С. Н. Михайличенко, А. А. Чеснюк, Л. Д. Конюшкин^а, С. И. Фирганг^а, В. Н. Заплишный

ПРОИЗВОДНЫЕ сим-ТРИАЗИНА

3*. СИНТЕЗ И НЕКОТОРЫЕ ПРЕВРАЩЕНИЯ МОНОАЗИДОВ ТРИАЗИНОВОГО РЯДА

Разработан удобный препаративный путь синтеза 2-азидо-4-R-6-R'-*сим*-триазинов – перспективных синтонов в органическом синтезе. Из полученных азидов и ацетилацетона или ацетоуксусного эфира впервые синтезирован ряд производных 2-(триазолил-1)-*сим*-триазина.

Ключевые слова: 2-азидо-4-R-6-R'-*сим*-триазины, замещенные 2-(триазолил-1)-*сим*-триазины, хлориды (4-R-6-R'-*сим*-триазинил-2)триметиламмония.

Органические азиды – весьма реакционноспособные и удобные синтоны для синтеза многих перспективных для практического использования гетероциклических соединений [2]. В то же время азиды *сим*триазинового ряда до настоящего времени не описаны. Задача настоящей работы заключалась в разработке пути синтеза и изучении некоторых свойств таких соединений.

Наши многочисленные попытки синтеза 2-азидо-4,6-дизамещенных *сим*-триазинов традиционным способом – нуклеофильным замещением атома хлора в монохлордизамещенных *сим*-триазинах при помощи азидов натрия и калия по известной методике [3] не увенчались успехом, несмотря на всестороннее варьирование условий проведения реакции. Повидимому, это связано с весьма слабой подвижностью атома хлора в указанных соединениях и сложностью получения на их основе солей диазония.

Ранее [1, 4] нами были синтезированы и описаны относительно устойчивые и одновременно высокореакционноспособные хлориды (4-R-6-R'*сим*-триазинил-2)триметиламмония типа 1. Мы обнаружили, что соли 1а-k легко реагируют с азидом натрия в водном растворе даже при комнатной температуре; при этом с хорошими выходами (65–94%) гладко образуются целевые ранее не доступные моноазиды ряда *сим*-триазина 2а-k (схема 1).

Синтезированные азиды **2а**–**k** представляют собой весьма устойчивые при длительном хранении взрывобезопасные белые мелкокристаллические порошки, хорошо растворимые в ароматических углеводородах и обычных полярных органических растворителях, плохо растворимые в алифатических углеводородах на холоду и не растворимые в воде и

^{*} Сообщение 2 см. [1]. алифатических углеводородах. Их индивидуальность проверена ТСХ,

а состав и строение подтверждены результатами элементного анализа, данными ИК, ЯМР ¹Н и масс-спектров (табл. 1, 2).

Схема 1

1, 2 a–d, k R = I, e–g R = II, h R = OMe, i, j R = III, a $R^1 = I$, b, g, h $R^1 = OMe$, c, e $R^1 = OEt$, d, f $R^1 = II$, i $R^1 = OMe$, j $R^1 = III$, k $R^1 = NPh_2$

$$I = N_0, II = N_i, III = N_{Me}$$

В ИК спектрах азидов 2 присутствуют интенсивные полосы поглощения, характерные для валентных колебаний азидной группировки при 2110–2100, а также связи C=N-сопряженного триазинового цикла при 1620–1505 см⁻¹. В спектрах ЯМР ¹Н (табл. 2) имеются и четко дифференцируются резонансные сигналы протонов всех заместителей гетероцикла, однако в них отсутствует синглетный сигнал протонов группы N⁺Me₃, характерный для исходных солей **1** [4].

Известно, что азидоазолопиридазины [5] и моноазидофуразаны [6] образуют с 1,3-дикарбонильными соединениями бигетероциклические системы. Поскольку включающие подобные системы вещества проявляют высокую биологическую активность [6], представлялось интересным выяснить возможность получения еще не описанных соединений со связанными простой связью *сим*-триазиновыми и триазольными циклами.

