, J_o = 6.6, H-4), 7.71 (2H, π , J_o = 7.1, H-2', H-6'), 7.76 (2H, π , J_o = 8.4, H-3', H-5'), 8.43 (2H, π . π , $J_{\alpha\alpha}$ = 1.3, $J_{\alpha\beta}$ = 5.8, α -H)					
4c	5.50 (2H, c, CH ₂), 6.73 (1H, c, H-3), 6.84 (2H, \exists , \exists , $J_{\beta\beta}$ = 1.7, $J_{\beta\alpha}$ = 5.72, β -H), 7.09–7.17 (2H, \bowtie , H-5), H-6), 7.36 (1H, \exists , J_o = 8.4, H-7), 7.43 (2H, \exists , J_o = 9.3, A-H), 7.65 (3H, \exists , J_o = 8.4, B-H, H-4), 8.42 (2H, \exists , \exists , $J_{\alpha\alpha}$ = 1.8, $J_{\alpha\beta}$ = 6.2, α -H)					
4d	5.59 (2H, c, CH ₂), 6.85 (2H, π , $J_{\beta\alpha}$ = 5.7, β -H), 6.93 (1H, c, H-3), 7.14 (1H, π , J_o = 7.5, H-5), 7.21 (1H, π , J_o = 7.5, H-6), 7.43 (1H, π , J_o = 8.0, H-7), 7.69 (1H, π , J_o = 7.5, H-4), 7.7 (2H, π , J_o = 8.4, B-H), 8.27 (2H, π , J_o = 8.8, B-H), 8.41 (2H, π , $J_{\alpha\beta}$ = 5.7, α -H)					
5a	2.94 (2H, M, $J = 10.6$, $J = 8.8$, 1'-CH ₂), 3.14 (2H, M, $J = 10.2$, $J = 8.8$, 2'-CH ₂), 7.02 (1H, T, $J_o = 8.0$, H-5), 7.11 (1H, T, $J_o = 7.1$, H-6), 7.21 (2H, π , $J_{\beta\alpha} = 5.8$, β-H), 7.37 (2H, T, $J_o = 7.5$, H-7, Ar-H), 7.49 (2H, T, $J_o = 7.8$, Ar-H), 7.55 (2H, π , $J_o = 7.8$, Ar-H), 7.61 (1H, π , $J_o = 8.0$, H-4), 8.40 (2H, π , $J_{\alpha\beta} = 5.7$, α -H), 11.15 (1H, c, NH)					
5b	2.98 (2H, T, $J = 5.8$, 1'-CH ₂), 3.18 (2H, T, $J = 5.8$, 2'-CH ₂), 7.03 (1H, T, $J_o = 7.0$, H-5'), 7.13 (1H, T, $J_o = 7.0$, H-6), 7.26 (2H, \mathfrak{A} . \mathfrak{A} , $J_{\beta\beta} = 1.8$, $J_{\beta\alpha} = 6.2$, β -H), 7.39 (2H, T, $J_o = 7.5$, H-7, 11"), 7.50 (2H, T, $J_o = 8.0$, H-2", H-6"), 7.62 (1H, \mathfrak{A} , $J_o = 7.5$, H-4), 7.67 (2H, \mathfrak{A} , $J_o = 8.4$, H-5"), 7.76 (2H, \mathfrak{A} . \mathfrak{A} , $J_m = 1.3$, $J_o = 7.1$, H-2', H-6'), 7.82 (2H, \mathfrak{A} , $J_o = 8.4$, H-3', H-5'), 8.42 (2H, \mathfrak{A} . \mathfrak{A} , $\mathfrak{A}_{\alpha\alpha} = 1.8$, $J_{\alpha\beta} = 6.2$, α -H), 11.23 (1H, yu. c, NH)					
5c	2.92 (2H, M, $J = 8.8$, 1'-CH ₂), 3.12 (2H, M, $J = 8.4$, 2'-CH ₂), 7.02 (1H, T, $J_o = 7.5$, H-5), 7.1 (1H, T, $J_o = 8.0$, H-6), 7.21 (2H, π , $J_{\beta\alpha} = 5.8$, β -H), 7.37 (1H, π , $J_o = 8.4$, H-7), 7.50 (2H, π , $\pi = 8.4$, A-H) 7.62 (1H, π , $J_o = 8.0$, H-4), 7.69 (2H, M, $J = 8.6$, B-H), 8.40 (2H, π , $J_{\alpha\beta} = 5.8$, α -H), 11.21 (1H, c, NH)					
9a	3.18 (3H, c, 2'-COOCH ₃), 3.91 (3H, c, 3'-COOCH ₃), 3.98 (1H, c, H-8'a), 4.50 (2H, уш. c, CH ₂), 4.91 (1H, д. д., $J_{86'}$ = 1.4, $J_{88'a}$ = 7.5, H-8'), 5.45 (1H, уш. c, H-6'), 6.43 (1H, уш. c, H-5'), 6.67 (1H, д. J_o = 7.5, Ar-H), 6.91 (1H, д. J_o = 7.5, Ar-H), 7.00–7.04 (2H, т. д, J_o = 7.0, J_m = 1.3, Ar-H), 7.24–7.45 (11H, м, Ar-H), 7.58 (1H, д. J_o = 7.5, Ar-H), 7.75 (2H, т. J_o = 7.5, Ar-H)					
9b	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
9c	3.18 (3H, c, 2'-COOCH ₃), 3.92 (3H, c, 3'-COOCH ₃), 3.97 (1H, c, H-8'a), 4.50 (2H, ym. c, CH ₂), 4.80 (1H, μ , $J_{8\%a}$ = 7.5, H-8'), 5.45 (1H, ym. c, H-6'), 6.47 (1H, m. c, H-5'), 6.92–7.06 (3H, M, Ar-H), 7.18 (2H, μ , J_o = 7.5, A-H), 7.25–7.41 (6H, M, Ar-H), 7.47 (1H, μ , Ar-H), 7.57 (1H, μ , Ar-H), 7.61 (2H, μ , J_o = 8.4, 5-H), 7.77 (2H, π , Ar-H)					
9d	3.18 (3H, c, 2'-COOCH ₃), 3.91 (3H, c, 3'-COOCH ₃), 3.93 (1H, c, H-8'a), 4.58 (1H, a , $J_{cen} = 17.2$, CH ₂), 4.63 (1H, a , $J_{cen} = 17.7$, CH ₂), 4.88 (1H, a , a , $J_{8'6'} = 1.3$, $J_{8'8'a} = 7.5$, H-8'), 5.40 (1H, a , $J_{6'8'} = 1.3$, H-6'), 6.68 (2H, τ , $J_{56'} = 7.5$, H-5', H-3), 7.02–7.19 (3H, m , Ar-H), 7.23–7.38 (5H, m , Ar-H), 7.51–7.56 (4H, m , Ar-H), 7.72–7.75 (2H, m , $J_o = 7.5$, $J_m = 1.3$, Ar-H), 8.32 (2H, a , a , $J_o = 7.7$, Ar-H)					

