С. В. Русанова, И. А. Журавель, С. Н. Коваленко, В. П. Черных, В. Н. Баумер

РЕЦИКЛИЗАЦИЯ 2-ИМИНОКУМАРИНОВ ПОД ДЕЙСТВИЕМ НУКЛЕОФИЛЬНЫХ РЕАГЕНТОВ

6*. ВЗАИМОДЕЙСТВИЕ 2-ИМИНОКУМАРИН-3-КАРБОКСАМИДОВ С 2-АМИНОБЕНЗОФЕНОНАМИ

Показано, что взаимодействие 2-иминокумарин-3-карбоксамидов с замещенными 2-аминобензофенонами протекает по рециклизационному механизму с образованием замещенных 3-(4-фенилхиназолин-2-ил)кумаринов. Структура полученных соединений подтверждена данными спектральных исследований и РСА.

Ключевые слова: 2-аминобензофеноны, 3-(4-арилхиназолин-2-ил)кумарины, 2-иминокумарины, РСА, рециклизация.

Ранее в наших работах было показано, что взаимодействие 2-имино-2H-1-бензопиран-3-карбоксамидов с N-нуклеофильными реагентами, в зависимости от условий реакции, может протекать как с образованием 2-N-замещенных иминокумаринов (кислая среда, 20 °C) [2–7], так и по рециклизационному механизму с образованием 3-замещенных кумаринов (нейтральная среда, 120–200 °C) [2, 7]. В некоторых случаях при использовании бинуклеофильных реагентов (*о*-замещенных анилинов, гидразидов аренкарбоновых кислот, тиосемикарбазидов, производных антраниловых кислот) выделены продукты их дальнейшей циклизации – 3-гетерилкумарины [1, 6–8]. В настоящей работе, продолжающей исследование взаимодействия 2-имино-2H-1-бензопиран-3-карбоксамидов с нуклеофильными реагентами, изучено поведение этих соединений в реакции с замещенными 2-аминобензофенонами.

Исходные R^1 -замещенные 2-иминокумарин-3-карбоксамиды 1 получали по известным методикам и вводили в реакцию с замещенными 2-аминобензофенонами 2. Как нами установлено, в ледяной уксусной кислоте уже на холоду образуются не ожидаемые 2-замещенные кумарины 3, а продукты рециклизации (см. схему) – R^1 -замещенные 3-[6- R^2 -4-(R^3 -фенил)хиназолин-2-ил)]кумарины 7а–и (табл. 1).

^{*} Сообщение 5 см. [1].

7a $R^1 = R^3 = H$; **b** $R^1 = H$, $R^3 = Cl$; **c** $R^1 = 7$ -OH, $R^3 = H$; **d** $R^1 = 6$ -Br, $R^3 = H$; **e** $R^1 = 6$ -Br, $R^3 = H$; **g** $R^1 = 6$ -Cl, $R^3 = H$; **h** $R^1 = 6$ -Cl, $R^3 = Cl$; **i** $R^1 = 6$ -OMe, $R^3 = H$; **j** $R^1 = 6$ -OMe, $R^3 = H$; **k** $R^1 = 7$ -OMe, $R^3 = H$; **i** $R^1 = 7$ -OMe, $R^3 = H$; **k** $R^1 = 7$ -OMe, $R^3 = H$; **j** $R^1 = 7$ -OMe, $R^3 = H$; **k** $R^1 = 7$ -OHe, $R^3 = H$; **k** $R^1 = 7$ -OHe, $R^2 = H$; **k** $R^1 = 7$ -OHe, $R^2 = R^2$ $R^2 = 1$, **k** R^2

