Ю. В. Шкляев, Ю. В. Нифонтов, М. И. Кодесс^а, М. А. Ежикова^а

НОВАЯ РЕАКЦИЯ СПИРОГЕТЕРОЦИКЛИЗАЦИИ: СИНТЕЗ 1-КАРБЭТОКСИМЕТИЛИДЕН-8-(2'-КАРБЭТОКСИМЕТИЛИДЕН-5',5'-ДИМЕТИЛПИРРОЛИДИНИЛИДЕН-3')-3,3,6-ТРИМЕТИЛ-2-АЗАСПИРО[4,5]ДЕКА-6,9-ДИЕНА

Показано, что изомасляный альдегид и цианоуксусный эфир вступают в реакцию с *мета*-ксилолом сначала по четвертому атому углерода с образованием спиропирролинового цикла и затем по вновь образовавшейся экзометиленовой связи с замыканием системы 1-карбэтоксиметилиден-8-(2'-карбэтоксиметилиден-5',5'диметилпирролидинилиден-3')-3,3,6-триметил-2-азаспиро[4,5]дека-6,9-диена.

Ключевые слова: изомасляный альдегид, *мета*-ксилол, цианоуксусный эфир, реакция Риттера, спирогетероциклизация.

Взаимодействие *орто-* или *пара*-ксилолов, изомасляного альдегида и нитрилов приводит к получению 1-замещенных 3,3,6,7-(или 3,3,5,8-)тетраметил-3,4-дигидроизохинолинов [1]. Представляло интерес ввести в реакцию с нитрилами и *мета*-ксилол.

Из общих соображений можно было ожидать для данной реакции согласованной ориентации заместителей (*пара-, орто-*), что должно приводить к образованию 1-замещенных 3,3,5,7-тетраметил-3,4-дигидроизохинолинов 1. В силу стерических препятствий можно было ожидать образования 1-замещенных 3,3,6,8-тетраметил-3,4-дигидроизохинолинов 2, поскольку заместитель в будущем положении 8 кольца не препятствует образованию изохинолина [2]. Действительно, при проведении трехкомпонентной реакции между *мета*-ксилолом, изомасляным альдегидом и цианоуксусным эфиром после нейтрализации реакционной массы был выделен продукт, обладающий основным характером. В спектре ЯМР ¹Н наблюдается удвоение всех сигналов алифатических протонов, однако метильные группы в ароматическом кольце дают один сигнал, соответствующий по интенсивности только одной метильной группе. Масс-спектр дал пик молекулярного иона 440 (с *I* 70%), что свидетельствует об участии в реакции двух молекул изомасляного альдегида и двух молекул циануксусного эфира на одну молекулу *мета*-ксилола.

Из экспериментальных данных можно сделать вывод, что указанная реакция приводит к получению соединений 3 или 4.

Следует отметить, что оба предлагаемых варианта имеют различные направления первичной атаки протонированной формой изомасляного альдегида – на место с наибольшей электронной плотностью (*opmo, opmo*-opuentaция, положение 2 кольца) и в положение 4 кольца (*opmo-napa*-coгласованная opuentaция).

Как показали данные 1D- и 2D-ЯМР экспериментов, исследуемое соединение имеет структуру **3**:

В спектре ЯМР ¹Н удалось выявить тонкую структуру резонансных сигналов протонов $H_{(7)}$, $H_{(9)}$ и $CH_3-C_{(6)}$. Сигнал протона $H_{(7)}$ при δ 6.18 м. д. расщепляется в дублет квартетов за счет дальних взаимодействий (⁴*J*) с протоном $H_{(9)}$ и протонами метильной группы при $C_{(6)}$, а сигнал протона $H_{(9)}$ при 6.97 м. д. – в дублет дублетов. Спин-спиновые взаимодействия между рассматриваемыми протонами подтверждены экспериментами двойного резонанса ¹H {¹H}.

