А. А. Боголюбов, Н. Б. Чернышева, В. В. Нестеров^а, М. Ю. Антипин^а, В. В. Семенов

РЕАКЦИИ АМИДИНОВ С 5-МЕТИЛЕН-1,3-ДИОКСОЛАН-2-ОНАМИ

Состав и выходы продуктов взаимодействия 4,4-диалкил-5-метилен-1,3-диоксолан-2онов с амидинами зависят от строения исходного амидина и условий реакции: 2-аминопиридины приводят к 3-замещенным 4-гидрокси-4-метилоксазолидин-2-онам и 4-метиленоксазолидин-2-онам, а также к *сим*-карбамидам; 2-амино-4,6-диметилпиримидин – к соответствующему 4-метиленоксазолидин-2-ону; 2-аминотиазолы – к линейным оксоуретанам и *сим*-карбамидам.

Ключевые слова: 2-аминопиридины, 2-аминопиримидины, 2-аминотиазолы, 4-гидроксиоксазолидин-2-оны, 5-метилен-1,3-диоксолан-2-оны, 4-метиленоксазолидин-2-оны, *сим*-карбамиды, карбаматы.

Целью данной работы было изучение не описанного в литературе взаимодействия 5-метилен-1,3-диоксолан-2-онов 1 с амидинными системами. В отличие от реакции с алифатическими и ароматическими аминами [1], это взаимодействие протекает более сложно и требует более тонкого температурного контроля.

2-Аминопиримидин 2 реагирует с диоксоланоном 1a как обычный первичный амин, реакция протекает при 150 °C за 46 ч и приводит к оксазолидинону 5a с выходом 40%. Реакция последовательно проходит через стадии линейного карбамата 3a и циклического оксазолидинона 4a.

В спектре ЯМР ¹Н оксазолидинона **5а** имеется характерный сигнал метиленовой группы C=CH₂ – два дублета (4.24 м. д., 1H, и 4.87 м. д., 1H) с небольшой геминальной КССВ J = 1.5 Гц; в ИК спектре – колебания группы C=O 1770 см⁻¹, в масс-спектре – пик М⁺.

Реакция 2-аминопиридинов **6а–d** с диоксоланонами **1а,b** протекает более сложно: при 60 °С ее продуктами являются только оксазолидиноны **4** и/или **5**, эта реакция никогда не доходит до конца (ТСХ контроль); а при температуре 110 °С и выше заметно осложняется образованием *сим*-карбамидов типа **7**. Промежуточные линейные карбаматы, подобные **3а**, в данном случае также не были выделены: они, по-видимому, полностью циклизуются в оксазолидиноны **4b–f**. Оксазолидинон **4b** тоже не был выделен: он сразу превращается в непредельный оксазолидинон **5b**. (Некоторые оксазолидиноны **4** термически нестойки и легко теряют воду не только при нагревании, но даже при комнатной температуре [1]*.)

1 a $R^2 = R^1 = Me$, b $R^2 + R^1 = (CH_2)_5$; **4** b-e $R^2 = R^1 = Me$, b $R^3 = H$, c $R^3 = 3$ -Me; d $R^3 = 4$ -Me; e $R^3 = 6$ -Me, f $R^2 + R^1 = (CH_2)_5$, $R^3 = 6$ -Me; **5** b $R^2 = R^1 = Me$, $R^3 = H$, c $R^2 = R^1 = Me$, $R^3 = 3$ -Me; **6** a $R^3 = H$, b $R^3 = 3$ -Me, c $R^3 = 4$ -Me, d $R^3 = 6$ -Me; **7** a $R^3 = H$

Согласно спектрам ЯМР ¹Н, оксазолидинон **4c** образуется в смеси с оксазолидиноном **5c** (\approx 1:1); разделить их нам не удалось. Нагревание в течение 1 ч оксазолидинонов **4c/5c** при 110 °С приводит к их разложению до сложной смеси неидентифицированных продуктов. Оксазолидиноны **4d** и **4e** содержат небольшое количество соответствующего оксазолидинона типа **5**. Ни кристаллизация, ни хроматографическое разделение не приводят к удалению примеси. Выход в реакции составляет 31–65%.

^{*} Оказалось, однако, что оксазолидинон **5b** под действием влаги воздуха за 3 г. почти количественно превратился, согласно ЯМР ¹H, в оксазолидинон **4b**. Вопрос перехода **4** в **5** и **5** в **4** будет рассмотрен нами в последующих публикациях.

Условия реакции		Выход, %		
Температура, °С	Время, ч	5b	7a	
15–25	3 мес	0 *	0 *	
60	115	43	0 *	
110	9	26	27	
180	0.5	13	13	

Зависимость выходов оксазолидинона 5b и сим-карбамида 7а от температуры

* Контроль по ТСХ.

Зависимость соотношения образующихся продуктов от температуры и времени реакции показана на примере взаимодействия диоксоланона **1a** и 2-аминопиридина **6a** (табл. 1). Согласно данным таблицы, процесс сильно ускоряется с повышением температуры, но при этом побочно образуется *сим*-карбамид **7a**, и выходы как целевого продукта **5b**, так и побочного **7a**, падают.

В спектре ЯМР ¹Н оксазолидинона **5b** присутствуют характерные два дублета группы C=CH₂, оксазолидинонов **4d**–**f** – ожидаемые сигналы групп OH-4 (6.20–6.60 м. д., 1H, с) и CH₃-4 (1.52–1.68 м. д., 3H, с). В ИК спектрах оксазолидинонов **4** и **5** наблюдаются колебания группы C=O, а оксазолидинонов **4d**–**f** – колебания группы OH. В ИК спектре *сим*-карбамида **7a** присутствуют характерный для карбамидов квартет группы NH, а также колебания группы C=O. В масс-спектрах веществ **5b**, **4d**–**f** и **7a** присутствуют пики M⁺ (табл. 2–4).