1	2
10a	2.10 (2H, M, 2'-CH ₂), 2.65 (1H, M, 1'-CH ₂), 2.79 (1H, M, 1'-CH ₂), 3.20 (3H, c, 2'-COOCH ₃), 3.95 (3H, c, 3'-COOCH ₃), 4.01 (1H, c, H-8'), 5.26 (1H, μ . π , J_{68} = 1.3, J_{65} = 7.5, H-6'), 5.38 (1H, c, H-8'a), 6.67 (1H, μ , J_{56} = 7.5, H-5'), 6.95 (1H, π , J_o = 8.0, H-5), 7.07 (1H, π , J = 8.0, H-6), 7.28–7.44 (4H, M, Ar-H), 7.52–7.59 (5H, M, Ar-H), 7.69–7.75 (4H, M, J_o = 8.4, Ar-H), 7.82 (2H, μ , J_o = 7.5, Ar-H), 11.12 (1H, c, NH)
10b	2.09 (2H, M, 2'-CH ₂), 2.63 (1H, M, 1'-CH ₂) 2.72 (1H, M, 1'-CH ₂), 3.20 (3H, c, 2'-COOCH ₃), 3.98 (3H, c, 3'-COOCH ₃), 4.01 (1H, c, H-8'), 5.36 (1H, c, H-8'a), 5.15 (1H, μ , $J_{65'}$ = 7.0, H-6'), 6.66 (1H, μ , $J_{56'}$ = 6.6, H-5'), 6.91 (1H, τ , J_o = 7.5, H-5), 7.06 (1H, τ , J_o = 7.0, H-6), 7.10–7.61 (17H, M, Ar-H), 7.84 (2H, μ , J_o = 7.1, Ar-H), 11.05 (1H, c, NH)
10c	2.08 (2H, M, 2'-CH ₂), 2.56 (1H, M, 1'-CH ₂), 2.72 (1H, M, 1'-CH ₂), 3.21 (3H, c, 2'-COOCH ₃), 3.96 (3H, c, 3'-COOCH ₃), 4.01 (1H, c, H-8'), 5.23 (1H, $_{\mathcal{J}}, _{J_{05}}=7.5$, H-6'), 5.36 (1H, c, H-8'a), 6.66 (1H, $_{\mathcal{I}}, _{J_{5'6}}=7.5$, H-5'), 6.94 (1H, $_{\mathcal{T}}, _{J_o}=8.0$, H-5), 7.07 (1H, $_{\mathcal{T}}, _{J_o}=8.0$, H-6), 7.20 (2H, M, Ar-H), 7.29–7.37 (7H, M, Ar-H), 7.57–7.61 (3H, M, $J=8.8$, Ar-H), 7.84 (2H, $_{\mathcal{J}}, _{J}=7.6$, Ar-H), 11.10 (1H, ym. c, NH)

