С. А. Визер

СИНТЕЗ И СТРОЕНИЕ ДИ-N-АРИЛПИРРОЛО[1,2-*c*; 5,6-*c*]ЦИКЛООКТАНОВ

Ди-N-арилпирроло[1,2-*c*;5,6-*c*]циклооктаны впервые синтезированы циклизацией N,N-дипропинилариламинов в суперосновной среде.

Ключевые слова: ди-N-арилпирроло[1,2-*c*;5,6-*c*]циклооктаны, N,N-дипропинилариламин, суперосновная среда, циклизация.

Целью настоящей работы является изучение превращений диацетиленовых ариламинов в суперосновных средах.

Циклизацией ацетиленсодержащих соединений могут быть получены гетероциклические соединения разнообразного строения [1, 2]. Использование так называемых "суперосновных сред" открывает для этого новые перспективы [3]. Под суперосновными подразумеваются среды, состоящие из сильного основания и растворителя или реагента, способного специфически связывать катион, "обнажая" анион [4, 5]. Такие системы можно получить на основе линейных эфиров, краунэфиров, диполярных апротонных растворителей (ДМСО, сульфолан, ГМФА и др.), амидов, жидкого аммиака, аминов и т. п.

Мы установили, что N,N-дипропинилариламины **1a**–**d** при комнатной температуре в суперосновной среде (ДМСО, КОН) легко превращаются в полициклические соединения разного строения со 100% конверсией [6–11]. Некоторые из них были выделены из реакционных смесей в индивидуальном виде благодаря их низкой растворимости в разных растворителях и относительной стабильности. На основании данных элементного анализа, методов спектроскопии ИК, ЯМР ¹Н и ¹³С и массспектрометрии (табл. 1–4) выделенным соединениям приписано строение ди-N-арилпирроло[1,2-*c*; 5,6-*c*]циклооктанов **2a**–**d**.

1, 2 a R = H, **b** R = *p*-Cl, **c** R = *m*-Cl, **d** R = *m*-Br

По данным элементного анализа, полученные соединения изомерны исходным N,N-дипропинилариламинам **1а–d**, согласно данным масс-спектрометрии, это димеры, дающие набор молекулярных ионов в соответствии с изотопным составом галогенных заместителей (Cl, Br) [6].

Таблица 1

Со- еди- не- ние	Брутто- формула (<i>M</i>)	<u>Найдено,%</u> Вычислено,%				Т. пл.,	<i>R</i> .**	Выход, %***	
		С	Н	Hal	Ν	°C*	ng	А	Б
2a	C ₂₄ H ₂₂ N (338.45)	<u>85.14</u> 85.17	<u>6.54</u> 6.55	_	<u>8.31</u> 8.28	256–258	0.7	30	
2b	$\begin{array}{c} C_{24}H_{20}Cl_2N_2\\ (407.34)\end{array}$	<u>70.46</u> 70.77	<u>5.08</u> 4.95	<u>17.67</u> 17.41	<u>6.74</u> 6.88	302–304	0.6	47	10
2c	$\begin{array}{c} C_{24}H_{20}Cl_2N_2\\ (407.34)\end{array}$	<u>70.94</u> 70.77	<u>5.33</u> 4.95	<u>17.41</u> 17.41	<u>6.87</u> 6.88	179–180	0.6	40	10
2d	$\begin{array}{c} C_{24}H_{20}Br_2N_2\\ (496.28)\end{array}$	<u>57.98</u> 57.08	<u>4.38</u> 4.06	$\frac{32.09}{32.20}$	<u>5.87</u> 5.65	202–205	0.8	45	15

Физико-химические характеристики ди-N-арилпирроло[1,2-с; 5,6-с]циклооктанов 2а-d

* Кристаллизуют из бензола (2a), ксилола (2b), Me₂CO-MeOH (2c) и *i*-PrOH-ДМСО (2d). ** Silufol, бензол-петролейный эфир, 3:1 (2a), 1:1 (2 b,c) и 2:1 (2d).