Для подтверждения строения оксазолидинона 4f были дополнительно выполнены рентгеноструктурные исследования (рисунок). В данной молекуле пятичленный гетероцикл имеет конформацию искаженного конвер*та*: атом C(2) отклоняется от плоскости C(3)O(1)C(1)N(2) на -0.388 Å (плоскость выполняется с точностью ±0.03 Å). Циклогексановое кольцо находится в конформации кресло: атомы С(3) и С(6) выходят из плоскости, проведенной через атомы C(4)C(5)C(7)C(8) на -0.621 и 0.665 Å соответственно (отклонение атомов от средней плоскости не превышает ±0.011 Å). Двугранный угол между двумя рассмотренными выше плоскими фрагментами молекулы равен 82.5°. Шестичленный гетероцикл плоский (плоскость выполняется с точностью ±0.009 Å). Скрученность молекулы относительно связи C(9)–N(2) определяется двугранным углом между плоскостью шестичленного гетероцикла и плоской частью пятичленного кольца, равным 39.9°. Наблюдаемая взаимная ориентация гетероциклов приводит к образованию прочной ВМВС между атомом водорода гидроксильной группы и атомом азота пиридинового кольца O(3)-H(3O)...N(1) с параметрами: O(3)...N(1) 2.828(2), O(3)-H(3O) 0.88(3), H(3O)...N(1) 2.16(3) Å, угол O(3)–H(3O)...N(1) 132(2)°. Кроме того, наблюдается внутримолекулярный невалентный контакт между атомом O(2) карбонильной группы и атомом Н(10) пиридинового гетероцикла с расстоянием H(10)...O(2) 2.48(3) Å, которое меньше суммы ван-дер-ваальсовых

Таблица 2

Константы и выходы оксазолидинонов 4 и 5, карбан	матов 3 и <i>сим</i> -карбамидов 7
--	------------------------------------

Со- еди- не- ние	Т. пл., °С*	<i>R_f</i> **	ИК спектр, v, см ⁻¹	Масс-спектр, <i>m/z</i> (<i>I</i> , %)	Вы- ход, %
3b	132–134	0.63	1725, 1750 (CO); 3360	318 $[M]^+$ (13.1), 233 (10.9), 219 (18.0), 217 (100.0), 190 (36.9), 148 (36.9), 147 (42.2), 116 (12.4), 115 (12.6)	56
3c	105–108	0.86	(NII) 1745 (CO); 3410 (NH)	(42.2), 110 (12.4), 113 (12.0) 348 [M] ⁺ (6.8), 331 (21.1), 287 (26.0), 286 (31.3), 271 (25.3), 248 (11.7), 248 (100.0), 221 (18.0), 203 (12.6), 179 (14.8), 178 (18.1), 163 (26.0), 159 (11.7), 146 (11.6), 135 (21.1), 134 (19.0)	60
3d	97–99	0.68	1735, 1750 (CO); 3360 (NH)	278 [M] ⁺ (10.9), 192 (11.8), 179 (12.9), 178 (58.8), 176 (100.0), 149 (47.2), 148 (33.2), 135 (29.3), 108 (11.2), 96 (11.2), 92 (22.3)	68
3e	73–75	0.55	1730, 1750 (CO); 3360 (NH)	228 [M] ⁺ (16.4), 187 (13.0), 142 (26.7), 127 (100.0), 126 (13.6), 100 (36.7), 85 (22.3), 82 (12.0)	60
4d	76–79	0.4	1735 (CO); 3430 (OH)***	236 [M] ⁺ (1.9), 221 (13.6), 193 (1.5), 178 (2.5), 151 (23.6), 150 (13.5), 135 (100.0), 108 (43.3), 93 (14.5), 92 (51.2)	65
4 e	72–75	0.4	1735, 3460***	236 [M] ⁺ (3.6), 221 (34.4), 193 (3.4), 178 (11.0), 150 (12.8), 151 (54.1), 135 (100.0), 108 (39.0), 92 (79.1), 93 (15.9)	53
4f	92–94	0.44	1750, 3400	276 [M] ⁺ (3.2), 261 (17.7), 149 (34.0), 136 (15.0), 135 (100.0), 134 (34.5), 108 (14.2), 99 (32.6), 92 (38.1), 80 (49.9)	31
5a	79–81	0.42	1770	233 [M] ⁺ (1.2), 191 (10.2), 190 (79.2), 189 (100.0), 175 (45.6), 107 (22.4), 93 (10.6), 82 (13.1)	40
5b	57–59	0.5	1725***	_	43
7a	175–177	0.18	1695, 1750, 3000, 3050, 3130, 3220	214 [M] ⁺ (21.7), 121 (44.4), 120 (41.8), 94 (100.0), 92 (20.5)	27
7b	260–270 (с разл.)	_	1660, 1675, 2840, 2950, 3100, 3220	_	24
7c	258–294 (с разл.)	-	1685, 2860, 2950, 3120, 3200	-	46
7d	315-320	_	1680, 2760, 2910, 2970, 3030	_	42
7e	275 (субл.)	_	1645, 3040, 3110, 3140, 3200	-	51

* Т. пл. соединений **3b-е**, **4d-f**, **5a**,**b** и **7a** измеряли в запаянном капилляре, соединений **7b-е** – на шарике термометра.

** Получали в смеси хлороформ-метанол, 9:1 (соединения 3b-е), бензол-этилацетат, 2:1 (соединения 4d,e, 5b, 7a), бензол-этилацетат, 9:1 (соединение 4f) и бензол-этилацетат, 1:1 (соединение 5a); соединения 7b-е не обладают подвижностью.