Co-	Favora	Найдено, %		ИК спектр, ν , см ⁻¹			Вы-
еди- не- ние	брутто- формула	Вычислено, % N	Т. пл., °С	C=O	C=N	C=C	ход, %
7a	$C_{23}H_{13}CIN_2O_2$	$\frac{7.30}{728}$	240–242	1751		1604	71
7b	$C_{23}H_{12}Cl_2N_2O_2$	<u>6.67</u> 6.68	194–196	1736		1603	68
7c	$C_{23}H_{13}ClN_2O_3$	<u>6.96</u> 6.99	301–303	1713	1694	1613	52
7d	$C_{23}H_{12}BrClN_2O_2$	<u>6.07</u> 6.04	223–225	1751	1632	1612	84
7e	$C_{23}H_{11}BrCl_2N_2O_2$	<u>5.60</u> 5.62	204–206	1739	1650	1605	87
7f	$C_{23}H_{12}Br_2N_2O_2$	<u>5.50</u> 5.51	242–244	1753	1640	1596	85
7g	$C_{23}H_{12}Cl_2N_2O_2$	<u>6.68</u> 6.68	235–237	1763	1651	1600	78
7h	$C_{23}H_{11}Cl_3N_2O_2$	<u>6.20</u> 6.17	237–239	1747		1600	71
7i	$C_{24}H_{15}ClN_2O_3$	<u>6.77</u> 6.75	238–240	1743	1680	1604	73
7j	$C_{24}H_{14}Cl_2N_2O_3$	<u>6.20</u> 6.23	230–232	1719	1687	1570	70
7k	$C_{24}H_{15}ClN_2O_3$	<u>6.77</u> 6.75	207–209	1727	1671	1615	66
71	$C_{24}H_{14}Cl_2N_2O_3$	<u>6.21</u> 6.23	218-220	1743		1612	59
7m	C ₂₅ H ₁₇ ClN ₂ O ₃	<u>6.55</u> 6.53	193–195	1739		1616	73
7n	$C_{27}H_{22}ClN_3O_2$	<u>9.21</u> 9.22	197–199	1715		1615	51
70	$C_{24}H_{15}ClN_2O_3$	<u>6.77</u> 6.75	224–226	1738		1605	75
7p	$C_{24}H_{14}Cl_2N_2O_3$	<u>6.20</u> 6.23	235–237	1739		1603	77
7q	C ₂₅ H ₁₇ ClN ₂ O ₃	<u>6.55</u> 6.53	206–208	1741		1602	78
7 r	$C_{25}H_{16}Cl_2N_2O_3$	<u>6.03</u> 6.05	218-220	1724		1616	74
7s	$C_{26}H_{17}ClN_2O_2$	<u>6.60</u> 6.59	178–180	1746		1596	80
7t	$C_{27}H_{15}ClN_2O_2$	<u>6.41</u> 6.44	>300	1759	1671	1600	63
7u	C ₂₉ H ₂₅ ClN ₂ O ₃	<u>5.77</u> 5.78	253–255	1720		1616	55

R¹-Замещенные 3-[6-R²-4-(R³-фенил)хиназолин-2-ил]кумарины

Анализ спектров ЯМР ¹Н продуктов реакции показал, что в ходе реакции исчезают сигналы протонов иминогруппы (12–13 м. д.) и протонов амидной группы (9.0–9.2, 7.7–7.9 м. д.), характерные для спектров исходных 2-иминокумарин-3-карбоксамидов **1** [9]. Наличие в спектрах ЯМР ¹Н перекрывающихся сигналов ароматических протонов кумаринового и хиназолинового фрагментов в области 6.54–8.70 м. д. и синглетный сигнал протона H-4 кумаринового цикла (8.65–9.49 м. д.) полностью подтверждают предложенную структуру (табл. 2).

В ИК спектрах выделенных веществ отсутствуют полосы v_{N-H} имида и v_{N-H} амидного фрагмента (3400 – 3300 см⁻¹), характерные для исходных 2-иминокумарин-3-карбоксамидов **1** [9], и полоса кетонной карбонильной группы (1670–1690 см⁻¹), но появляются сильная полоса валентных колебаний С=О лактона (1713–1763 см⁻¹) и слабая полоса колебаний связи C=N (1632–1694 см⁻¹), которая в отдельных случаях накладывается на более сильные полосы колебаний ароматических связей C=C (табл. 1). Наличие интенсивного пика молекулярного иона (*m*/*z* 414, *I* 100%) и характерных для кумариновых систем осколочных ионов (*m*/*z*: 414.9999 [M]⁺, 379.3037 [M–Cl]⁺, 190.1656, 177.2742 [M–C₁₄H₈ClN₂]⁺, 127.1440) на примере молекулы 3-(4-фенил-6-хлорхиназолин-2-ил)-8-метоксикумарина (**70**) также подтверждает верность предложенной структуры.