С этой целью нами было изучено взаимодействие синтезированных азидов $2\mathbf{a}-\mathbf{k}$ с такими широкодоступными дикарбонильными соединениями, как ацетилацетон и ацетоуксусный эфир, в результате чего с высокими выходами (71–91%) были получены соответствующие продукты $3\mathbf{a}-\mathbf{i}$ и $4\mathbf{a}-\mathbf{i}$ (схема 2).

Оказалось, что скорость реакции существенно зависит от типа используемого дикарбонильного соединения. Так, при взаимодействии моноазидов 2 с более реакционноспособным ацетилацетоном продолжительность синтеза при комнатной температуре колебалась в пределах 0.5–14 ч. Для получения же целевых продуктов **4**а–і в реакции с ацетоуксусным эфиром требовалось гораздо более продолжительное (в некоторых случаях до 72 ч) выдерживание при 30–40 °C.

Соеди-	Соеди- Брутто- <u>Найдено, %</u> Вычислено, %		/0	Т. пл., °С	Мол. ион,	Вы- ход,	
нение	формула	С	Н	Ν		m/z^*	%
1	2	3	4	5	6	7	8
2a	$C_{11}H_{16}N_8O_2\\$	<u>45.49</u> 45.20	<u>5.68</u> 5.52	<u>38.48</u> 38.39	185–185.5	292	68
2b	$C_8H_{11}N_7O_2$	$\frac{40.77}{40.50}$	<u>4.83</u> 4.67	$\frac{41.43}{41.33}$	116–117	237	94
2c	$C_{9}H_{13}N_{7}O_{2}$	$\frac{43.19}{43.02}$	<u>5.38</u> 5.21	<u>39.12</u> 39.03	104–105	251	84
2d	$C_{12}H_{18}N_8O$	<u>49.83</u> 49.63	<u>6.39</u> 6.25	<u>38.67</u> 38.59	113–114	290	72
2e	$C_{10}H_{15}N_7O$	$\frac{48.29}{48.18}$	<u>6.23</u> 6.07	<u>39.40</u> 39.34	74–75	249	90
2f	$C_{13}H_{20}N_8$	<u>54.33</u> 54.14	<u>7.22</u> 6.99	<u>38.96</u> 38.88	96–97	288	65
2g	$C_9H_{13}N_7O$	$\frac{46.23}{45.95}$	<u>5.68</u> 5.57	<u>41.78</u> 41.68	85–86	235	91
2h	$C_5H_6N_6O_2$	<u>33.20</u> 32.97	$\frac{3.45}{3.32}$	<u>46.28</u> 46.14	82-83	182	69
2i	$C_{10}H_{15}N_7O_2$	<u>45.42</u> 45.27	<u>5.87</u> 5.69	<u>37.10</u> 36.96	92–93	265	75
2ј	$C_{15}H_{24}N_8$	<u>57.09</u> 56.94	<u>7.80</u> 7.65	<u>35.58</u> 35.42	116–117	316	75
2k	$C_{19}H_{18}N_8O$	<u>61.13</u> 60.95	<u>4.98</u> 4.84	<u>30.06</u> 29.93	161–162	374	80
3a	$C_{16}H_{22}N_8O_3\\$	<u>51.49</u> 51.32	<u>6.15</u> 5.92	<u>29.32</u> 29.23	203–204	374	79
3b	$C_{13}H_{17}N_7O_3$	<u>49.04</u> 48.89	<u>5.49</u> 5.44	<u>30.83</u> 30.83	198–199	319	85
3c	$C_{14}H_{19}N_7O_3$	<u>50.58</u> 50.44	<u>5.83</u> 5.74	<u>29.55</u> 29.42	192–193	333	76
3d	$C_{17}H_{24}N_8O_2\\$	<u>54.99</u> 54.82	<u>6.67</u> 6.50	<u>30.21</u> 30.09	178–179	372	86
3e	$C_{15}H_{21}N_7O_2$	<u>50.48</u> 50.36	<u>6.51</u> 6.38	<u>29.68</u> 29.59	140–141	331	85
3f	$C_{18}H_{26}N_8O$	<u>58.46</u> 58.35	<u>7.16</u> 7.07	<u>30.35</u> 30.25	184–185	370	75
3g	$C_{14}H_{19}N_7O_2$	<u>53.16</u> 52.98	<u>6.20</u> 6.17	<u>31.02</u> 31.03	133–134	317	91
3h	$C_{10}H_{12}N_6O_3$	<u>45.57</u> 45.45	<u>4.71</u> 4.58	<u>31.95</u> 31.81	175–176	264	89
3 i	$C_{15}H_{21}N_7O_2$	<u>54.47</u> 54.36	<u>6.49</u> 6.38	<u>29.74</u> 29.59	132–133	331	87