*** ИК спектры соединений 4d,е и 5b снимали на приборе UR-20.

Соеди- нение	Химические сдвиги, δ , м. д. (<i>J</i> , Γ ц)*
3b	[1.54 (3H, c) и 1.60 (3H, c), OC(CH ₃) ₂], 1.90 (3H, c, C(O)CH ₃), 2.40 (3H, c, 4-CH ₃ Ph), 5.61 (1H, c, NH), 7.14 (1H, c, H _{Het} -5), [7.25 (2H, π , <i>J</i> = 10.1) и 7.70 (2H, π , <i>J</i> = 10.1), H _{Ph} -2, H _{Ph} -6; H _{Ph} -3, H _{Ph} -5]
3c	[1.53 (3H, c) μ 1.56 (3H, c), OC(CH ₃) ₂], 1.86 (3H, c, C(O)CH ₃), 2.00 (3H, c, 5-CH ₃ Het), 5.62 (1H, c, NH), 3.88 (3H, c, 4-OCH ₃ Ph), [7.00 (2H, π , $J = 10.4$) μ 7.55 (2H, π , $J = 10.4$); H _{ph} -2, H _{ph} -6; H _{ph} -3, H _{ph} -5]
3d	[1.56 (3H, c) и 1.58 (3H, c), OC(CH ₃) ₂], 1.90 (3H, c, C(O)CH ₃), 5.75 (1H, c, NH), [7.28–7.50 (2H, м) и 7.70–7.88 (2H, м), H _{Het} -4, H _{Het} -5, H _{Het} -6, H _{Het} -7]
3e	[1.50 (3H, с) и 1.52 (3H, с), OC(CH ₃) ₂], 1.81 (3H, с, C(O)CH ₃), 5.40 (1H, с, NH), [7.03 (1H, π , $J = 5.6$) и 7.43 (1H, π , $J = 5.6$), H _{Het} -4, H _{Het} -5]
4d	[1.44 (3H, c) и 1.49 (3H, c), 2C ₍₅ H ₃], 1.68 (3H, c, C ₍₄ H ₃), 6.45 (1H, c, OH), 2.38 (3H, c, 4-CH ₃ Py), 6.95 (1H, д, $J = 7.5$, H _{Py} -5), 7.62 (1H, c, H _{Py} -3), 8.15 (1H, д, $J = 7.5$, H _{Py} -6)
4e	[1.44 (3H, c), 1.50 (3H, c, $2C_{(5)}H_3$), 1.68 (3H, c, $C_{(4)}H_3$), 2.50 (3H, c, 6-CH ₃ Py), 6.60 (1H, c, OH), 6.95 (1H, d , $J = 7.5$, H_{Py} -5), 7.55–7.70 (2H, M, H_{Py} -3), H_{Py} -4)
4f	[1.56–1.91 (9H, м) и 2.05–2.18 (1H, м), 5,5-(CH ₂) ₅], 1.52 (3H, с, C ₍₄)H ₃), 2.50 (3H, с, 6-CH ₃ Py), 6.20 (1H, с, OH), 7.08 (1H, д, $J = 7.5$, H _{Py} -5), 7.38 (1H, д, $J = 7.5$, H _{Py} -3), 7.71 (1H, т, H _{Py} -4)
5a	1.60 (6H, c, 2 С ₍₅₎ H ₃), 2.50 (6H, c, 3,5-CH ₃ Pirim), [4.24 (1H, д, <i>J</i> = 1.5) и 4.87 (1H, д, <i>J</i> = 1.5, C ₍₄₎ =CH ₂], 6.98 (1H, c, H _{Pirim} -4)
5b	1.60 (6H, c, $2C_{(5)}H_3$), [4.38 (1H, π , $J = 1.3$) μ 4.59 (1H, π , $J = 1.3$), $C_{(4)}=CH_2$], 7.45 (1H, π , H_{Py} -5), 7.61 (1H, π , $J = 6.5$, H_{Py} -3), 8.00 (1H, π , H_{Py} -4), 8.54 (1H, π , $J = 1.9$, H_{Py} -6)
7a	6.98 (4H, д. д, <i>J</i> = 6.0, <i>J</i> = 7.2, H-4, H-4'), 7.68 (8H, т, H-3, H-3', H-5, H-5'), 8.38 (4H, д, <i>J</i> = 6.0, H-6, H-6'), 11.00 (2H, уш. с, 2,2'-NH)

Спектры ЯМР ¹Н синтезированных соединений

* Спектр соединения 4f снят в ДМСО-d₆, остальных соединений в CDCl₃.