Эти факты позволили нам предположить, что данное взаимодействие протекает по рециклизационному механизму [5], включающему стадию образования промежуточных 2-[(2-ароиларил)имино]-2H-1-бензопиран-3-карбоксамидов **3**, выделить которые не удалось. Нестабильность этих структур, по-видимому, связана с активацией карбонильной группы бензофенонового фрагмента под действием элиминирующегося на первой стадии иона аммония, что приводит к образованию новых интермедиатов – аминоспиртов **4**. Далее в результате атаки аминогруппы по атому углерода связи C=N иминокумарина размыкается иминолактонный цикл, происходит *цис-транс*-изомеризация интермедиата **5** в **6** и его циклизация с образованием R¹-замещенных 3-[6-R²-4-(R³-фенил)хиназолин-2-ил)кумаринов **7а–и**.

С целью подтверждения структуры конечных продуктов проведено рентгеноструктурное исследование на примере 3-(4-фенил-6-хлорхиназолин-2-ил)-7-гидроксикумарина (7c). Принадлежность кристалла данного соединения к гексагональной сингонии оказалась довольно неожиданной, но, поскольку проверка на наличие двойников в поляризационном микроскопе дала отрицательный результат, расшифровка выполнена в гексагональной ячейке прямым методом с последующими синтезами электронной плотности. Установлено, что структура соединения 7c построена из триад молекул вещества, образованных за счет водородных связей О-Н...О. Координаты атомов могут быть получены у авторов, длины связей и валентные углы в структуре приведены в табл. 3 и 4. На рисунке показана схема нумерации атомов в базисных молекулах структуры.

Нумерация атомов в триаде базисных молекул 3-(4-фенил-6-хлорхиназолин-2-ил)-7-гидроксикумарина (7c)

Независимую часть ячейки составляют три молекулы вещества. В каждой молекуле кумариновый и бензимидазольный фрагменты лежат практически в одной плоскости. Различия наблюдаются в торсионных углах между плоскостями фенильного заместителя и хиназолинового фрагмента. Вследствие наложения геометрических требований при уточнении по МНК и наличия псевдосимметрии можно предположить, что стандартные отклонения полученных геометрических характеристик молекул (табл. 3 и 4) являются заниженными по сравнению с реально наблюдаемым разбросом в длинах связей и валентных углах.

Таким образом, взаимодействие 2-иминокумарин-3-карбоксамидов с замещенными 2-аминобензофенонами в ледяной уксусной кислоте на холоду протекает по рециклизационному механизму с образованием замещенных 3-(4-арилхиназолин-2-ил)кумаринов и является удобным методом синтеза 3-гетерилкумаринов данного ряда.

