А. Д. Дяченко, С. М. Десенко^а, В. Д. Дяченко, А. Н. Чернега⁶

СИНТЕЗ, СТРОЕНИЕ И НЕКОТОРЫЕ СВОЙСТВА ЗАМЕЩЕННЫХ 5-ЦИАНО-3-ЭТОКСИ(МЕТОКСИ)КАРБОНИЛ-1,2,3,4-ТЕТРАГИДРОСПИРОЦИКЛОГЕКСАН-4-ПИРИДИН-2-ТИОНОВ

Конденсацией циклогексилиденмалононитрила или циклогексилиденцианоуксусного эфира с тиоамидэтил(метил)малонатом в присутствии этилата натрия получены 6-амино-4спироциклогексан-5-циано-3-этоксикарбонил-1,2,3,4-тетрагидропиридин-2-тион и 6-оксо-4-спироциклогексан-5-циано-3-этокси(метокси)карбонилпиперидин-2-тионы, использованные в синтезе соответствующих замещенных 2-алкилтиотетрагидропиридинов. 3-Метил-6метилтио-4-спироциклогексан-3-циано-5-этоксикарбонил-3,4-дигидропиридин-2(1H)-он изучен методом PCA.

Ключевые слова: тиоамидэтил(метил)малонат, 4-циклоалканспирозамещенные пиридин-2-тионы, циклогексилиденмалононитрил, циклогексилиденцианоуксусный эфир, алкилирование, внутримолекулярная конденсация Кляйзена, реакция Михаэля, PCA.

Ранее нами были получены 3-циано-4-циклоалканспирозамещенные частично гидрированные пиридин-2-тионы [1–3], перспективные полупродукты для поиска препаратов медицинского назначения [4, 5]. Развивая исследования в этом направлении, мы нашли путь синтеза 3-этокси(метокси)карбонилзамещенных аналогов указанного выше класса соединений, состоящий во взаимодействии циклогексилиденмалононитрила (1) с тиоамидэтилмалонатом (2) в этаноле в присутствии этилата натрия. В ходе реакции образованию 6-амино-4-спироциклогексан-5-циано-3-этоксикарбонил-1,2,3,4-тетрагидропиридин-2-тиона (3) предшествует, по-видимому, возникновение соответствующего аддукта Михаэля 4.

5 а Hal = Br, b Hal = Cl; **5**, **6** а Z = 4-О₂NC₆H₄CO; b Z = тиазол-2-илкарбамоил

Для доказательства строения соединения **3** (табл. 1), помимо спектральных методов (экспериментальная часть, табл. 2), мы использовали алкилирование их галогенидами **5** в щелочной среде. Получение в ходе этой реакции органических сульфидов **6** соответствует общим закономерностям химии пиридинтионов [6].

Введение в реакцию с СН-кислотами 2 в качестве акцептора Михаэля циклогексилиденцианоуксусного эфира 7 позволяет получить 6-оксо-4спироциклогексан-5-циано-3-этокси(метокси)карбонилпиперидин-2-тионы 8. Гипотетический аддукт Михаэля 9 и в этом случае выделить не удалось. Использование "качественной реакции" на пиридинтионы [6] – алкилирования, а также набора спектральных методов (экспериментальная часть, табл. 2) легко доказывает строение соединений 8.

2, **8** a R = Et, **b** R = Me; **5** c Hal = Cl, Z = PhNHCO, **d** Hal = Cl, Z = Ph, **e** Hal = I, Z = H, **f** Hal = Cl, Z = 4-BrC₆H₄NHCO, **g** Hal = I, Z = Me, **h** Hal = Br, Z = PhCO; **10** a R = Et, Z = PhNHCO, **b** R = Et, Z = Ph, **c** R = Et, Z = H, **d** R = Et, Z = 4-BrC₆H₄NHCO, **e** R = Me, Z = Me, **f** R = Me, Z = PhCO

Полученные таким путем сульфиды **10** могут подвергаться дальнейшим химическим превращениям. Так, взаимодействие соединения **10с** с MeI в щелочной среде протекает региоселективно как С-метилирование с образованием 3-метил-6-метилтио-4-спироциклогексан-3-циано-5-этоксикарбонил-3,4-дигидропиридин-2(1H)-она (**11**) (метод А), синтезированного также одностадийно из тиона **8a** и MeI (метод Б).