Характеристики соединений 2-4

1345

1	2	3	4	5	6	7	8
4a	$C_{17}H_{24}N_8O_4$	<u>50.59</u> 50.48	<u>6.13</u> 5.98	<u>27.85</u> 27.71	188–189	404	70
4b	$C_{14}H_{19}N_7O_4$	<u>48.29</u> 48.13	<u>5.63</u> 5.48	$\frac{28.16}{28.07}$	155–156	349	85
4c	$C_{15}H_{21}N_7O_4$	<u>49.76</u> 49.58	<u>5.99</u> 5.83	$\frac{27.08}{26.98}$	110–111	363	81
4d	$C_{18}H_{26}N_8O_3$	<u>53.81</u> 53.71	<u>6.67</u> 6.51	<u>27.95</u> 27.85	198–199	402	83
4 e	$C_{16}H_{23}N_7O_3$	<u>53.01</u> 52.17	<u>6.29</u> 6.41	$\frac{27.20}{27.13}$	119–120	361	85
4f	$C_{19}H_{28}N_8O_2$	<u>56.81</u> 56.98	<u>6.91</u> 7.05	$\frac{28.07}{27.98}$	168–169	400	71
4g	$C_{15}H_{21}N_7O_3$	<u>51.98</u> 51.86	$\frac{6.25}{6.09}$	$\frac{28.32}{28.23}$	114–115	347	82
4h	$C_{11}H_{14}N_6O_4$	<u>44.98</u> 44.89	<u>4.87</u> 4.79	$\frac{28.64}{28.56}$	147–148	294	87
4i	$C_{25}H_{26}N_8O_3$	<u>61.58</u> 61.71	<u>5.27</u> 5.39	$\frac{23.14}{23.03}$	212–213	486	73

Окончание таблицы 1

* Данные масс-спектров можно получить у авторов.

Как и следовало ожидать, на скорость реации влияет строение исходного азида. Так, самым реакционноспособным оказался азид 2h, содержащий в положениях 4 и 6 триазинового цикла заместители ОМе небольшого объема; наименее активными были азиды 2j, k, имеющие в указанных положениях остатки пространственно-затрудненных дифениламина и 2-метилпиперидина.

Схема 2

3a-d, **4a-d**, **i** R = I, **3e-g**, **4e-g** R = II, **3i** R = OMe; **3,4 a** $R^1 = I$, **b** $R^1 = OMe$, **c,e** $R^1 = OEt$, **d, f** $R^1 = II$, **3i** $R^1 = III$