Таблица 2

Химические сдвиги, δ, м. д. (КССВ, J, Гц) Соеди-Ароматические протоны нение Другие протоны Кумариновый цикл Хиназолиновый цикл Бензольное кольцо 7a 7.32–7.38 (2Н, м, Н-6, Н-8); 7.76 (1Н, д, J = 8, Н-5); 7.91 (1H, д. д, $J_1 = 8, J_2 = 1, H-7$); 8.15 (1H, д, 7.62 (3Н, м); 7.84 (2Н, м) H-8); 8.18 (1H, c, H-5) 8.80 (1H, c, H-4) 6.80 (2Н, м, Н-6, Н-8); 7.64 (1Н, м, Н-7), 7.90 (1Н, 8.11 (3Н, м) 7.52–7.90 (4Н, м) 7b м, Н-5); 8.78 (1Н, с, Н-4) 7c 6.80 (2H, м, H-6, H-8), 8.03 (1H, м, H-5); 8.71 (1H, с, 8.02 (3Н, м) 7.62-7.97 (5Н, м) 10.80 (1H, c, OH) H-4) 7d 7.40 (1Н, д, J = 10, Н-8); 7.54 (1Н, м, Н-7); 7.73 (1Н, 7.96 (1Н, м, Н-7); 8.09 (1Н, м, Н-5); 8.18 (1Н, м, 7.54 (3Н, м); 7.90 (2Н, м) д, *J* = 8, H-5); 8.76 (1H, c, H-4) H-8) 7e 7.43 (1Н, д, J = 9, Н-8); 7.57 (1Н, м, Н-7); 7.86 (1Н, 8.09 (1H, д. д, J₁ = 9, J₂ = 1, H-5); 8.20 (2H, м, 7.62-7.70 (4Н. м) д. д, J₁ = 10, J₂ = 1, H-5); 8.77 (1H, с, H-4) H-7, H-8) 7f 7.38 (1Н, д, J = 10, Н-8); 7.43 (1Н, м, Н-7); 7.74 (1Н, 8.08 (2Н, м, Н-5, Н-7); 8.24 (1Н, с, Н-8) 7.43-8.08 (5Н, м) д. д. $J_1 = 8$, $J_2 = 1$, H-5); 8.73 (1H, c, H-4) 7g 7.47 (1Н, д, J = 9, Н-8); 7.65 (1Н, м, Н-7); 7.58 (1Н, 7.65 (1Н, д. д, J₁ = 7, J₂ = 1, Н-7); 8.09 (1Н, м, 7.65-8.05 (5Н, м) м, Н-5); 8.75 (1Н, с, Н-4) Н-5); 8.14 (1Н, д, J = 7, Н-8) 7h 7.47 (1Н, д, J = 9, Н-8); 7.58 (1Н, м, Н-7); 7.70 (1Н, 8.08 (2Н, д. д, J₁ = 10, J₂ = 1, Н-5, Н-7); 8.20 7.58–7.70 (4Н, м) м, Н-5); 8.77 (1Н, с, Н-4) (1Н, д, J = 10, Н-8), 7.43–7.52 (4Н, м); 7.87 7i 7.28 (1H, д. д, J₁ = 10, J₂ = 1, H-8); 7.62 (1H, м, H-7); 8.06-8.12 (3Н, м, Н-5, Н-7, Н-8) 3.81 (3H, c, OCH₃) 7.87 (1Н, м, Н-5); 8.80 (1Н, с, Н-4) (1Н, м) 7.26 (1Н, д. д, *J*₁ = 10, *J*₂ = 1, Н-8); 7.40 (1Н, д, *J* = 9, 7j 7.70 (1Н, м, Н-7); 8.17 (1Н, д. д, J₁ = 9, J₂ = 1, 7.50-7.70 (4Н, м) 3.77 (3H, c, OCH₃) H-7), 7.50 (1H, μ , J = 5, H-5); 8.77 (1H, c, H-4) Н-5); 8.40 (1Н, д, *J* = 9, Н-8)