1172

При обработке соединения **10f** водным раствором КОН в кипящем этаноле получен 2-бензоил-3-гидрокси-6-оксо-5-циано-4,5,6,7-тетрагидроспиро(циклогексан-4-тиено[2,3-*b*]пиридин) (**12**) как результат внутримолекулярной конденсации Кляйзена.

Для однозначного установления региоселективности алкилирования функционально замещенных тетрагидропиридонов, содержащих несколько нуклеофильных центров, рентгеноструктурным методом изучено соединение **11** (рис. 1, табл. 3).

Таблица 1

Соеди-	Брутто- формула	Найдено, %			Т. пл., °С	Выход, %
нение		C H N			(растворитель для кристаллизации)	
3	$C_{14}H_{19}N_3O_2S$	<u>57.12</u> 57.31	$\frac{6.46}{6.53}$	$\frac{14.54}{14.32}$	192–194 (EtOH)	83
6a	C ₂₂ H ₂₄ N ₄ O ₅ S	<u>57.96</u> 57.88	<u>5.19</u> 5.30	<u>12.20</u> 12.27	180–182 (ЕtOH–ДМФА, 1:1)	66
6b	$C_{19}H_{23}N_5O_3S_2$	<u>52.51</u> 52.64	<u>5.41</u> 5.35	<u>16.00</u> 16.15	164–166 (EtOH)	76
8a	$C_{14}H_{18}N_2O_3S$	<u>56.95</u> 57.12	<u>5.98</u> 6.16	<u>9.31</u> 9.52	154–156 (EtOH)	75
8b	$C_{13}H_{16}N_2O_3S$	<u>55.73</u> 55.69	<u>5.69</u> 5.75	<u>9.84</u> 10.00	139–141 (MeOH)	61
10a	C ₂₂ H ₂₅ N ₃ O ₄ S	<u>61.90</u> 61.81	<u>5.73</u> 5.89	<u>9.92</u> 9.83	153–155 (AcOH)	79
10b	$C_{21}H_{24}N_2O_3S$	<u>65.73</u> 65.60	<u>6.31</u> 6.29	<u>7.12</u> 7.29	179–181 (EtOH)	71
10c	$C_{15}H_{20}N_2O_3S$	<u>58.35</u> 58.42	<u>6.39</u> 6.54	<u>8.97</u> 9.09	135–137 (EtOH)	62
10d	$C_{22}H_{24}BrN_3O_4S$	<u>52.02</u> 52.18	<u>4.91</u> 4.78	<u>8.13</u> 8.30	173–175 (AcOH)	57
10e	$C_{15}H_{20}N_2O_3S$	<u>58.31</u> 58.42	<u>6.59</u> 6.54	<u>8.97</u> 9.09	156–158 (MeOH)	53
10f	$C_{21}H_{22}N_2O_4S$	<u>63.35</u> 63.29	<u>5.50</u> 5.57	<u>6.99</u> 7.03	178–180 (МеОН–ДМФА, 1:1)	55
11	$C_{16}H_{22}N_2O_3S$	<u>59.67</u> 59.60	<u>6.73</u> 6.88	<u>8.79</u> 8.69	191–193 (EtOH)	58
12	$C_{20}H_{18}N_2O_3S$	<u>65.61</u> 65.55	$\frac{5.05}{4.95}$	$\frac{7.41}{7.65}$	268–269 (ДМФА)	68