Атом/ группа	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)	Спектр ЯМР ¹³ С, б, м. д.	Атом/ группа	Спектр ЯМР ¹ Н, δ, м. д. (<i>J</i> , Гц)	Спектр ЯМР ¹³ С, δ, м. д.
C=O	-	171.29	C ₍₃₎	_	61.01
С=О	_	171.08	OCH ₂	4.12 (кв, <i>J</i> = 7.1)	58.64
C ₍₁₎	-	166.81	OCH ₂	4.07 (центр АВ-системы)	58.64
C(2')	-	159.59	C(5')	_	58.28
C ₍₆₎	-	140.97	C(5)	-	55.79
C ₍₁₀₎ H	5.94 (д, <i>J</i> = 10)	135.96	C ₍₄₎ H ₂	2.15, 1.87 (АВ-система, $J_{AB} = 13.8$)	47.95
C ₍₈₎	-	130.34	C _(4') H ₂	2.68, 2.62 (АВ-система, $J_{AB} = 15.6$)	43.73
C _(3')	-	129.93	$C_{(3)}(CH_3)_2$	1.41, 1.40	32.06, 30.78
C ₍₇₎ H	6.18 (д. кв, ⁴ J = 1.5, ⁴ J = 1.3)	124.55	C(5')(CH ₃) ₂	1.31, 1.30	29.51, 29.50
C ₍₉₎ H	6.97 (μ . μ , ³ $J = 10$, ⁴ $J = 1.5$)	120.08	C ₍₆₎ CH ₃	1.86 (д, <i>J</i> = 1.3)	19.90
C _(2") H	4.92	78.84	$CH_3(C_2H_5)$	1.27 (т, <i>J</i> = 7.1)	14.71
C _(2"') H	4.21	77.23	$CH_3(C_2H_5)$	1.24 (т, <i>J</i> = 7.1)	14.58

Спектры ЯМР ¹Н и ¹³С соединения 3

Отнесение сигналов протонированных атомов углерода проведено с помощью гетероядерного корреляционного 2D-эксперимента HETCOR.

Данные инверсионного 2D-эксперимента HMBC, основанного на дальних спин-спиновых взаимодействиях ${}^{2}J_{C-H}$ и ${}^{3}J_{C-H}$, позволили провести отнесение четвертичных атомов углерода и подтвердить структуру соединения **3**. В спектре HMBC наблюдаются кросс-пики между узловыми атомами C₍₅₎ и протонами H₍₇₎, H₍₉₎, H₍₁₀₎ C₍₆₎–CH₃ шестичленного цикла и протонами N₍₂₎H и C_(4')H₂ пятичленного цикла, а также кросс-пики между атомами C₍₈₎ и C_(3') и протонами H₍₇₎, H₍₉₎ и C_(4')H₂. Кроме того, наблюдается корреляция за счет взаимодействий через две и три связи между протонами и атомами углерода, входящими в состав каждого отдельного цикла и соответствующих боковых цепей. Из-за перекрывания сигналов карбонильных и этильных групп провести их однозначное отнесение не удалось.

Информация о пространственной сближенности протонов, полученная

1489

из спектра 2D NOESY, позволила, с одной стороны, подтвердить отнесение резонансных сигналов протонов и, с другой стороны, сделать выводы о конфигурации двойных связей в молекуле соединения **3**. В частности, корреляция за счет диполь-дипольного взаимодействия наблюдается для следующих пар протонов: $H_{(2")}$ и $H_{(9)}$, $C_{(4")}H_2$ и $H_{(7)}$, $H_{(2"')}$ и $C_{(6)}$ –CH₃, $H_{(10)}$ и одна из метильных групп при атоме $C_{(3)}$. Таким образом, очевидно, стерические препятствия, создаваемые двумя метильными группами, делают энергетически более выгодной атаку не по второму атому углерода (место с наибольшей электронной плотностью), а по четвертому.