*** ДМСО-КОН (А), ГМФА-эфир-КОН (Б).

В ИК спектрах соединений 2а-d отсутствует полоса поглощения валентных колебаний связи ≡С-Н при 3300 см⁻¹, присущая исходным ацетиленовым аминам **1а-d**, но появляются новые полосы средней и выше средней интенсивности в области 1380-1560 см⁻¹, характерные для валентных колебаний пиррольного цикла [13]. Сохраняются полосы поглощения валентных колебаний связей С=С арильных заместителей при 1500 и 1600 см⁻¹ [14].

Таблица 2

Со- еди- нение	M^{+}	ИК спектр (KBr), v, см $^{-1}$						
		C–Hal	С=С (аром.)	С=С–N (пирр.)	С–Н (аром.)			
2a	_	_	1500, 1695	1530, 1 560 1380, 1400	3050, 3130			
2b	404–409	775	1500, 1600	1527, 1550 1380, 1400	3030, 3090			
2c	404–409	780	1500, 1603	1533, 1380, 1440	3070, 3130			
2d	492–498	690	1490, 1590	1530, 1389, 1389, 1395	3065			

Спектральные характеристики циклооктанов 2а-d

Сравнение экспериментальных спектров ЯМР ¹Н и ¹³С с рассчитанными по программе ChemOffice 4.5 Ultra позволяет сделать вывод, что экспериментально найденные значения резонансных сигналов близки к прогнозируемым для структур ди-N-арилпирролоциклооктанов 2a-d (табл. 3, 4). Действительно, в экспериментальных спектрах ЯМР ¹Н наблюдается только один синглет винильного протона в области 6.6-7.0 м. д. с общей интегральной интенсивностью, соответствующей четырем протонам, как и в расчетных спектрах для протонов пиррольных циклов – 6.41 м. д. Химический сдвиг синглетного сигнала метиленовой группы в области 2.7-2.9 м. д. совпадает с рассчитанным химическим сдвигом для метиленовых групп циклооктанового ядра – 2.70 м. д. Общая интегральная интенсивность мультиплетных сигналов арильных протонов в экспериментальных спектрах соответствует 8-10 протонам, а форма зависит от типа замещения арильного цикла и остается такой же, как в исходных ариламинах **1а-d**. Это свидетельствует о том, что при циклизации не затрагиваются арильные циклы. Аналогичная картина наблюдается в спектрах ЯМР ¹³С циклических соединений **1а,с**. Химические сдвиги атомов С(1), С(2) и С(3) в экспериментальных спектрах, где отнесение сигналов сделано с помощью записи спектров монорезонанса от протонов, практически совпадают с рассчитанными для структур дипирролоциклооктанов 2а,с (табл. 4).

При проведении реакции изомеризации аминов **1b**-**d** в среде ГМФА-диэтиловый эфир, 1:2, выход соответствующих циклодимеров **2b**-**d** падает до 0–15% даже при увеличении количества КОН до 3 мольэквивалентов. Амин **1a** и N,N-дипропинил-*n*-броманилин в этих условиях не изомеризуются, причем N,N-дипропинил-*n*-броманилин и при изомеризации в среде ДМСО, КОН не образует соответствующего дипирролоциклооктана.

Таблица З

Соеди-	Спактр	Растворитель,	Химические сдвиги, б, м. д.				
нение	Chekip	(T, °C)	N-CH=	CH ₂	Ar		
2a	Эксп.	CDCl ₃	6.85 (4H, c)	2.85 (8H, c)	7.11–7.39 (10Н, м)		
	Рассч.*		6.41	2.70	7.3		
2b	Эксп.	ДМСО-d ₆ (~20)	7.03 (4H,c)	2.69 (8H, c)	7.34–7.45 (8Н, м)		
	Рассч.		6.41	2.70	7.20-7.30		
2c	Эксп.	СДСl ₃	6.65 (4H, c)	2.72 (8H, c)	7.00–7.20 (8Н, м)		
	Эксп.	ДМСО-d ₆ (~20)	7.14 (4H, c)	2.75 (8H, c)	7.17–7.30 (8Н, м)		
	Рассч.		6.41	2.70	7.10-7.30		
2d	Эксп.	ДМСО-d ₆ (80)	7.00 (4H, c)	2.75 (8H, c)	7.30-7.60 (8Н, м)		
	Рассч.		6.41	2.70	7.20-7.40		

Спектры ЯМР¹Н ди-N-арилпирроло[1,2-*c*;5,6-*c*]циклооктанов 2а-d

* Рассч. – спектры, рассчитанные по программе ChemOffice 4.5 Ultra.