Характеристики соединений 3, 6а, b, 8а, b, 10а-f, 11, 12

ИК и ЯМР ¹Н спектры соединений 3, 6а,b, 8а,b, 10а-f, 11, 12

Соели-	ИК спектр, v. см ⁻¹				
нение	NH	С≡N, С=О Спектр ЯМР ¹ Н, δ, м. д. (<i>J</i> , Гц)			
3	3430, 3330	2170, 1715	11.73 (1H, c, NH); 6.02 (2H, уш. c, NH ₂); 4.08 (3H, м, OCH ₂ и H-3); 1.35–1.68 (10H, м, (CH ₂) ₅); 1.23 (3H, т, <i>J</i> = 7.0, CH ₃)		
6a	3510, 3390	2170, 1720, 1700	8.27 (4Н, два д, <i>J</i> = 9.0, Ar); 5.97 (2Н, уш. с, NH ₂); 4.78 (2Н, к, SCH ₂); 4.11 (2Н, к, OCH ₂); 3.54 (1Н, с, H-3); 1.33–1.76 (10Н, м, (CH ₂) ₅); 1.22 (3Н, т, CH ₃)		
6b	3420, 3300, 3150	2165, 1740, 1680	12.14 (1H, уш. с, NH); 7.38 и 7.02 (2H, оба д, <i>J</i> = 3.3, Het); 6.12 (2H, уш. с, NH ₂); 4.07 (4H, м, SCH ₂ и OCH ₂); 3.50 (1H, с, H-3); 1.27–1.79 (10H, м, (CH ₂) ₅); 1.18 (3H, т, CH ₃)		
8a	3180	2255, 1710	13.42 (1H, уш. с, NH); 4.75 и 4.51 (2H, оба с, H-3 и H-5); 4.21 (2H, к, OCH ₂); 1.39–1.73 (10H, м, (CH ₂) ₅); 1.22 (3H, т, CH ₃)		
8b	3210	2245, 1710	13.39 (1H, уш. с, NH); 4.77 и 4.52 (2H, оба с, H-3 и H-5); 3.80 (3H, с, OCH ₃); 1.42–1.72 (10H, м, (CH ₂) ₅)		
10a	3320	2265, 1720, 1700, 1660	10.60 (1H, с, NH); 10.12 (1H, с, C ₆ H ₅ NHCO); 7.54 (2H, д, <i>J</i> = 7.6, C ₆ H ₅); 7.26 (2H, д. д. C ₆ H ₅); 7.03 (1H, д. д. <i>J</i> = 7.3, C ₆ H ₅); 4.09 (3H, м, OCH ₂ и H-3); 3.67 (2H, к, SCH ₂); 1.38–1.93 (10H, м, (CH ₂) ₅); 1.22 (3H, т, CH ₃)		
10b	3270, 3180	2250, 1735, 1710	10.48 (1H, с, NH); 7.25 (5H, м, C ₆ H ₅); 4.09 (5H, м, SCH, OCH ₂ и H-3); 1.35–1.72 (10H, м, (CH ₂) ₅); 1.21 (3H, т, CH ₃)		
10c	3240	2250, 1710, 1680	10.37 (1H, c, NH); 4.18 (2H, к, OCH ₂); 4.04 (1H, c, H-3); 2.31 (3H, c, SCH ₃); 1.39–1.84 (10H, м, (CH ₂) ₅); 1.18 (3H, т, CH ₃)		
10d	3350	2255, 1700, 1685, 1665	10.42 (1H, c, NH); 10.17 (1H, c, 4-BrC ₆ H4N <u>H</u> CO); 7.53 и 7.46 (2H, оба д, <i>J</i> = 9.0, Ar); 4.18 (3H, м, OCH ₂ и H-3); 3.69 (2H, к, SCH ₂); 1.38–1.84 (10H, м, (CH ₂) ₅); 1.21 (3H, т, CH ₃)		
10e	3300	2250, 1720, 1700	10.36 (1H, c, NH); 4.02 (1H, c, H-3); 3.74 (3H, c, OCH ₃); 2.86 (2H, к, SCH ₂); 1.43–1.76 (10H, м, (CH ₂) ₅); 1.23 (3H, т, <i>J</i> = 7.2, CH ₃)		
10f	3420	2270, 1710, 1670	10.41 (1H, c, NH); 7.32–7.47 (5H, м, C ₆ H ₅); 4.29 (1H, c, H-3); 3.78 (3H, c, OCH ₃); 3.42 (2H, к, SCH ₂); 1.25–1.80 (10H, м, (CH ₂) ₅)		
11	3270– 3210	2250, 1710, 1680	10.37 (1H, c, NH); 4.19 (2H, к, OCH ₂); 2.28 (3H, c, SCH ₃); 1.12–2.19 (10H, м, (CH ₂) ₅); 1.47 (3H, c, CH ₃); 1.30 (3H, т, OCH ₂ <u>CH₃</u>)		
12	3430	2255, 1710, 1690	14.20 (1H, уш. с, OH); 12.01 (1H, с, NH); 7.51–7.87 (5H, м, C ₆ H ₅); 4.61 (1H, с, H-5); 2.65 (1H, м, CH); 1.93 (1H, м, CH); 1.29–1.67 (8H, м, (CH ₂) ₄)		