Спектры ЯМР ¹Н R¹-замещенных 3-[6-R²-4-(R³-фенил)хиназолин-2-ил]кумаринов

1538

7k	7.00 (1Н, д. д, $J_1 = 9$, $J_2 = 1$, H-6); 7.07 (1Н, д, $J = 5$, H-8); 7.87 (1Н, м, H-5); 8.80 (1Н, с, H-4)	8.04–8.14 (3Н, м, Н-5, Н-7, Н-8))	7.66 (3Н, м); 7.87 (2Н, м)	3.90 (3H, c, OCH ₃)
71	6.96 (1Н, д. д, $J_1 = 9$, $J_2 = 1$, H-6); 7.02 (1Н, д, $J = 5$, H-8); 7.80 (1Н, д, $J = 9$, H-5); 8.72 (1Н, с, H-4)	7.61 (1Н, м, Н-7); 8.02 (1Н, д. д, <i>J</i> ₁ = 9, <i>J</i> ₂ = 1, H-5); 8.14 (1Н, д, <i>J</i> = 9, H-8)	7.52–7.70 (4Н, м)	3.86 (3H, c, OCH ₃)
7m	6.92 (1Н, д. д, <i>J</i> ₁ = 9, <i>J</i> ₂ = 1, H-6); 7.00 (1Н, д, <i>J</i> = 5, H-8); 7.64 (1Н, м, H-5); 8.74 (1Н, с, H-4)	8.00–8.12 (3Н, м, Н-5, Н-7, Н-8)	7.64–7.85 (5Н, м)	1.34 (6H, T, $J = 7$, 2CH ₂ C <u>H₃</u>), 4.11 (2H, κ , $J = 7$, 2C <u>H₂</u> CH ₃)
7n	6.54 (1H, д, <i>J</i> = 5, H-8); 6.71 (1H, д. д, <i>J</i> ₁ = 8, <i>J</i> ₂ = 1, H-6); 7.58 (1H, м, H-5); 8.65 (1H, с, H-4)	7.94 (1Н, д, <i>J</i> = 8, Н-7); 7.98 (1Н, д, <i>J</i> = 9, H-5); 8.06 (1Н, д. д, <i>J</i> ₁ = 9, <i>J</i> ₂ = 1, Н-8)	7.58–7.86 (5Н, м)	1.15 (6H, T , $J = 7$, 2CH ₂ CH ₃), 3.45 (4H, κ , $J = 7$, 2CH ₂ CH ₃)
70	7.26 (1H, т, <i>J</i> = 7, H-6); 7.81 (2H, м, H-5, H-7); 8.70 (1H, с, H-4)	7.92 (1H, д, <i>J</i> = 9, H-7); 8.10 (1H, с, H-5); 8.25 (1H, д, <i>J</i> = 9, H-8)	7.36 (2Н, м); 7.65 (2Н, м); 7.81 (1Н, м)	4.02 (3H, c, OCH ₃)
7p	7.32 (1H, т, <i>J</i> = 8, H-6); 7.65 (2H, м, H-5, H-7); 8.75 (1H, с, H-4)	8.03 (1H, д, J = 6, H-5); 8.18 (1H, д, J = 5, H-8)	7.55–7.74 (4Н, м)	3.91 (3H, c, OCH ₃)
7q	7.28 (1H, т, <i>J</i> = 8, H-6); 7.46 (1H, д. д, <i>J</i> ₁ = 8, <i>J</i> ₂ = 1, H-5); 7.65 (1H, м, H-7); 8.80 (1H, с, H-4)	8.06–8.17 (3Н, м, Н-5, Н-7, Н-8)	7.30 (1Н, м); 7.65 (2Н, м); 7.88 (2Н, м)	1.42 (3H, т, <i>J</i> = 7, CH ₂ C <u>H₃</u>); 4.20 (2H, к, <i>J</i> = 7, C <u>H</u> ₂ CH ₃)
7 r	7.34 (1H, д, <i>J</i> = 6, H-6); 7.58 (1H, д, <i>J</i> = 6, H-7); 7.64 (1H, м, H-5); 8.78 (1H, с, H-4)	7.72 (1H, д, $J = 5$, H-7), 8.10 (1H, д. д, $J_1 = 7$, $J_2 = 1$, H-5); 8.24 (1H, д, $J = 5$, H-8)	7.32 (2Н, м); 7.64–7.72 (2Н, м)	1.42 (3H, т, <i>J</i> = 7, CH ₂ C <u>H</u> ₃); 4.20 (2H, к, <i>J</i> = 7, C <u>H</u> ₂ CH ₃)
7s	7.31 (1H, т, <i>J</i> = 8, H-6); 7.62 (1H, м, H-7); 7.74 (1H, д, <i>J</i> = 8, H-5); 8.71 (1H, с, H-4)	8.00–8.12 (3Н, м, Н-5, Н-7, Н-8)	7.50 (1Н, д); 7.64 (2Н, м); 7.86 (2Н, м)	3.57 (2H, д, <i>J</i> = 9, C <u>H</u> ₂ CH=CH ₂); 5.07 (2H, д. д, <i>J</i> ₁ = 18, <i>J</i> ₂ = 7, CH ₂ CH=C <u>H₂</u>); 6.02 (1H, м, CH ₂ C <u>H</u> =CH ₂)
7t	7.65–8.06 (6Н, м); 9.49 (1Н, с, Н-4)	8.20 (1Н, м, Н-7); 8.26 (1Н, м, Н-5); 8.56 (1Н, д, J = 8, Н-8)	7.63–7.90 (5Н, м)	
7u	7.55 (1Н, с, Н-8); 7.77 (1Н, м, Н-5); 8.70 (1Н, с, Н-4)	8.00–8.10 (3Н, м, Н-5, Н-7, Н-8)	7.62 (3Н, м); 7.85 (2Н, м)	0.88 (3H, M); 1.29 (6H, c, (CH ₂) ₂ (C <u>H₂</u>) ₃ CH ₃); 1.53 (2H, c, C <u>H₂</u> (CH ₂) ₄ CH ₃); 2.50 (2H, c, CH ₂ C <u>H₂(CH₂)₃CH₃); 3.20 (1H, c, OH)</u>