Таблица 4

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %				
нение	формула	С	Н	N	S	
3b	$C_{16}H_{18}N_2O_3S$	<u>60.37</u> 60.38	<u>5.69</u> 5.66	<u>8.80</u> 8.81	$\frac{10.06}{10.06}$	
3c	$C_{17}H_{20}N_2O_4S$	<u>58.60</u> 58.62	<u>5.78</u> 5.75	<u>8.05</u> 8.05	<u>9.21</u> 9.20	
3d	$C_{13}H_{14}N_2O_3S$	$\frac{56.10}{56.12}$	$\frac{5.06}{5.04}$	$\frac{10.06}{10.07}$	$\frac{11.52}{11.51}$	
3e	$C_9H_{12}N_2O_3S$	<u>47.33</u> 47.35	<u>5.36</u> 5.31	<u>12.29</u> 12.27	$\frac{14.07}{14.05}$	
5a	$C_{12}H_{15}N_3O_2$	<u>62.75</u> 61.77	<u>6.53</u> 6.49	$\frac{18.07}{18.02}$	-	
5b	$C_{11}H_{12}N_2O_2$	<u>64.70</u> 64.71	<u>5.90</u> 5.88	<u>13.73</u> 13.73	-	
7a	$C_{11}H_{10}N_4O$	<u>61.65</u> 61.68	$\frac{4.70}{4.67}$	$\frac{26.20}{26.17}$	-	
7b	$C_{21}H_{18}N_4OS_2$	<u>62.03</u> 62.04	$\frac{4.50}{4.47}$	<u>13.77</u> 13.78	<u>15.79</u> 15.77	
7c	$C_{23}H_{22}N_4O_3S_2$	<u>59.18</u> 59.20	<u>4.79</u> 4.76	<u>11.99</u> 12.01	<u>13.75</u> 13.74	
7d	$C_{14}H_{10}N_4OS_2$	<u>53.45</u> 53.48	<u>3.25</u> 3.21	<u>17.80</u> 17.82	$\frac{20.38}{20.39}$	
7e	$C_7H_6N_4OS_2$	<u>37.13</u> 37.15	<u>2.71</u> 2.68	<u>24.75</u> 24.76	<u>28.31</u> 28.33	

Данные элементного анализа

Оксазолидинон 4f

радиусов этих атомов [2] (поэтому, согласно ЯМР ¹Н, химический сдвиг протона H-10 7.38 м. д.). Остальные геометрические параметры соединения **4f** (длины связей и валентные углы) имеют обычные значения [3].

В отличие от 2-аминопиримидина 2 и 2-аминопиридинов 6, исследованные нами 2-аминотиазолы 8 в реакции с диоксоланоном 1а при 60 °C дают линейные оксоуретаны 3b-е с выходом 56–68%.

8a, **3b**, **7b** R = H, R¹ = 4-Me–Ph; **8b**, **3c**, **7c** R = Me, R¹ = 4-MeO–Ph; **8c**, **3d**, **7d** R + R¹ = CH=CH=CH=CH; **8d**, **3e**, **7e** R = R¹ = H

Таблица 5

Длины связей в оксазолидиноне 4f

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
O(1)–C(1)	1.340 (2)	N(2)–C(2)	1.466 (2)	C(7)–C(8)	1.530 (3)
O(1)–C(3)	1.466 (2)	C(2)–C(15)	1.517 (3)	C(9)-C(10)	1.380 (3)
O(2)–C(1)	1.203 (2)	C(2)–C(3)	1.549 (3)	C(10)-C(11)	1.375 (3)
O(3)–C(2)	1.416 (2)	C(3)–C(8)	1.516 (3)	C(11)-C(12)	1.371 (4)
N(1)–C(9)	1.332 (2)	C(3)–C(4)	1.522 (3)	C(12)–C(13)	1.374 (3)
N(1)–C(13)	1.348 (2)	C(4)–C(5)	1.520 (3)	C(13)-C(14)	1.500 (4)
N(2)-C(1)	1.369 (2)	C(5)–C(6)	1.519 (3)		
N(2)–C(9)	1.418 (2)	C(6)–C(7)	1.510 (4)		

При температуре 110 °C и выше, как и в случае с 2-аминопиридинами 6, наблюдается образование побочных продуктов – *сим*-карбамидов 7b–е. При 110 °C *сим*-карбамид 7е является основным веществом, а карбамат 3е присутствует в следовых количесвах (ТСХ контроль).

Доказательствами линейной структуры соединений **3b**–е служат отсутствие в спектрах ЯМР ¹Н сигналов групп ОН и CH₃ или C=CH₂ в положении 4, присущих соответствующим оксазолидинонам типа **4** или **5**, а также наличие группы CH₃ при C=O (1.81–1.90 м. д., 3H, с), в то время группа C₍₄₎H₃ оксазолидинонов **4** имеет химический сдвиг 1.52–1.68 м. д. В ИК спектрах карбаматов **3b**–е также отсутствуют колебания указанной гидроксильной группы. В ИК спектрах *сим*-карбамидов **7b**–е наблюдаются ожидаемый квартет группы NH, а также колебания группы C=O. В масс-спектрах соединений **3b**–е имеются пики [M]⁺.

Таблица б

Угол	ω, град	Угол	ω, град
C(1)-O(1)-C(3)	110.1 (1)	O(1)-C(3)-C(2)	102.8 (1)
C(9)–N(1)–C(13)	118.0 (2)	C(8)–C(3)–C(2)	113.9 (2)
C(1)-N(2)-C(9)	122.8 (2)	C(4)–C(3)–C(2)	113.7 (2)
C(1)-N(2)-C(2)	110.8 (2)	C(5)–C(4)–C(3)	112.5 (2)
C(9)–N(2)–C(2)	122.8 (2)	C(6)–C(5)–C(4)	110.6 (2)
O(2)–C(1)–O(1)	122.6 (2)	C(7)–C(6)–C(5)	110.8 (2)
O(2)-C(1)-N(2)	127.7 (2)	C(6)–C(7)–C(8)	112.1 (2)
O(1)-C(1)-N(2)	109.7 (2)	C(3)–C(8)–C(7)	112.4 (2)
O(3)–C(2)–N(2)	109.9 (2)	N(1)-C(9)-C(10)	123.8 (2)
O(3)-C(2)-C(15)	110.3 (2)	N(1)-C(9)-N(2)	114.6 (2)
N(2)-C(2)-C(15)	112.7 (2)	C(10)-C(9)-N(2)	121.6 (2)
O(3)–C(2)–C(3)	108.8 (2)	C(11)-C(10)-C(9)	117.4 (2)
N(2)-C(2)-C(3)	100.2 (1)	C(12)-C(11)-C(10)	119.6 (2)
C(15)–C(2)–C(3)	114.6 (2)	C(11)-C(12)-C(13)	119.8 (2)
O(1)-C(3)-C(8)	107.6 (2)	N(1)-C(13)-C(12)	121.3 (2)
O(1)–C(3)–C(4)	106.6 (2)	N(1)-C(13)-C(14)	115.9 (2)
C(8)-C(3)-C(4)	111.5 (2)	C(12)-C(13)-C(14)	122.8 (2)