Центральный шестичленный гетероцикл $N_{(1)}C_{(1-5)}$ существенно неплоский и имеет конформацию *полуванны* (модифицированные параметры Кремера–Попла [7] *S*, θ и ψ составляют для него 0.69, 47.8° и 25.8° соответственно). Торсионные углы в цикле: $N_{(1)}C_{(1)}C_{(2)}C_{(3)} - 43.6$, $C_{(1)}C_{(2)}C_{(3)}C_{(4)}$ 55.9, $C_{(2)}C_{(3)}C_{(4)}C_{(5)} - 38.0$, $C_{(3)}C_{(4)}C_{(5)}N_{(1)} 4.0$, $C_{(4)}C_{(5)}N_{(1)}C_{(1)} 14.1$, $C_{(5)}N_{(1)}C_{(1)}C_{(2)} 7.5°$. Атом $N_{(1)}$ имеет плоскотригональную конфигурацию связей – сумма валентных углов при этом атоме 369.3°. В результате сопряжения неподеленной электронной пары атома $N_{(1)}$ с π -системами

Рис. 1. Общий вид молекулы соединения 11 с нумерацией атомов

двойных связей $O_{(1)}=C_{(1)}$ и $C_{(4)}=C_{(5)}$ межатомные расстояния $N_{(1)}-C_{(1)}$ 1.368(7) и $N_{(1)}-C_{(5)}$ 1.409(6) Å заметно укорочены по сравнению со стандартным для одинарных связей $N(sp^2)-C(sp^2)$ значением 1.45 Å [8]. Основные геометрические параметры молекулы **11** обычные [9]. В частности, длины связей $S_{(1)}-C_{(5)}$ 1.747(5) и $S_{(1)}-C_{(13)}$ 1.806(7) Å практически совпадают с соответствующими параметрами в молекуле Ph–S–Me (S–C(sp²) 1.749(4), S–C(sp³) 1.803(4) Å) [10].

В кристалле соединения **11** молекулы посредством водородных связей $O_{(2)}$ ···H₍₁₎-N₍₁₎ ($O_{(2)}$ ···N₍₁₎ 2.973(7), $O_{(2)}$ ···H₍₁₎ 1.90(10) Å, $O_{(2)}$ H₍₁₎N₍₁₎ 164(5)°) объединены в бесконечные цепи (рис. 2).

Таблица З

Основные длины связей (d) и валентные углы (w) в молекуле соединения 11

Связь	d, Å	Угол	ω, град.
S ₍₁₎ -C ₍₅₎	1.747(5)	$C_{(5)} - S_{(1)} - C_{(16)}$	100.3(3)
S ₍₁₎ -C ₍₁₆₎	1.806(7)	C ₍₁₎ -N ₍₁₎ -C ₍₅₎	123.2(5)
$O_{(1)}-C_{(1)}$	1.220(6)	N(1)-C(1)-C(2)	114.5(4)
$N_{(1)}-C_{(1)}$	1.368(7)	$C_{(1)} - C_{(2)} - C_{(3)}$	110.8(4)
N(1)-C(5)	1.409(6)	C ₍₂₎ -C ₍₃₎ -C ₍₄₎	105.4(4)
N(2)-C(7)	1.146(8)	C(3)-C(4)-C(5)	120.6(4)
$C_{(1)} - C_{(2)}$	1.519(8)	$S_{(1)}-C_{(5)}-N_{(1)}$	115.5(4)
$C_{(2)} - C_{(3)}$	1.560(7)	$S_{(1)} - C_{(5)} - C_{(4)}$	124.2(4)
C(3)-C(4)	1.528(7)	N(1)-C(5)-C(4)	120.3(5)
C(4)-C(5)	1.339(7)		

Рис. 2. Кристаллическая упаковка соединения **11** (штриховыми линиями показаны межмолекулярные водородные связи)

Таблица 4

Координаты атомов и эквивалентные изотропные тепловые параметры ($U_{_{3 \rm KB}}$) в структуре 11