Char	d, Å			
Связь	С	А	В	
C(1) $C(10)$	1.704(4)	1.707(4)	1 794(4)	
CI(1) = C(19)	1./84(4)	1./8/(4)	1.784(4)	
O(1)-C(10)	1.401(4)	1.414(4)	1.403(4)	
O(1)–C(2)	1.415(4)	1.414(5)	1.408(5)	
C(2)–O(11)	1.198(5)	1.194(5)	1.192(5)	
C(2)–C(3)	1.377(5)	1.382(5)	1.375(5)	
C(3)–C(4)	1.331(5)	1.329(5)	1.333(5)	
C(3)–C(14)	1.467(2)	1.471(2)	1.471(2)	
C(4)–C(5)	1.501(4)	1.521(4)	1.511(4)	
C(5)–C(6)	1.367(4)	1.384(4)	1.374(4)	
C(5)–C(10)	1.375(4)	1.382(4)	1.378(4)	
C(6)–C(7)	1.378(4)	1.375(4)	1.376(4)	
C(7)–C(8)	1.381(3)	1.378(4)	1.385(4)	
C(8)–C(9)	1.382(3)	1.380(3)	1.381(3)	
C(8)–O(12)	1.426(4)	1.431(4)	1.434(4)	
C(9)–C(10)	1.381(3)	1.381(3)	1.384(3)	
N(13)-C(22)	1.321(2)	1.322(2)	1.321(2)	
N(13)–C(14)	1.350(2)	1.352(2)	1.350(2)	
C(14)–N(15)	1.313(2)	1.310(2)	1.310(2)	
N(15)–C(16)	1.344(2)	1.347(2)	1.345(2)	
C(16)–C(17)	1.496(5)	1.507(5)	1.497(5)	
C(16)–C(23)	1.527(4)	1.532(4)	1.524(4)	
C(17)–C(18)	1.373(3)	1.380(3)	1.382(3)	
C(17)–C(22)	1.390(3)	1.383(3)	1.390(3)	
C(18)–C(19)	1.374(4)	1.378(4)	1.381(4)	
C(19)–C(20)	1.379(4)	1.382(4)	1.379(4)	
C(20)–C(21)	1.377(3)	1.378(3)	1.378(3)	
C(21)–C(22)	1.378(4)	1.378(4)	1.381(3)	
C(23)–C(24)	1.3953(19)	1.3956(15)	1.3941(19)	
C(23) - C(28)	1.3967(19)	1.3946(18)	1 3959(19)	
C(24) - C(25)	1 3973(19)	1 3957(18)	1 3948(19)	
C(25) = C(26)	1 397(2)	1 3977(19)	1 3955(15)	
C(26) = C(27)	1 3962(19)	1 3946(10)	1 305/(10)	
C(20) - C(21)	1.3902(19)	1.3040(15)	1.3934(19)	