Основные валентные углы в оксазолидиноне 4f

Угол Угол τ, град τ, град C(3)-O(1)-C(1)-O(2) -172.2 N(2)-C(2)-C(3)-C(8) 140.3 7.5 145.0 C(3)-O(1)-C(1)-N(2) C(15)-C(2)-C(3)-O(1) 10.1 C(2)-N(2)-C(1)-O(1) C(15)-C(2)-C(3)-C(4) 30.3 -170.2-98.8C(2)-N(2)-C(1)-O(2)C(15)-C(2)-C(3)-C(8)169.4 C(9)-N(2)-C(1)-O(1)O(1)-C(3)-C(4)-C(5)64.3 C(9)-N(2)-C(1)-O(2) -10.9C(2)-C(3)-C(4)-C(5) 176.8 C(1)-N(2)-C(2)-O(3)92.7 C(8)-C(3)-C(4)-C(5)-52.8 -21.7 55.9 C(1)-N(2)-C(2)-C(3)C(3)-C(4)-C(5)-C(6)C(1)-N(2)-C(2)-C(15)-143.8C(4)-C(5)-C(6)-C(7)-56.8 C(9)-N(2)-C(2)-O(3)-66.6 C(5)-C(6)-C(7)-C(8)55.5 C(9)-N(2)-C(2)-C(3) 179.0 O(1)-C(3)-C(8)-C(7) -65.8C(9)-N(2)-C(2)-C(15) 56.8 -1791C(2)-C(3)-C(8)-C(7) -20.650.7 C(1)-O(1)-C(3)-C(2)C(4)-C(3)-C(8)-C(7)99.2 C(1)-O(1)-C(3)-C(4)C(6)-C(7)-C(8)-C(3)-52.9 C(1)-O(1)-C(3)-C(8) -141.1C(13)-N(1)-C(9)-N(2) -175.9O(3)-C(2)-C(3)-O(1) -91.0 -139.2C(1)-N(2)-C(9)-N(1)42.3 O(3)-C(2)-C(3)-C(4)154.3 C(1)-N(2)-C(9)-C(10)O(3)-C(2)-C(3)-C(8)25.1 C(2)-N(2)-C(9)-N(1)17.7 N(2)-C(2)-C(3)-O(1) 24.2 C(2)-N(2)-C(9)-C(10) -160.9

Основные торсионные углы в оксазолидиноне 4f

Все наши попытки перевести карбаматы **3b**-е в соответствующие оксазолидиноны типа **4** или **5** потерпели неудачу: ни кипячение в *орто*-ксилоле с молекулярными ситами в качестве водоотнимающего средства, ни дополнительный кислотный катализ TsOH или основный NEt₃ не приводят к желаемым оксазолидинонам. Во всех случаях наблюдается разложение карбаматов **3b**-е до *сим*-карбамидов **7b**-е и сложной смеси неизвестных жидких продуктов (по данным ГЖХ, для *сим*-карбамида **7e** зарегистрировано 14 пиков).

-90.6

N(2)-C(2)-C(3)-C(4)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на приборе Bruker WM-250 (250 МГц), внутренний стандарт ТМС, ИК спектры – на приборе Perkin–Elmer 577 (КВг), масс-спектры – на массспектрометре Kratos MS-30 (прямой ввод образца, 70 эВ, 250 °С). Для разделения смесей применяли флеш-хроматографию на "сухой" колонке [6] (Silufol 5/40, элюент бензол– этилацетат в градиенте). ТСХ осуществляли на пластинках Silufol UV-254. Охлаждающая баня – ацетон–сухой лед.

Физико-химические и спектральные характеристики приведены в табл. 2-4.

Диоксоланоны **1а,b** получали согласно методике [4] (см. также [5]) в виде бесцветных кристаллов.

Оксазолидинон 4f получали из ацетонитрила медленной кристаллизацией в течение 3 дней. Кристаллы 4f ($C_{15}H_{20}N_2O_3$), моноклинные, при 25 °C: a = 9.134(2), b = 11.721(3), c = 13.705(3) Å, $\beta = 90.20(2)^\circ$, V = 1467.2(5) Å³, $d_{\text{выч}} = 1.251$ г/см³, Z = 4, пространственная группа $P2_1/n$. Параметры элементарной ячейки и интенсивности 3080 отражений измеряли на автоматическом четырехкружном дифрактометре Siemens P3/PC (λ (Mo K_{α}) = 0.71072 Å,