Схему образования продукта 3 можно представить следующим образом:

Особенностью соединения **3** является сравнительно высокая гидролитическая устойчивость в серной кислоте на стадии выделения. Описанные нами 1-R-3,3-диметил-2-азаспиро[4,5]дека-1,6,9-триен-8-оны [3] при R, отличном от тиометильной группы, при выделении претерпевают диенонфенольную перегруппировку и дают исключительно открытоцепные продукты – производные 2-(4'-гидроксифенил)этиламина.

Таким образом, нами впервые показано, что в реакции спирогете-1490 роциклизации могут вступать не только алкоксиарены, но и алкилароматические соединения, что открывает широкие пути использования α-разветвленных альдегидов в этих реакциях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектр снят на спектрофотометре UR-20 в вазелиновом масле. Спектры ЯМР ¹Н получены на спектрофотометре Bruker AM 300 (300 МГц) в CDCl₃, внутренний стандарт TMC. 1D- и 2D-ЯМР эксперименты в растворе CDCl₃ проведены на спектрометре Bruker DRX-400 (400 и 100 МГц для ¹Н и ¹³C) с использованием стандартных импульсных последовательностей, входящих в состав программного обеспечения Bruker. Масс-спектр снят на приборе Finnigan MAT (ЭУ, 70 эВ) в стандартных условиях. Ход реакции и чистота полученных соединений контролировались методом TCX на пластинках Silufol UV-254 (хлороформ–ацетон, 9 : 1), проявитель 0.5% раствор хлоранила в толуоле.

1-Карбэтоксиметилиден-8-(2'-карбэтоксиметилиден-5',5'-

диметилпирролидинил-иден-3')-3,3,6-триметил-2-азаспиро[4,5]дека-6,9-диена (3). Смесь 50 ммоль *мета*-ксилола, 7.2 г (100 ммоль) изомасляного альдегида и 100 ммоль циануксусного эфира прибавляют по каплям при перемешивании к 50 мл конц. H_2SO_4 при температуре 0–5 °C в течение 15–20 мин. Перемешивают 30 мин, выливают в 300 мл воды, экстрагируют 50 мл толуола. Органический слой отбрасывают, а водный нейтрализуют карбонатом аммония до pH 8–9. Выделившееся вещество отфильтровывают, промывают водой, сушат и кристаллизуют. Получают 19.8 г (45%) соединения **3**. Т. пл. 178–179 °C (этанол). ИК спектр, v, см⁻¹: 3355, 3335, 1735, 1723, 1650, 1600, 1580, 1500. Масс-спектр, *m/z* (I_{0TH} , %): 440 [M]⁺ (100); 425 [M – CH₃]⁺ (10); 395 [M – OEt]⁺ (20); 367 [M – COOEt]⁺ (45); 327 [M – NCCH₂COOEt]⁺ (98); 312 [M – NCCH₂COOEt – CH₃]⁺ (95). Найдено, %: С 71.00; H 8.10; N 6.47. C₂₆H₃₆N₂O₄. Вычислено, %: С 70.91; H 8.18; N 6.36.

Работа выполнена при финансовой поддержке РФФИ (грант № 01-03-96479).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. В. Шкляев, Ю. В. Нифонтов, В. А. Глушков, в кн. Научно-технический потенциал западного Урала в области конверсии военно-промышленного комплекса, Докл. Междунар. семинара, Пермь, 2001, с. 396.
- 2. Ю. В. Шкляев, Ю. В. Нифонтов, в кн. Перспективы развития естественных наук в высшей школе, Сб. науч. труд. междунар. конф., Пермь, 2001, 1, с. 63.
- 3. V. A. Glushkov, Yu. V. Shklyaev, V. I. Sokol, Mendeleev Commun., 170 (1999).

Институт технической химии УрО РАН, Пермь 614990 e-mail: cheminst@mpm.ru Поступило в редакцию 23.10.2001

^aИнститут органического синтеза УрО РАН, Екатеринбург 620219 e-mail: onchup@ios.ural.ru

1491