1346

Таблица 2

Спектральные характеристики соединений 2-4

Co	ИК спектр, v, см ⁻¹			
Со- ели-	N_3	N=N-, C=N-	Спектр ЯМР 1 Н δ м п (КССВ I Гп)	
нение	или	И	Спектр лип 11, 0, м. д. (КССВ, 5, 1 ц)	
	C=O	С=С-сопр.		
1	2	3	4	
2a	2110	1570, 1550	3.55–3.75 (16H, м, 4NCH ₂ , 4OCH ₂)	
2b	2105	1565, 1505	3.60–3.80 (8H, м, 2NCH ₂ , 2OCH ₂); 3.85 (3H, с, OCH ₃)	
2c	2100	1560, 1505	1.30 (3H, т, <i>J</i> = 7.85, <u>CH</u> ₃ в OEt); 3.60–3.80 (8H, 2 NCH ₂ , 2OCH ₂); 4.35 (2H, кв, <i>J</i> = 7.85, <u>CH</u> ₂ в OEt)	
2d	2110	1550, 1530	1.47–1.70 (6Н, м, 3CH ₂); 3.55–3.75 (12Н, м, 4NCH ₂ , 2OCH ₂)	
2e	2105	1500, 1580	1.33 (3H, т, <i>J</i> = 7.4, <u>CH</u> ₃ в OEt); 1.50–1.73 (6H, м, 3CH ₂); 3.70–3.80 (4H, м, 2NCH ₂); 4.34 (2H, кв, <i>J</i> = 7.4, CH ₂ в OEt)	
2f	2100	1620, 1550, 1505	1.40–1.62 (12H, м, 6CH ₂); 3.55–3.70 (8H, м, 4NCH ₂)	
2g	2110	1510, 1570	1.53–1.70 (6H, м, 3CH ₂); 3.70–3.80 (4H, м, 2NCH ₂); 3.86 (3H, с, OCH ₃)	
2h	2100	1580, 1540	3.85 (6H, c, 20CH ₃)	
2i	2100	1560, 1500	1.19 (3H, д, <i>J</i> = 7.4, CHCH ₃); 1.32–1.80 (6H, м, 3CH ₂); 2.92–3.03 (1H, м, N <u>CH</u>); 3.87 (3H, с, OCH ₃); 4.44–4.99 (2H, м, N <u>CH₂</u>)	
2j	2110	1575, 1530	1.19 (6H, д, <i>J</i> = 7.35, 2CH <u>CH</u> ₃); 1.32–1.80 (12H, м, 6CH ₂); 2.97–3.04 (2H, м, 2N <u>CH</u>); 4.48–4.98 (4H, м, 2N <u>CH₂</u>)	
2k	2100	1550, 1520	3.25–3.75 (8H, м, 20CH ₂ , 2NCH ₂); 7.20–7.40 (10H, м, 2C ₆ H ₅)	
3 a	1680	1530, 1560	2.80 (3H, c, 5'- <u>CH</u> ₃); 2.62 (3H, c, CO <u>CH</u> ₃); 3.60–3.85 (16H, м, 4OCH ₂ , 4NCH ₂)	
3b	1685	1540, 1565, 1595	2.63 (3H, c, CO <u>CH</u> ₃); 2.85 (3H, c, 5'- <u>CH</u> ₃); 3.65–3.90 (8H, м, 2OCH ₂ –, 2NCH ₂ –); 4.00 (3H, c, OCH ₃)	
3c	1705	1590, 1550, 1505	1.36 (3H, т, <i>J</i> = 7.0, <u>CH</u> ₃ в OEt); 2.63 (3H, с, COCH ₃); 2.82 (3H, с, 5'- <u>CH</u> ₃); 3.65–3.85 (8H, м, 2OCH ₂ , 2NCH ₂); 4.43 (2H, кв, <i>J</i> = 7.0, <u>CH</u> ₂ в OEt)	
3d	1670	1590, 1535, 1510	1.55–1.72 (6H, м, 3CH ₂), 2.65 (3H, с, COCH ₃), 2.80 (3H, с, 5'- <u>CH₃</u>), 3.63–3.84 (12H, м, 4NCH ₂ , 2OCH ₂)	
3e	1665	1590, 1550, 1530	1.39 (3H, т, <i>J</i> = 7.0, <u>CH</u> ₃ в OEt); 1.57–1.75 (6H, м, 3CH ₂); 2.64 (3H, с, COCH ₃); 2.85 (3H, с, 5'- <u>CH₃</u>); 3.80–3.88 (4H, м, 2NCH ₂); 4.44 (2H, кв, <i>J</i> = 7.0, <u>CH₂</u> в OEt)	
3f	1680	1620, 1590, 1535	1.45–1.70 (12H, м, 6CH ₂); 2.63 (3H, с, COCH ₃); 2.80 (3H, с, 5'- <u>CH₃</u>); 3.70–3.82 (8H, м, 4NCH ₂)	
3g	1685	1590, 1560, 1535	1.62–1.80 (6H, м, 3CH ₂); 2.65 (3H, с, CO <u>CH</u> ₃); 2.87 (3H, с, 5'- <u>CH₃</u>); 3.85–3.95 (4H, м, 2NCH ₂); 4.03 (3H, с, OCH ₃)	