На рис. 1 для примера приведены ЭСП соединения **8b** до (*a*) и после (*b*) облучения. В спектре *a* появляются интенсивные полосы поглощения при 248 и 307 нм и сравнительно малоинтенсивная – при 383 нм. После облучения пик при 383 нм, отнесенный к фрагменту дигидроиндолизина, исчезает и появляются две новые полосы поглощения в видимой области при 450 и 600 нм, которые соответствуют окрашенной открытой форме.

Рис. 1. Электронные спектры поглощения соединения 8b до (a) и после (b) облучения

Рис. 2. Спектр реакции термического обесцвечивания соединения **10b** с образованием бетаина **8b** в растворе метиленхлорида. Временной интервал 15 с

На рис. 2 приведены ЭСП облученных растворов соединения **8b**, зарегистрированные в темноте в течение 5 мин с интервалом 15 с. Уменьшение интенсивности полос поглощения в видимой области и их конечное исчезновение, а также возрастание интенсивности пика при 383 нм очевидно указывает на электроциклизацию бетаиновой формы. На основе кинетических данных определены константы полупревращения $t_{1/2}$ бетаинов (табл. 4), которые варьируют в пределах 0.5–1 мин.

Физико-химические и спектральные характеристики соединений **4a**–**d**, **5a**–**c**, **9a**–**d**, **10a**–**c** приведены в табл. 1–4.