Со- еди- нение	Спектр*	Раство- ритель	Химические сдвиги, м. д. (Ј, Гц)								
			<u>C(1)</u>	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	C(8)	C(9)
2a	Эксп.	CDCl ₃	28.3	126.7	119.3	140.5	117.2	129.4	124.6	129.4	117.2
	ЭСМ		28.3 (т, <i>J</i> = 124.5)	125.7 (c)	119.3 (д, <i>J</i> = 164.6)	140.5 (c)	117.2 (д,J = 177.6)	129.4 (д. д, $J^1 = 161.2,$ $J^2 = 7.2)$	124.6 (д, <i>J</i> = 163.7)	129.4 (д. д., $J^1 = 161.2,$ $J^2 = 7.2)$	117.2 (д, <i>J</i> = 177.6)
	Рассч.		28.1	124.1	118.7	140.4	120.2	129.1	125.3	129.1	120.2
2c	Эксп.	CHCl ₃	28.0	127.0	117.1	141.7	119.4	135.2	124.4	130.3	117.1
	Эксп.	ДМСО-d ₆	26.8	125.8	116.4	140.5	117.2	133.7	123.4	130.7	115.9
	ЭСМ		26.8 (т, <i>J</i> = 127.0)	125.8 (c)	116.5 (д, <i>J</i> = 186.8)	140.5 (c)	117.2 (д, <i>J</i> = 167.2)	133.7 (c)	123.4 (д, <i>J</i> = 168.5)	130.7 (д, <i>J</i> = 164.9)	115.9 (д, <i>J</i> = 165.0)
	Рассч.		28.1	124.1	118.7	141.8	120.6	134.4	125.7	130.5	118.3

Спектры ЯМР ¹³С циклооктанов 2а,с

Таблица 4

* ЭСМ- экспериментальный спектр монорезонанса, рассч.- спектры, рассчитанные по программе ChemOffice 4.5 Ultra.

Исходные N,N-дипропинилариламины **1а–d** синтезированы с выходами 80–90% по разработанным нами ранее методикам из соответствующих ариламинов и бромистого пропаргила на оксиде алюминия [15] или в метанольном растворе в присутствии ацетата натрия [16].

Таким образом, нами установлено, что N,N-дипропаргилариламины **1аd** в суперосновных условиях (ДМСО, КОН) при комнатной темпе-ратуре циклодимеризуются с образованием соответствующих ди-N-арилпирроло[1,2-*c*;5,6-*c*] циклооктанов **2а**-**d**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре Mercury 300 (Varian) (300 – ¹H, 75 МГц – ¹³С) при комнатной температуре и спектрометре Tesla BS-487A (80 МГц ¹Н) при температуре 80 °С. Температуру плавления полученных соединений определяли на нагревательном столике Boetius (скорость нагрева 4 град. мин⁻¹). ИК спектры получены на спектрометре UR-20 (в KBr), масс-спектры на приборе MX-1331 при энергии ионизирующих электронов 60–70 эВ.

Ди-N-арилпирроло[1,2-*c*;5,6-*c*]циклооктаны 2а–d (общая методика). К 0.05 моль порошкообразного КОН в 20 мл свежеперегнанного сухого ДМСО при перемешивании прибавляют раствор 0.01 моль амина 1а–d в 15 мл сухого ДМСО в токе инертного газа (аргон, азот). Контроль за ходом реакции осуществляют с помощью ТСХ на силуфоле в системе бензол–петролейный эфир. После исчезновения в реакционной смеси исходного амина 1а–d, для чего обычно требовалось от 0.5 до 1.5 ч, всю реакционную смесь выливают в 2–5-кратный объем воды, насыщенной NaCl, и pH суспензии доводят до 5–6 с помощью NH₄Cl до створаживания образовавшегося осадка. Осадок отфильтровывают промывают несколько раз водой и высушивают в эксикаторе над CaCl₂ до прекращения изменения массы осадка. Затем весь осадок обрабатывают небольшим количеством абсолютного эфира. Нерастворившуюся часть отфильтровывают. Перекристаллизовывают из подходящего растворителя.