1347

Окончание таблицы 2

1	2	3	4
3h	1690	1580, 1550	2.65 (3H, c, COCH ₃); 2.70 (3H, c, 5'- <u>CH₃</u>); 4.08 (6H, c, 2OCH ₃)
3i	1680	1595, 1550, 1535	1.28 (3H, д, <i>J</i> = 7.3, CH <u>CH</u> ₃); 1.37–1.48 (1H, м, N <u>CH</u>); 1.62–1.83 (6H, м, 3CH ₂); 2.65 (3H, с, COCH ₃); 2.85 (3H, с, 5'- <u>CH₃</u>); 3.87 (3H, с, OCH ₃); 4.55–5.11 (2H, м, NCH ₂)
4a	1710	1550, 1510	1.36 (3H, т, <i>J</i> = 6.6, <u>CH</u> ₃ в COOEt), 2.81 (3H, с, 5'- <u>CH</u> ₃); 3.61–3.86 (16H, м, 4OCH ₂ , 4NCH ₂); 4.39 (2H, кв, <i>J</i> = 6.6, <u>CH</u> ₂ в COOEt)
4b	1715	1600, 1560, 1505	1.34 (3H, т, <i>J</i> = 7.4, <u>CH</u> ₃ в COOEt); 2.85 (3H, с, 5'- <u>CH</u> ₃); 3.65– 3.87 (8H, м, 2OCH ₂ , 2NCH ₂); 3.97 (3H, с, OCH ₃); 4.37 (2H, кв, <i>J</i> = 7.4, <u>OCH₂</u> в COOEt)
4c	1705	1590, 1550, 1505	1.30–1.40 (6H, м, <u>CH</u> ₃ в ОЕt и COOEt); 2.85 (3H, с, 5'- <u>CH</u> ₃); 3.65–3.83 (8H, м, 2OCH ₂ , 2NCH ₂); 4.35 (2H, кв, <i>J</i> = 7.5, <u>CH</u> ₂ в COOEt); 4.45 (2H, кв, <i>J</i> = 7.35, <u>CH</u> ₂ в OEt)
4d	1710	1600, 1550	1.36 (3H, т, <i>J</i> = 7.4, <u>CH</u> ₃ в COOEt); 1.53–1.73 (6H, м, 3CH ₂); 2.83 (3H, с, 5'- <u>CH</u> ₃); 3.65–3.85 (12H, м, 2OCH ₂ , 4NCH ₂); 4.36 (2H, кв, <i>J</i> = 7.4, <u>CH</u> ₂ в COOEt)
4e	1700	1600, 1575, 1505	1.37 (6H, м, <u>CH</u> ₃ в ОЕт и СООЕt); 1.57–1.75 (6H, м, 3CH ₂); 2.85 (3H, с, 5'- <u>CH</u> ₃); 3.80–3.88 (4H, м, 2NCH ₂); 4.38 (2H, кв, J = 7.0, <u>CH</u> ₂ в COOEt); 4.45 (2H, кв, $J = 7.0, $ <u>CH</u> ₂ в OEt)
4f	1705	1600, 1545	1.34 (3H, т, <i>J</i> = 7.35, <u>CH</u> ₃ в COOEt); 1.50–1.70 (12H, 6CH ₂); 2.80 (3H, с, 5'- <u>CH</u> ₃); 3.70–3.85 (8H, м, 4NCH ₂); 4.35 (2H, кв, <i>J</i> = 7.35, <u>CH</u> ₂ в COOEt)
4g	1708	1605, 1580, 1510	1.37 (3H, т, <i>J</i> = 7.4, <u>CH</u> ₃ в COOEt); 1.57–1.75 (6H, м, 3CH ₂); 2.85 (3H, с, 5'- <u>CH</u> ₃); 3.80–3.90 (4H, м, 2NCH ₂); 3.98 (3H, с, OCH ₃); 4.36 (2H, кв, <i>J</i> = 7.4, <u>CH</u> ₂ в COOEt)
4h	1715	1595, 1535	1.39 (3H, т, <i>J</i> = 7.4, <u>CH</u> ₃ в COOEt); 2.56 (3H, с, 5'- <u>CH</u> ₃); 4.07 (6H, с, 2OCH ₃); 4.37 (2H, кв, <i>J</i> = 7.4, <u>CH</u> ₂ в COOEt)
4i	1720	1580, 1540, 1510	1.32 (3H, т, <i>J</i> = 7.35, <u>CH</u> ₃ в COOEt); 2.42 (3H, с, 5'- <u>CH</u> ₃); 3.55–3.82 (8H, м, 2OCH ₂ , 2NCH ₂);4.32 (2H, кв, <i>J</i> = 7.3, <u>CH</u> ₂ в COOEt); 7.25–7.45 (10H, м, 2C ₆ H ₅)