Длины связей (d) в триаде базисных молекул соединения 7с

Таблица 4

Vroi	ω, град				
9100	С	А	В		
C(10)-O(1)-C(2)	120.7(4)	122.7(4)	124.3(4)		
O(11)-C(2)-C(3)	132.4(3)	133.5(4)	133.8(4)		
O(11)-C(2)-O(1)	106.1(3)	107.1(3)	107.2(3)		
C(3)–C(2)–O(1)	121.4(4)	119.4(4)	118.5(4)		
C(4)–C(3)–C(2)	118.8(3)	119.2(3)	118.9(3)		
C(4)–C(3)–C(14)	118.0(3)	118.2(3)	117.7(3)		
C(2)–C(3)–C(14)	123.2(3)	122.7(3)	123.0(3)		
C(3)–C(4)–C(5)	122.3(4)	124.0(4)	124.6(4)		
C(6)–C(5)–C(10)	117.0(3)	115.5(4)	113.5(3)		
C(6)-C(5)-C(4)	125.4(4)	128.6(4)	131.1(4)		
C(10)-C(5)-C(4)	117.3(3)	115.0(3)	115.0(3)		
C(5)–C(6)–C(7)	123.4(4)	124.3(4)	126.4(4)		
C(6)–C(7)–C(8)	116.5(3)	115.9(4)	113.9(4)		
C(7)–C(8)–C(9)	122.8(3)	123.7(4)	125.7(3)		
C(7)–C(8)–O(12)	111.6(3)	111.7(3)	110.8(3)		
C(9)–C(8)–O(12)	124.3(3)	124.5(3)	123.4(3)		
C(10)–C(9)–C(8)	116.3(3)	116.4(4)	113.7(4)		
C(5)-C(10)-C(9)	123.2(3)	123.5(4)	126.1(3)		
C(5)-C(10)-O(1)	119.3(3)	119.1(3)	118.6(3)		
C(9)–C(10)–O(1)	117.4(3)	117.0(3)	115.1(3)		
C(22)-N(13)-C(14)	116.2(3)	116.6(3)	116.0(3)		
N(15)-C(14)-N(13)	130.2(3)	129.8(3)	130.5(3)		
N(15)-C(14)-C(3)	109.8(3)	110.9(3)	109.5(3)		
N(13)-C(14)-C(3)	120.0(3)	119.4(3)	119.6(3)		
C(14)-N(15)-C(16)	112.9(3)	113.0(3)	113.0(3)		
N(15)-C(16)-C(17)	123.4(3)	122.3(3)	123.8(3)		
N(15)-C(16)-C(23)	116.2(3)	116.0(4)	116.3(4)		
C(17)-C(16)-C(23)	119.8(3)	117.7(3)	119.8(3)		
C(18)-C(17)-C(22)	121.1(3)	121.9(3)	122.3(3)		
C(18)-C(17)-C(16)	125.6(3)	124.1(3)	124.9(3)		
C(22)-C(17)-C(16)	113.1(2)	113.1(2)	112.7(2)		
C(17)-C(18)-C(19)	113.9(4)	113.3(4)	113.3(4)		
C(18)-C(19)-C(20)	128.6(4)	129.3(4)	128.9(4)		
C(18)–C(19)–Cl(1)	115.7(3)	115.1(3)	115.3(3)		
C(20)–C(19)–Cl(1)	114.8(3)	115.1(3)	115.7(3)		
C(21)-C(20)-C(19)	114.0(4)	113.1(4)	113.0(4)		
C(20)-C(21)-C(22)	121.0(3)	122.2(3)	122.8(4)		
N(13)-C(22)-C(21)	115.3(3)	116.6(3)	116.9(3)		
N(13)-C(22)-C(17)	123.6(3)	123.4(3)	123.8(3)		
C(21)-C(22)-C(17)	120.9(3)	120.0(3)	119.0(3)		
C(24)-C(23)-C(28)	119.94(12)	120.01(11)	120.01(12)		
C(24)-C(23)-C(16)	120.7(4)	127.1(4)	122.2(4)		
C(28)–C(23)–C(16)	119.2(4)	112.7(4)	117.8(4)		
C(23)–C(24)–C(25)	119.84(13)	119.86(12)	120.01(12)		
C(24)–C(25)–C(26)	119.41(15)	119.68(13)	119.99(12)		
C(27)–C(26)–C(25)	119.56(15)	119.82(12)	119.85(13)		
C(28)–C(27)–C(26)	119.90(13)	120.05(12)	119.85(13)		
C(27)-C(28)-C(23)	119.93(12)	119.91(12)	119.90(12)		

Валентные углы ((0) в триаде базисных молекул соединения 7c

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений зарегистрированы на спектрофотометре Specord M-80 в таблетках КВг. Спектры ЯМР ¹Н записаны на приборе Varian WXR-400 (200 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры (ЭУ) получены на приборе Finnigan MAT 4615В, энергия ионизации – 70 эВ, при баллистическом нагреве образца. РСА проведен на 4-кружном автоматическом дифрактометре Siemens P3/PC.