Атом	x	у	Z	$U_{ m экв}$, Å ²
S ₍₁₎	0.8651(3)	0.54250(13)	0.36655(18)	0.0635
O ₍₁₎	0.3574(7)	0.4335(4)	-0.0136(4)	0.0696
O ₍₂₎	0.6745(8)	0.3079(4)	0.5418(4)	0.0713
O(3)	0.9580(7)	0.2828(5)	0.4852(4)	0.0807
N(1)	0.5942(7)	0.4689(4)	0.1632(4)	0.0503
N(2)	0.140(1)	0.1648(7)	-0.0015(7)	0.0972
C ₍₁₎	0.4353(8)	0.4061(5)	0.0940(5)	0.0491
C(2)	0.3622(8)	0.3073(5)	0.1643(5)	0.0468
C(3)	0.5416(8)	0.2362(4)	0.2459(5)	0.0421
C(4)	0.6728(8)	0.3285(5)	0.3291(4)	0.0433
C(5)	0.6983(8)	0.4364(5)	0.2849(5)	0.0476
C(6)	0.2250(9)	0.3642(6)	0.2382(6)	0.0662
C ₍₇₎	0.2383(9)	0.2284(6)	0.0687(6)	0.0633
C ₍₈₎	0.6636(8)	0.1812(5)	0.1595(5)	0.0479
C(9)	0.8232(9)	0.0946(5)	0.2258(6)	0.0626
C(10)	0.7324(12)	-0.0038(6)	0.2834(7)	0.0741
C(11)	0.6236(12)	0.0433(6)	0.3745(7)	0.0742
C(12)	0.466(1)	0.1380(5)	0.3162(5)	0.0596
C(13)	0.7682(9)	0.3052(5)	0.4632(5)	0.0555
C(14)	1.0631(17)	0.2650(12)	0.6163(8)	0.1438
C(15)	1.205(2)	0.1833(13)	0.636(1)	0.1535
C(16)	0.7037(11)	0.6707(6)	0.3478(6)	0.0658
H(1)	0.644(14)	0.542(8)	0.102(9)	0.12(3)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование монокристалла соединения 11 с линейными размерами $0.16 \times 0.19 \times 0.68$ мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf–Nonius CAD-4 (Си K_{α} -излучение, отношение скоростей сканирования $2\theta/\omega = 1.2$, $\theta_{\text{max}} = 70^\circ$, сегмент сферы $0 \le h \le 8$, $0 \le k \le 13$, $-13 \le l \le 13$). Всего было собрано 1826 отражений, из которых 1598 являются симметрически независимыми ($R_{int} = 0.028$). Кристаллы соединения **11** моноклинные, a = 6.923(1), b = 11.265(3), c = 11.117(3) Å, $\beta = 104.75(2)^{\circ}$, V = 838.4 Å³, M = 322.4, Z = 2, $d_{\text{BBH}} = 1.28 \text{ r/cm}^3$, $\mu = 17.9 \text{ cm}^{-1}$ F(000) = 345.5, пространственная группа Pc. Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [11]. В уточнении использовано 1365 отражений с I > 3(I)(203 уточняемых параметра, число отражений на параметр 6.7). Все атомы водорода выявлены из разностного синтеза электронной плотности и включены в расчет с фиксированными позиционными и тепловыми параметрами (лишь атом Н(1) уточнен изотропно). Учет поглощения в кристалле выполнен с помощью метода азимутального сканирования [12]. При уточнении использована весовая схема Чебышева [13] с параметрами: 0.96, 0.95 и -0.20. Окончательные значения факторов расходимости R = 0.058 и $R_W = 0.062$, GOF = 1.103. Абсолютная конфигурация установлена по методу Флэка [14] (энантиопольный параметр уточнен до 0.07(1) по 1486 отражениям с неусредненными фриделевыми эквивалентами). Полный набор рентгеноструктурной информации депонирован в Кембриджском банке структурных данных (рег. № ССОС176372).

ИК спектры получали на спектрометре ИКС-29 в вазелиновом масле. Спектры ЯМР ¹Н регистрировали на приборах Gemini-200 (199 МГц) (соединений **6a,b, 10a,c,e, 12**), Bruker AM-300 (300 МГц) (соединений **3, 8a,b**), Bruker DR×500 (500 МГц) (соединений **10b,d,f, 11**) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры регистрировали на спектрометре Kratos MS-890 (70 эВ). Температуры плавления определяли на блоке Кофлера. Контроль за ходом реакции и чистотой полученных соединений осуществляли методом TCX (Silufol UV-254, ацетон–гексан, 3:5, проявитель – пары иода. Физико-химические и спектральные характеристики соединений **3, 6, 8, 10, 11, 12** приведены в табл. 1 и 2.