Атом	x	у	Ζ	<i>U</i> , A ²
O(1)	695(1)	2943(1)	7814(1)	50(1)
O(2)	-19(2)	4072(1)	6589(1)	67(1)
O(3)	1285(2)	708(1)	6739(1)	61(1)
N(1)	1973(2)	1675(1)	4907(1)	48(1)
N(2)	1693(2)	2646(1)	6365(1)	43(1)
C(1)	721(2)	3294(2)	6883(1)	46(1)
C(2)	2186(2)	1663(2)	6940(1)	43(1)
C(3)	1849(2)	2097(2)	7983(1)	42(1)
C(4)	3120(2)	2729(2)	8458(2)	53(1)
C(5)	2732(3)	3203(2)	9457(2)	62(1)
C(6)	2187(3)	2259(3)	10122(2)	68(1)
C(7)	891(3)	1654(3)	9672(2)	66(1)
C(8)	1233(3)	1189(2)	8655(2)	55(1)
C(9)	1790(2)	2686(2)	5333(1)	43(1)
C(10)	1731(2)	3705(2)	4830(2)	52(1)
C(11)	1916(2)	3665(3)	3836(2)	62(1)
C(12)	2156(2)	2636(2)	3389(2)	61(1)
C(13)	2167(2)	1652(2)	3932(2)	54(1)
C(14)	2392(5)	494(3)	3492(3)	84(1)
C(15)	3781(3)	1369(3)	6764(2)	60(1)
H(3O)	1361(30)	581(24)	6111(20)	96(10)
H(4,1)	3416(22)	3372(20)	8018(15)	61(6)
H(4,2)	3895(24)	2123(20)	8521(14)	63(7)
H(5,1)	1986(24)	3795(21)	9380(15)	67(7)
H(5,2)	3610(27)	3618(21)	9740(16)	78(7)
H(6,1)	3009(27)	1699(23)	10240(16)	78(8)
H(6,2)	1943(26)	2572(21)	10733(18)	80(8)
H(7,1)	80(26)	2195(21)	9614(16)	67(7)
H(7,2)	520(28)	1042(23)	10058(19)	88(8)
H(8,1)	2011(24)	548(19)	8687(14)	62(6)
H(8,2)	364(26)	853(20)	8345(16)	72(7)
H(10)	1564(24)	4429(19)	5154(15)	65(7)
H(11)	1856(25)	4379(22)	3495(17)	79(8)
H(12)	2316(24)	2597(20)	2733(17)	68(7)
H(14,1)	2707(39)	560(31)	2840(28)	143(13)
H(14,2)	1615(50)	88(42)	3458(28)	177(21)
H(14,3)	2986(53)	39(46)	3808(33)	206(26)
H(15,1)	4031(27)	771(23)	7228(19)	83(8)
H(15,2)	3875(23)	1052(19)	6159(17)	65(7)
H(15,3)	4419(26)	2084(23)	6812(16)	77(8)

Координаты (×10⁴) и изотропные (для неводородных атомов – эквивалентные) температурные параметры атомов в оксазолидиноне 4f

графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{max} \leq 28^{\circ}$). Структуру расшифровывали прямым методом и уточняли полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода локализовали объективно в разностном Фурьесинтезе и уточняли в изотропном приближении. Окончательные значения факторов расходимости $wR_2 = 0.1270$ по 2881 независимому отражению ($R_1 = 0.052$ по 1754 независимым отражениям с $I > 2\sigma(I)$). Расчеты проводили на ЭВМ IBM PC/AT-586 по программам SHELXTL PLUS и SHELXL-93 [7]. Длины связей, валентные и торсионные углы, координаты (×10⁴) и изотропные (для неводородных атомов – эквивалентные) температурные параметры атомов оксазолидинона **4f** приведены в табл. 5–8.

Синтез карбаматов 3b-е (общая методика). Сплавляют соответствующий тиазол 8a-d (4-50 ммоль) и диоксоланон 1a (12-90 ммоль) 64 ч при 60 °C. Смеси дают закристаллизоваться при комнатной температуре (1-3 сут), кристаллы промывают 2×1 мл бензола, бензольные смывы объединяют, к ним добавляют петролейный эфир (5-10 мл, согласно конкретной методике), этим раствором промывают кристаллы на фильтре; дополнительно обрабатывают кристаллы смесью петролейный эфир-бензол или чистым петролейным эфиром (согласно конкретной методике), сушат вещество в вакууме над P_2O_5 .

2-Метил-3-оксобутил-2-овый эфир 4-(4-метилфенил)гиазол-2-карбаминовой кислоты (3b) получают из 1.90 г (10 ммоль) тиазола **8a** и 3.84 г (30 ммоль) диоксоланона **1a**, добавляя 10 мл петролейного эфира и дополнительно промывая петролейным эфиром 2 × 2 мл, в виде желтых кристаллов с выходом 2.15 г.

2-Метил-3-оксобутил-2-овый эфир 3-метил-4-(4-метоксифенил)тиазол-2-карбаминовой кислоты (3с) получают из 0.88 г (4 ммоль) тиазола **8b** и 1.53 г (12 ммоль) диоксоланона **1a**, добавляя 5 мл петролейного эфира и дополнительно промывая однократно петролейным эфиром (2 мл), в виде желтых кристаллов с выходом 0.84 г.

2-Метил-3-оксобутил-2-овый эфир бензтиазол-2-карбаминовой кислоты (3d) получают из 4.51 г (30 ммоль) тиазола 8с и 11.52 г (90 ммоль) диоксоланона 1а, добавляя 5 мл петролейного эфира и дополнительно промывая 3 × 2 мл, смеси петролейный эфир-бензол, 1:1, получают в виде белых кристаллов с выходом 4.66 г.

2-Метил-3-оксобутил-2-овый эфир тиазол-2-карбаминовой кислоты (3е). Сплавляют 0.86 г (10 ммоль) тиазола **8d** и 1.28 г (10 ммоль) диоксоланона **1a**, жидкую смесь делят хроматографически, растворитель упаривают и дают веществу закристаллизоваться при комнатной температуре (1–3 сут); получают в виде белых кристаллов с выходом 1.79 г.