R¹-Замещенные 2-иминокумарин-З-карбоксамиды 1 получены по методике работы [9].

3-(4-Арилхиназолин-2-ил)кумарины 7а–и (общая методика). Растворяют при нагревании 2 ммоль соответствующего 2-аминобензофенона **2** при нагревании в 10 мл ледяной уксусной кислоты. В теплый раствор (30–40 °C) добавляют 2 ммоль 2-иминокумарин-3-карбоксамида **1** и кипятят с обратным холодильником в течение 20–30 мин. При охлаждении реакционной смеси образуется обильный осадок, который отфильтровывают, промывают водой, этанолом и перекристаллизовывают из смеси этанол–вода (соединения **7с,d,g–s,u**) или этанол–ДМФА (соединения **7а,b,e,f,t**).

Рентгеноструктурный анализ 3-(4-фенил-6-хлорхиназолин-2-ил)-7-гидроксикумарина (7с). Измерение интенсивностей проводили методом 20/0-сканирования в интервале углов 4<20<50° со скоростью от 2 до 30 град./мин; измерено 2724 ненулевых неэквивалентных отражений, из которых 1954 наблюдаемых с $I > 2\sigma(I)$. Кристаллы гексагональные, пр. гр. $P6_1$, $M_r = 400.80$, T = 293(2) K, $C_{23}H_{13}CIN_2O_3$, a = 20.520(6), c = 22.915(10) Å, V = 8356(5) Å³, Z = 18, $d_{\rm выч} = 1.434$ г/см³, $F_{000} = 3708$, $\mu({\rm Mo}K_{\alpha}) = 0.234$ мм⁻¹. Структура уточнена полноматричным МНК с использованием комплекса программ SHELX-97. Из-за наличия псевдосимметрии в упаковке молекул (наличие псевдооси третьего порядка приводило к сильным корреляциям уточняемых параметров) при уточнении структуры на уточняемые параметры накладывались дополнительные геометрические требования, например, все ароматические кольца принудительно задавались плоскими, одинаковые связи в разных молекулах – равными друг другу и т. д. Общее число таких геометрических ограничений составило 945. Атомы водорода введены из геометрических соображений и уточнялись прикрепленными к соответствующим неводородным атомам. Окончательные показатели достоверности: $R_1 = 0.0430$, $wR_2 = 0.1098$ по наблюдаемым и $R_1 = 0.0471$, $wR_2 = 0.1114$ по всем отражениям S = 0.975.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. Н. Коваленко, В. А. Зубков, В. П. Черных, А. В. Туров, С. М. Ивков, *XTC*, 186 (1996).
- Y. V. Bilokin, S. M. Kovalenko, I. E. Bylov, V. P. Chernykh, *Heterocycl. Commun.*, 4, 257 (1998).
- 3. Y. V. Bilokin, M. V. Vasylyev, O. V. Branytska, S. M. Kovalenko, V. P. Chernykh, *Tetrahedron*, **55**, 13757 (1999).
- 4. M. V. Vasylyev, Y. V. Bilokin, O. V. Branytska, S. M. Kovalenko, V. P. Chernykh, *Heterocycl. Commun.*, 5, 241 (1999).
- С. Н. Коваленко, К. М. Сытник, В. М. Никитченко, С. В. Русанова, В. П. Черных, А. О. Порохняк, XГС, 190 (1999).
- 6. S. M. Kovalenko, I. E. Bylov, K. M. Sytnik, V. P. Chernykh, Y. V. Bilokin, *Molecules*, 5, 1146 (2000).
- С. Н. Коваленко, М. В. Васильев, И. В. Сорокина, В. П. Черных, А. В. Туров, С. А. Руднев, *ХГС*, 1664 (1998).
- 8. С. Н. Коваленко, И. Е. Былов, Я. В. Белоконь, В. П. Черных, ХГС, 1175 (2000).
- 9. В. А. Зубков, С. Н. Коваленко, В. П. Черных, С. М. Ивков, *ХГС*, 760 (1994).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: ulk@ukrfa.kharkov.ua Поступило в редакцию 24.04.2003