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено,%			
нение		С	Н	Ν	Br
4a	$C_{20}H_{16}N_2$	<u>84.28</u> 84.51	<u>5.85</u> 5.63	<u>9.85</u> 9.86	
4b	$C_{26}H_{20}N_2$	<u>86.46</u> 86.67	<u>5.39</u> 5.55	<u>8.00</u> 7.77	
4c	C ₂₀ H ₁₅ Br N ₂	<u>66.40</u> 66.11	$\frac{4.41}{4.13}$	<u>7.55</u> 7.71	$\frac{21.02}{22.04}$
4d	$C_{20}H_{15}N_{3}O_{2} \\$	<u>72.86</u> 72.95	<u>4.56</u> 4.60	<u>12.90</u> 12.76	
5a	$C_{21}H_{18}N_2$	<u>84.00</u> 84.56	<u>5.73</u> 6.04	<u>9.80</u> 9.39	
5b	$C_{27}H_{22}N_2$	<u>86.82</u> 86.63	<u>5.28</u> 6.88	<u>8.00</u> 7.48	
5c	$C_{21}H_{17}BrN_2$	<u>66.75</u> 66.84	$\frac{4.38}{4.51}$	$\frac{7.49}{7.43}$	$\frac{21.08}{21.22}$
9a	$C_{39}H_{30}N_2O_4$	<u>79.52</u> 79.32	$\frac{5.40}{5.08}$	$\frac{4.48}{4.74}$	
9b	$C_{45}H_{34}N_2O_4$	$\frac{80.00}{81.08}$	$\frac{5.08}{5.10}$	$\frac{4.00}{4.20}$	
9с	$\mathrm{C}_{39}\mathrm{H}_{29}\mathrm{BrN}_{2}\mathrm{O}_{4}$	<u>69.17</u> 70.95	$\frac{4.60}{4.33}$	$\frac{3.91}{4.18}$	$\frac{11.52}{11.96}$
9d	$C_{39}H_{29}N_3O_6$	$\frac{73.75}{73.70}$	$\frac{4.31}{4.57}$	<u>6.50</u> 6.61	
10a	$C_{40}H_{32}N_2O_4$	<u>79.80</u> 79.47	<u>5.00</u> 5.30	<u>4.60</u> 4.63	
10b	$C_{46}H_{36}N_2O_4$	<u>81.00</u> 81.18	<u>5.20</u> 5.29	<u>4.08</u> 4.12	
10c	$C_{40}H_{36}BrN_2O_4$	<u>70.20</u> 70.28	<u>4.52</u> 4.54	$\frac{4.05}{4.10}$	<u>11.69</u> 11.71

Данные элементного анализа соединений 4a-d, 5a-c, 9a-d, 10a-c

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе UR-20 в вазелиновом масле, а электронные спектры поглощения – на спектрофотометре FT-UV/VIS HP 8453 в метиленхлориде. Спектры ЯМР ¹Н зарегистрированы на приборе Bruker AM-400 (400 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Элементный анализ проводили на анализаторе LECO CHNS-932. Температуру плавления определяли в аппарате Buchi spm-20.

Контроль за ходом реакции и чистотой соединений, а также определение значений R_f проводили на пластинках Silufol-254. В качестве сорбента для колоночной хроматографии применяли силикагель 100/250 мкм.

1-(Пирид-4-илметил)-2-фенилиндолы 4а-d (общая методика). К двухфазной системе 10 мл 50% водного КОН-бензол добавляют 3.5 ммоль гидрохлорида 4-(хлорметил)пиридина (2) и интенсивно перемешивают 15 мин при 0 °С. Добавляют 0.15 ммоль бромида тетрабутиламмония и раствор 3 ммоль соответствующего 2-фенилиндола 1. Кипятят 4 ч, охлаждают и экстрагируют бензолом. Экстракт промывают водой и сушат безводным CaCl₂. Хроматографируют на колонке с силикагелем, элюенты: хлороформэфир, 7:1 (4а), CCl₄-эфир, 4:1 (4b,c), бензол-эфир, 5:1 (4d). Перекристаллизовывают из бензола, соединение 4а – из гексана. Получают бесцветные кристаллы, соединение 4d выделяют в виде желтых игл.