4-Гидрокси-3-(4-метилпиридил-2)-4,4,5-триметилоксазолидин-2-он (4d) и 4-гидрокси-3-(6-метилпиридил-2)-4,4,5-триметилоксазолидин-2-он (4e). Сплавляют 1.08 г (10 ммоль) соответствующего аминопиридина **6** и 1.41 г (11 ммоль) диоксоланона **1а** в течение 113 ч при 60 °С, затем при 80 °С еще 34 ч. Добавляют 0.51 г (4 ммоль) соединения **1а**, 10 мл бензола и 1 мл NEt₃, кипятят 1 ч. Растворитель упаривают, перекристаллизовывают из 2.5 мл смеси бензол-петролейный эфир, 1:4, выпавшие кристаллы промывают на фильтре 2×2.5 мл смеси петролейный эфир-бензол, 4:1, охлажденной до 7–10 °С. Сушат в вакууме над P_2O_5 . Получают 1.45 г оксазолидинона **4d** и 1.15 г оксазолидинона **4e** соответственно.

4-Гидрокси-4-метил-3-(6-метилпиридил-2)-5,5-пентаметиленоксазолидин-2-он (4f). Сплавляют 3.24 г (30 ммоль) аминопиридина **6d** и 6.08 г (31 ммоль) диоксоланона **1b** в течение 120 ч при 60 °C и оставляют при 15 °C на 48 ч, выпавшие кристаллы промывают на фильтре 2 × 2 мл смеси петролейный эфир-бензол, 3:1, и получают 2.77 г бесцветных кристаллов. Смывы объединяют с маточником и упаривают на воздухе, в образовавшееся масло вносят затравку (иначе смесь не кристаллизуется), выдерживают 1–2 сут при 15 °C и выделяют дополнительно 0.10 г вещества.

5,5-Диметил-4-метилен-3-(4,6-диметилпиримидил-2)оксазолидин-2-он (5а). Сплавляют 2.00 г (15.21 ммоль) 2-аминопиримидина **2** с 2.01 г (15.71 ммоль) диоксоланона **1а** в течение 46 ч при 150 °C. Смесь делят хроматографически на колонке, получают 2.04 г (54%) продукта, который растворяют в 3 мл кипящего эфира и осаждают 9 мл петролейного эфира при охлаждении; получают 1.50 г чистого продукта.

5,5-Диметил-4-метилен-3-(пиридил-2)оксазолидин-2-он (5b) и *сим*-бис(пиридил-2)-карбамид (7a). Сплавляют аминопиридин 6a (13.3–30 ммоль) и диоксоланон 1a (13.3–30 ммоль) при требуемой температуре (см. табл. 1). Плав оставляют на ночь при комнатной температуре, частично закристаллизовавшуюся реакционную смесь промывают на фильтре 2 × 0.5 мл холодного бензола, объединяя бензольные смывы и маточник.

(Объемы растворителей приведены для загрузки 30 ммоль.) Выпавший карбамид 7а кристаллизуют из 3 мл бензола, маточник от кристаллизации отбрасывают; вещество сушат в вакууме над P_2O_5 . От первого маточника отгоняют бензол, оставляют на ночь, кристаллы оксазолидинона 5b отфильтровывают от маточника, промывают 2 × 1 мл охлажденного NEt₃, сушат в вакууме над P_2O_5 , растворяют при нагревании в 0.5 мл бензола, добавляют 5 мл петролейного эфира, растирают при охлаждении, выпавшие кристаллы промывают на фильтре 2 × 6 мл смеси петролейный эфир–хлороформ, 5:1, охлажденной до 7–10 °C, сушат в вакууме над P_2O_5 . Так, из 2.82 г (30 ммоль) 6а и 3.84 г (30 ммоль) 1а при 60 °C за 115 ч получают 2.62 г оксазолидинона 5b.

Синтез сим-карбамидов 7b-d и карбаматов 3b-d (общая методика). Сплавляют соответствующий тиазол 8a-c (10-20 ммоль) и диоксоланон 1a (10-20 ммоль) при 110 °C в течение 5.5 ч в случае 3b/7b и 3c/7c и 13 ч в случае 3d/7d. В ту же колбу добавляют 10 мл бензола, кипятят 15-20 мин, охлаждают смесь, отфильтровывают карбамид 7b-d, промывают его 3×3 мл бензола, сушат. Бензольные смывы и маточник объединяют, упаривают до 3-4 мл, охлаждают до 7-10 °C; выпавшие кристаллы карбамата 3b-d переносят на фильтр, промывают 2 мл холодного бензола (7-10 °C), затем промывают 2 × 2 мл холодной смеси петролейный эфир-бензол, 5:1, вещества сушат в вакууме над P_2O_5 . Так, из 2.20 г (10 ммоль) тиазола 8a и 1.28 г (10 ммоль) диоксоланона 1a получают желтые кристаллы соединений 3b (0.56 г) и 7b (0.55 г); из 3.08 г (20 ммоль) тиазола 8b и 2.56 г (20 ммоль) диоксоланона 1a – желтые кристаллы соединений 3c (1.87 г) и 7c (1.74 г); из 3.02 г (20 ммоль) тиазола 8c и 2.56 г (20 ммоль) диоксоланона 1a – белые кристаллы соединений 3d (1.81 г) и 7d (1.37 г).

сим-Бис(тиазолил-2)карбамид (7е). Сплавляют 4.30 г (50 ммоль) тиазола 8d и 6.40 г (50 ммоль) диоксоланона 1a в течение 3 ч при 110 °C. В ту же колбу добавляют 10 мл бензола, кипятят 15–20 мин, охлаждают смесь, отфильтровывают карбамид 7e, промывают его 3 × 3 мл бензола, сушат; получают 2.51 г светло-коричневых кристаллов 7e.