СПИСОК ЛИТЕРАТУРЫ

- 1. Р. Фукс, Г. Г. Вийе, в кн. *Химия ацетиленовых соединений*, под ред. Г. Г. Вийе, Химия, Москва, 1973.
- 2. J. Bastide, O. Henri-Rousseau, in *The Chemistry of the Carbon-Carbon Triple Bond*, ed. Wiley, Toronto, 1978.
- 3. Б. А. Трофимов, А. И. Михалева, *N-Винилпирролы*, Наука, Сиб. отд-ние, Новосибирск, 1984.
- 4. Б. А. Трофимов, Успехи химии, **50**, 248 (1981).
- 5. Дж. Гордон, Органическая химия растворов электролитов, Мир, Москва, 1979.
- 6. С. А. Визер, К. Б. Ержанов, З. Н. Манчук, Е. Х. Дедешко, А. А. Еспенбетов, в кн. 1-ая Всероссийская конференция по химии гетероциклов памяти А. Н. Коста. Тез. докл., Суздаль, 2000, 132.
- Н. Б. Курманкулов, С. А. Визер, К. Б. Ержанов, в кн. Третий Всероссийский симпозиум по органической химии "Стратегия и тактика органического синтеза". Тез. докл., Ярославль, 2001, 70.
- 8. С. А. Визер, К. Б. Ержанов, Е. Х. Дедешко, А. Т. Басенова, в кн. Современные проблемы органической химии, экологии и биотехнологии. Мат. I Междунар. конф., Луга, 2001, 1, 117.
- С. А. Визер, К. Б. Ержанов, Н. Б. Курманкулов, Е. Х. Дедешко, в кн. Химия и биологическая активность синтетических и природных соединений. Азотистые гетероциклы и алкалоиды, под ред. В. Г. Карцева и Г. А. Толстикова, Иридиум-пресс, Москва, 2001, 1, 303.

- С. А. Визер, К. Б. Ержанов, Е. Х. Дедешко, А. А. Еспенбетов, в кн. Химия и биологическая активность синтетических и природных соединений. Азотистые гетероциклы и алкалоиды, под ред. В. Г. Карцева и Г. А. Толстикова, Иридиум-пресс, Москва, 2001, 2, 65.
- С. А. Визер, в кн. Химия и биологическая активность синтетических и природных соединений. Азотистые гетероциклы и алкалоиды, под ред. В. Г. Карцева и Г. А. Толстикова, Иридиум-пресс, Москва, 2001, 2, 379.
- 12. В. В. Тахистов, Практическая масс-спектрометрия органических соединений, Изд-во Ленинград. ун-та, Ленинград, 1977.
- 13. Физические методы в химии гетероциклических соединений, под ред. А. Р. Катрицкого, Химия, Москва–Ленинград, 1966.
- 14. Л. А. Казицына, Н. Б. Куплетская, Применение УФ, ИК, ЯМР и масс-спектроскопии в органической химии, Изд-во Моск. ун-та, Москва, 1979.
- 15. С. А. Абдулганеева, К. Б. Ержанов, ЖОрХ, 25, 521 (1989).
- 16. С. А. Абдулганеева, К. Б. Ержанов, З. Н. Манчук, М. И. Лелюх, К. Т. Танатарова, *Изв. НАН Республики Казахстан, Сер. хим.*, вып. 6, 43 (1995).

Институт химических наук им. А. Б. Бектурова Министерства образования и науки Республики Казахстан, Алматы 480100 e-mail: vizer@astel.kz Поступило в редакцию 19.02.2002