Синтезированные триазолилтриазины **3а–i**, **4а–i** представляют собой белые мелкокристаллические порошки, хорошо растворимые в полярных органических растворителях и ароматических углеводородах, плохо растворимые в петролейном эфире на холоду и не растворимые в воде. Их температуры плавления всегда несколько превышают таковые соответствующих исходных азидов **2**. Индивидуальность полученных соединений подтверждена с помощью TCX, а состав и строение – также результатами элементного анализа, данными ИК, ЯМР ¹Н и масс-спектров.

В ИК спектрах триазолилтриазинов **3а–i**, **4а–i** отсутствует полоса поглощения валентных колебаний азидной группы при 2110–2100, но имеются интенсивные полосы поглощения, характерные для группы С=О в области 1720–1665, а также для связей С=С- и С=N-сопряженных в области 1630–1505 см⁻¹ (табл. 2).

Во всех спектрах ЯМР ¹Н соединений **3а–і**, **4а–і** (табл. 2) присутствуют сигналы протонов заместителей в положениях 4 и 6 триазинового цикла, синглет протонов группы 5'-Ме триазольного цикла при 2.70–2.87 для соединений **4а–g** и при 2.42–2.56 м. д. для соединений **4h,i** (смещение сигнала в сильное поле, по-видимому, связано с влиянием заместителей в положениях 4 и 6 триазинового цикла). Синглетный сигнал протонов группы 4'-СОМе триазольного цикла соединений **3а–і** наблюдается при 2.62–2.65 м. д. В спектрах соединений **4a–i** имеются характерные сигналы группы 4'-СООЕt: триплет в области 1.30–1.42 (CH₃) и квартет в области 4.28–4.48 м. д. (CH₂). Строение синтезированных продуктов **2–4** подтверждают также данные масс-спектроскопии.

Таким образом, предложена простая и надежная методика синтеза труднодоступных моноазидов *сим*-триазинового ряда. Изучена реакция присоединения-циклизации таких азидов с дикарбонильными соединениями и показана зависимость ее продолжительности от строения указанных реагентов. Впервые получен ряд замещенных 2-(триазолил-1)триазинов, перспективных в качестве биологически активных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны для суспензий образцов в вазелиновом масле на спектрофотометре Specord IR-75. Спектры ЯМР ¹Н сняты для растворов образцов в ДМСО- d_6 на радиоспектрометре Bruker WM-500 (500 МГц). Масс-спектры записаны на приборе Finnigan MAT INCOS50 (энергия ионизирующего излучения 70 эВ). Элементный анализ синтезированных соединений выполнен на анализаторе Carlo-Erba модели 1106. Контроль за ходом реакции и чистотой получаемых продуктов осуществляли методом TCX на пластинках Silufol UV-250 в системе ацетон–гексан, 1:1.