Таблица З

Соеди- нение	Т. пл., ⁰С	R_{f}^{*}	ИК спектр, v, см $^{-1}$	ЭСП, λ _{max} , нм (lg ε)	Выход, %
4a	114–115	0.28	1530 (С=N аром.), 1530 (С=С)	248 (4.27), 294 (4.36)	53
4b	165–167	0.45	1580 (С=N аром.), 1610 (С=С)	240 (4.34), 303 (4.19)	56
4c	142-142.5	0.36	1590 (С=С), 1595 (С=N аром.)	235 (4.35), 300 (4.20)	50
4d	183–184	0.30	1375 (NO ₂), 1410 (C=C), 1590 (C=N аром.)	259 (4.38)	48
5a	191–192	0.27	1580 (С=N аром.), 3270 (NH)	232 (4.35), 240 (4.34), 305 (4.10)	63
5b	214–216	0.59	1590 (С=N аром.), 1465 (С=С), 3120 (NH)	229 (4.32), 257 (4.25), 317 (4.27)	39
5c	225–227	0.36	1590 (С=N аром.), 1630 (С=С), 3310 (NH)	230 (5.59), 244 (5.41), 307 (4.31)	37
9a	104–105	0.30	1600 (С=С), 1695, 1735 (СО сл. эф.)	384 (4.44)	44
9b	124–126	0.44	1560 (С=N аром.), 1690, 1740 (СО сл. эф.)	231 (2.88), 260 (3.50), 262 (3.52), 310 (2.36), 388 (0.87)	42
9c	162–163	0.37	1590 (С=С), 1680, 1740 (СО сл. эф.)	247 (3.65), 303 (2.66), 388 (4.13)	45
9d	135–136	0.26	1510 (NO ₂), 1590 (С=N аром.), 1690, 1740 (СО сл. эф.)	428 (4.40)	53
10a	120-121	0.23	1695, 1735 (СО сл. эф.), 3310 (NH)	235 (4.43), 265 пл. (4.37), 305 (4.30), 362 (4.09)	32
10b	125–127	0.59	1685, 1740 (СО сл. эф.), 3250 (NH)	234 (4.43), 259 (4.49), 319 (4.38)	48
10c	190–190.5	0.36	1590 (С=N аром.), 1695, 1740 (СО сл. эф.), 3460 (NH)	248 (4.51), 307 (2.57), 383 (4.06)	35

Физико-химические и спектральные характеристики соединений 4а-d, 5а-с, 9а-d, 10а-с

* Системы растворителей: бензол-эфир, 1:1 (соединения **4а-d**), бензол (соединения **5а-с**), гексан-эфир, 1:5 (соединения **9а-d**) и 1:1 (соединения **10а-с**).

Соеди- нение	7a–c, 8a–c , λ _{max, HM}	9a–d , 10a–c , λ _{max} [•] , HM	$\begin{array}{c} \kappa, \ 1/c \\ (7\mathbf{a-c} \rightarrow 9\mathbf{a-d}) \\ (8\mathbf{a-c} \rightarrow 10\mathbf{a-c}) \end{array}$	$t_{1/2}$, c (7a-c \rightarrow 9a-d) (8a-c \rightarrow 10a-c)
7a/9a	603	384	1.26×10^{-2}	55
7b/9b	612	388	0.80×10^{-2}	52
7c/9c	605	388	2.17×10^{-2}	32
7d/9d	609	428	1.58×10^{-2}	44
8a/10a	587	362	1.27×10^{-2}	50
8b/10b	590	319	1.37×10^{-2}	54
8c/10c	588	383	1.03×10^{-2}	67

Кинетические данные термической обратной реакции – превращения бетаинов в циклические структуры 7a−d→9a−d и 8a−c →10a−c

* $T = 24 \, ^{\circ}\text{C}$, $c = 10^{-4}$ моль- π^{-1} в CH₂Cl₂.

2-Арил-3-[2-(пирид-4-ил)этил]индолы (5а-с) (общая методика). К раствору 5 ммоль 2-фенилиндола **1a** в 15 мл уксусной кислоты добавляют раствор 10 ммоль γ-винилпиридина **3** в 10 мл уксусной кислоты и кипятят 2 ч. После охлаждения реакционную смесь струей вливают в ледяную воду и нейтрализуют водным раствором КОН до рН 7. Выпавший осадок отфильтровывают и перекристаллизовывают из изопропилового спирта. Получают бесцветные кристаллы.

Дигидроиндолизины 9а-d и 10а-с (общая методика). К раствору 0.5 ммоль 2',3'-диметоксикарбонилспирофлуоренилциклопропена (6) в 40 мл абсолютного эфира добавляют 0.5 ммоль соединения 4а-d или 5а-с и перемешивают 24 ч в темноте при комнатной температуре. Растворитель упаривают и остаток хроматографируют на колонке в системах: бензол-эфир, 20:1 (9а,b), бензол-гексан, 1:2 (9с), бензол (9d), гексан-эфир, 3:2 (10а), гексан-эфир, 5:3 (10b), гексан-эфир, 2:1 (10с). Получают желтые кристаллы.