сим-Карбамиды 7b-е представляют собой высокоплавкие порошки, нерастворимые в большинстве обычных растворителей, умеренно растворимые в ДМСО при нагревании и хорошо растворимые в CF₃COOH.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. Б. Чернышева, А. А. Боголюбов, В. В. Семенов, *XГС*, 241 (1999).
- 2. R. S. Rowland, R. Taylor, J. Phys. Chem., 100, 7384 (1996).
- 3. F. N. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 12, S1 (1987).
- 4. P. Dimroth, H. Pasedach, Ger. Pat. 1098953; Chem. Abstr., 56, 2453 (1962).
- 5. www.chemical-block.com
- 6. Дж. Шарп, И. Госни, А. Роули, *Практикум по органической химии*, Мир, Москва, 1993, 188.
- 7. G. M. Sheldrick, *SHELXTL*. Version 5, Software Reference Manual, Siemens Industrial Automation, Madison, WI, 1994.

Институт органической химии им. Н. Д. Зелинского РАН, Москва 119991 e-mail: vs@cacr.ioc.ac.ru Поступило в редакцию 09.04.2001

^аИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 119991 e-mail: mishan@xray.ineos.ac.ru

Таблица З

Спектры ЯМР ¹Н синтезированных соединений

Соеди- нение	Химические сдвиги, δ, м. д. (<i>J</i> , Гц)*
3b	$ \begin{array}{l} [1.54 (3H, c) & \text{i} \ 1.60 (3H, c), \ OC(CH_3)_2], \ 1.90 (3H, c, C(O)CH_3), \ 2.40 (3H, c, 4-CH_3 \ Ph), \\ 5.61 (1H, c, NH), \ 7.14 (1H, c, H_{\text{Het}}-5), \ [7.25 (2H, \pi, J = 10.1) & \text{i} \ 7.70 (2H, \pi, J = 10.1), \\ H_{\text{Ph}}-2, \ H_{\text{Ph}}-6; \ H_{\text{Ph}}-5] \end{array} $
3c	[1.53 (3H, c) μ 1.56 (3H, c), OC(CH ₃) ₂], 1.86 (3H, c, C(O)CH ₃), 2.00 (3H, c, 5-CH ₃ Het), 5.62 (1H, c, NH), 3.88 (3H, c, 4-OCH ₃ Ph), [7.00 (2H, π , $J = 10.4$) μ 7.55 (2H, π , $J = 10.4$); H _{ph} -2, H _{ph} -6; H _{ph} -3, H _{ph} -5]
3d	[1.56 (3H, c) и 1.58 (3H, c), OC(CH ₃) ₂], 1.90 (3H, c, C(O)CH ₃), 5.75 (1H, c, NH), [7.28–7.50 (2H, м) и 7.70–7.88 (2H, м), H _{Het} -4, H _{Het} -5, H _{Het} -6, H _{Het} -7]
3e	[1.50 (3H, c) и 1.52 (3H, c), OC(CH ₃) ₂], 1.81 (3H, c, C(O)CH ₃), 5.40 (1H, c, NH), [7.03 (1H, π , <i>J</i> = 5.6), 7.43 (1H, π , <i>J</i> = 5.6), H _{Het} -4, H _{Het} -5, H _{Het} -6]]
4d	[1.44 (3H, c) и 1.49 (3H, c), 2C ₍₅ H ₃], 1.68 (3H, c, C ₍₄ H ₃), 6.45 (1H, c, OH), 2.38 (3H, c, 4-CH ₃ Py), 6.95 (1H, д, $J = 7.5$, H _{Py} -5), 7.62 (1H, c, H _{Py} -3), 8.15 (1H, д, $J = 7.5$, H _{Py} -6)
4e	[1.44 (3H, c), 1.50 (3H, c, $2C_{(5)}H_3$), 1.68 (3H, c, $C_{(4)}H_3$), 2.50 (3H, c, 6-CH ₃ Py), 6.60 (1H, c, OH), 6.95 (1H, d , $J = 7.5$, H_{Py} -5), 7.55–7.70 (2H, M, H_{Py} -3), H_{Py} -4)
4f	[1.56–1.91 (9H, м) и 2.05–2.18 (1H, м), 5,5-(CH ₂) ₅], 1.52 (3H, с, C ₍₄₎ H ₃), 2.50 (3H, с, 6-CH ₃ Py), 6.20 (1H, с, OH), 7.08 (1H, д, $J = 7.5$, H _{Py} -5), 7.38 (1H, д, $J = 7.5$, H _{Py} -3), 7.71 (1H, т, H _{Py} -4)
5a	1.60 (6H, c, 2 $C_{(5)}$ H ₃), 2.50 (6H, c, 3,5-CH ₃ Pirim), [4.24 (1H, д, $J = 1.5$) и 4.87 (1H, д, $J = 1.5$, $C_{(4)}$ =CH ₂], 6.98 (1H, c, H _{Pirim} -4)
5b	1.60 (6H, c, $2C_{(5)}H_3$), [4.38 (1H, д, $J = 1.3$) и 4.59 (1H, д, $J = 1.3$), $C_{(4)}=CH_2$], 7.45 (1H, т, H _{Py} -5), 7.61 (1H, д, $J = 6.5$, H _{Py} -3), 8.00 (1H, т, H _{Py} -4), 8.54 (1H, д, $J = 1.9$, H _{Py} -6)
7a	6.98 (4H, д. д. <i>J</i> = 6.0, <i>J</i> = 7.2, H-4, H-4'), 7.68 (8H, т, H-3, H-3', H-5, H-5'), 8.38 (4H, д, <i>J</i> = 6.0, H-6, H-6'), 11.00 (2H, уш. с, 2,2'-NH)

* Спектр соединения 4f снят в ДМСО-d₆, остальных соединений в CDCl₃.