Исходные 2-хлор-*сим*-триазины и соли **1а–к** получали по известным методикам [4, 8]. Триэтиламин непосредственно перед употреблением высушивали над КОН, подвергали фракционной перегонке, причем основную фракцию перегоняли повторно над металлическим натрием. ДМФА очищали и высушивали по известной методике [9].

2-Азидо-4,6-диморфолино-*сим*-**триазин (2а)**. К раствору 15 ммоль соединения **1а** в 20 мл воды при перемешивании и температуре 5–10 °С медленно прибавляют по каплям раствор 30 ммоль азида натрия в 10 мл воды. Реакционную смесь перемешивают далее при комнатной температуре в течение 3 ч. Выпавший осадок отфильтровывают, промывают водой до отсутствия ионов хлора в промывных водах и высушивают до постоянной массы. Получают азид **2а** со степенью чистоты категории А (содержание основного вещества >99%), который не требует дальнейшей очистки.

Моноазиды 2b-к получают аналогично.

6-(4-Ацетил-5-метил-1,2,3-триазол-1-ил)-2,4-диморфолино-*сим***-триазин (3а)**. К раствору 34 ммоль азида **2a** в 10 мл сухого ДМФА при перемешивании и комнатной температуре прибавляют по каплям смесь 68 ммоль ацетилацетона и 68 ммоль триэтиламина. Реакционную массу перемешивают при той же температуре в течение 0.5 ч и далее при беспрерывном перемешивании тонкой струей вливают в 100 мл холодной воды. Выпавший осадок целевого продукта отфильтровывают, многократно промывают водой и высушивают. Получают триазолилтриазин **3a** со степенью чистоты категории А.

Соединения 3b-і получают аналогично.

2,4-Диморфолино-6-(4-этоксикарбонил-5-метил-1,2,3-триазол-1-ил)-сим-триазин (4а). При комнатной температуре и перемешивании к раствору 34 ммоль азида **2a** в 10 мл сухого ДМФА прибавляют по каплям смесь 68 ммоль ацетоуксусного эфира и 68 ммоль триэтиламина. Реакционную массу перемешивают при 30–40 °C в течение 48 ч и после описанной выше для соединения **3a** обработки получают триазинтриазол **4a** со степенью чистоты категории А.

Соединения 4b-і синтезируют аналогично.

СПИСОК ЛИТЕРАТУРЫ

- С. Н. Михайличенко, А. А. Чеснюк, В. Е. Заводник, С. И. Фирганг, Л. Д. Конюшкин, В. Н. Заплишный, XTC, 326 (2002).
- 2. Общая органическая химия, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1982, **3**.
- 3. Вейганд-Хильгетаг, *Методы эксперимента в органической химии*, Химия, Москва, 1962.
- 4. А. А. Чеснюк, С. Н. Михайличенко, В. С. Заводнов, В. Н. Заплишный, ХГС, 197 (2002).
- A. Gorup, M. Kvacic, B. Kranjc-Skraba, B. Mihelcic, S. Simonic, B. Stanovnic, M. Tisler, *Tetrahedron*, 30, 2251 (1974).
- 6. Л. В. Батог, В. Ю. Рожков, Ю. В. Хронов, Н. В. Пятакова, О. Г. Бусыгина, И. С. Северина, Н. Н. Махова, Пат. РФ 2158265; *Б. И.*, № 30, 187 (2000).
- 7. Е. Б. Николаенкова, В. П. Кривопалов, О. П. Шкурко, в кн. *Азотистые гетероциклы и алкалоиды*, Иридиум-пресс, Москва, 2001, **2**, 300.
- 8. Г. М. Погосян, В. А. Панкратов, В. Н. Заплишный, С. Г. Мацоян, в кн. *Политриазины*, Изд-во АН АрмССР, Ереван, 1987, 615.
- 9. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976.

Кубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: vlad zpl@mail.ru Поступило в редакцию 17.12.2001 После доработки 10.07.2002

^аИнститут органической химии им. Н. Д. Зелинского РАН, Москва 117913