2',3'-Диметоксикарбонил-7'-[(2-фенилиндол-1-ил)метил]спиро[флуорен[9,1']-1',8'адигидроиндолизин] (9а). Выход 0.13 г.

2',3'-Диметоксикарбонил-7'-[2-(дифенил-4'-ил)индол-1-

илметил]спиро[флуорен[9,1']-1',8'а-дигидроиндолизин] (9b). Выход 0.17 г.

2',3'-Диметоксикарбонил-7'-[2-(*n*-бромфенил)индол-1-илметил]спиро[флуорен[9,1']-1',8'а-дигидроиндолизин] (9с). Выход 0.14 г.

2',3'-Диметоксикарбонил-7'-[2-(*n*-нитрофенил)индол-1-илметил]спиро[флуорен[9,1']-1',8'а-дигидроиндолизин] (9d). Выход 0.136 г.

2',3'-Диметоксикарбонил-7'-[2-(2-фенилиндол-3-ил)этил]спиро[флуорен[9,1']-1',8'адигидроиндолизин] (10а). Выход 0.098 г.

2',3'-Диметоксикарбонил-7'-[2-(2-бифенил-4'-илиндол-3-ил)этил]спиро[флуорен-[9,1']-1',8'а-дигидроиндолизин (10b). Выход 0.20 г.

2',3'-Диметоксикарбонил-7'-[2-(2-*n*-бромфенилилиндол-3-

ил)этил]спиро[флуорен-[9,1']-1',8'а-дигидроиндолизин] (10с). Выход 0.069 г.

Выражаем благодарность немецкому исследовательскому обществу "Deutsche Forschungsgemeinschaft" (DFG) (проект 436 GEO 113/3/0 R/S) за финансовую поддержку.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. Ш. Чикваидзе, Ш. А. Самсония, Т. Г. Нариндошвили, ХГС, 524 (2004).
- 2. H. Dürr, in *Studies in Organic Chemistry. 40: Photochromism: Molecules and Systems*, Eds. H. Dürr, H. Bous-Laurent, Elsevier, Amsterdam, 1999, 223.
- 3. C. B. Mc. Ardle, in *Applied Photochromic Polymer Systems*, Blackic and Son Ltd, Glasgow, 1992, p. 225.
- 4. W. Willner, S. Rubin, Angew. Chem. Int Ed. Engl., 35, 367 (1996).
- 5. H. Dürr, Praxis Naturwiss. Chem., 4/40, 22 (1991).
- 6. V. N. Pathak, R. Guptra, M. Gard, V. M. Rao, *Ind. J. Heterocyc. Chem.*, **11**, 107 (2001).
- 7. L. Chu, I.-L. Lo, Y.-T. Jang, K. Chend, R. G. Smith, M. H. Fisher, M. J. Wyvratt, M. T. Goulet, *Bioorg. Med. Chem. Lett.*, **11**, 515 (2001).
- A. Akkerman, H. Veldstra, *Rec. Trav. Chim.*, **73**, 629 (1954).
- 9. A. Gray, W. Archer, J. Am. Chem. Soc., 79, 3554 (1957).
- 10. L. Schrader, Chem. Ber., 104, 941 (1971).
- 11. A. Gray, W. Archer, E. Spinner, G. Gavallito, J. Am. Chem. Soc., 79, 3805 (1957).
- 12. A. P. Grey, W. L. Archer, J. Am. Chem. Soc., 79, 3554 (1957).

Тбилисский государственный университет им. Ив. Джавахишвили, Тбилиси 0128, Грузия e-mail: shsam@wanex.net

^a Universität des Saarlandes, Fachbereich 11.2, Organische Chemie, D-66041 Saarbrücken, Germany e-mail: ch12hd@rz.uni-sb.de Поступило в редакцию 20.11.2003