6-Амино-4-спироциклогексан-5-циано-3-этоксикарбонил-1,2,3,4-тетрагидропиридин-2-тион (3). К раствору 1.47 г (10 ммоль) тиоамидэтилмалоната в 20 мл этанола прибавляют раствор, полученный из 0.23 г (10 ммоль) натрия и 5 мл этанола. Затем при перемешивании добавляют 1.46 г (10 ммоль) циклогексилиденмалононитрила. Реакционную смесь перемешивают 2 ч и оставляют на 1 сут, после чего подкисляют 10% водным раствором HCl до pH 5. Образовавшийся осадок отфильтровывают, промывают 40% водным раствором этанола и получают соединение **3**. Масс-спектр соединения **3** (ЭУ, 70 эВ), *m/z* ($I_{\text{отн}}$, %): 293 [M]⁺ (73), 247 (29), 220 (70), 178 (100), 155 (58).

6-Амино-2-(4'-нитробензоилметилтио)-4-спироциклогексан-5-циано-3-этоксикарбонил-3,4-дигидропиридин (ба), 6-амино-4-спироциклогексан-2-(тиазол-2'-илкарбамоилметилтио)-5-циано-3-этоксикарбонил-3,4-дигидропиридин (6b), 2-оксо-4-спироциклогексан-6-фенилкарбамоилметилтио-3-циано-5-этоксикарбонил-1,2,3,4-тетрагидропиридин (10а), 6-бензилтио-2-оксо-4-спироциклогексан-3-циано-5-этоксикарбонил-1,2,3,4тетрагидропиридин (10b), 6-метилтио-2-оксо-4-спироциклогексан-3-циано-5-этоксикарбонил-1,2,3,4-тетрагидропиридин (10с), 2-(4'-бромфенилкарбамоилметилтио)-2оксо-4-спироциклогексан-3-циано-5-этоксикарбонил-1,2,3,4-тетрагидропиридин (10d), 5-метоксикарбонил-2-оксо-4-спироциклогексан-3-циано-6-этилтио-1,2,3,4-тетрагидропиридин (10е), 6-бензоилметилтио-5-метоксикарбонил-2-оксо-4-спироциклогексан-3циано-1,2,3,4-тетрагидропиридин (10f). Смесь 10 ммоль соответствующего тиона, 5.6 мл (10 ммоль) 10% водного раствора КОН и 10 ммоль соответствующего алкилгалогенида в 20 мл ДМФА при 20 °С перемешивают 4 ч и оставляют на 1 сут. Осадок отфильтровывают, промывают 40% водным раствором этанола и гексаном и получают соединения 6а, b, 10а-f. Масс-спектр соединения **10**е (ЭУ, 70 эВ), m/z (I_{0TH} , %): 308 [M]⁺ (55), 279 (30), 249 (100), 180 (35).

6-Оксо-4-спироциклогексан-5-циано-3-этоксикарбонилпиперидин-2-тион (8а) и 3-метоксикарбонил-6-оксо-4-спироциклогексан-5-цианопиперидин-2-тион (8b). К раствору 10 ммоль соответствующего соединения 2 в 20 мл этанола прибавляют раствор, приготовленный из 0.23 г (10 ммоль) натрия и 5 мл этанола. Затем при перемешивании добавляют 1.93 г (10 ммоль) циклогексилиденцианоуксусного эфира. Реакционную смесь перемешивают 2 ч и оставляют на 1 сут, после чего подкисляют 10% водным раствором HCl до pH 5. Образовавшийся осадок отфильтровывают, промывают 40% водным раствором этанола и получают соединения **8а,b**. Масс-спектр (ЭУ, 70 эВ), m/z ($I_{\text{отн}}$, %), соединение **8а**: 294 [M⁺] (90), 249 (20), 222 (100), 194 (56), 166 (30), 148 (30), 138 (52), 122 (25); соединение **8b**: 280 [M]⁺ (100), 221 (45), 193 (45), 160 (42), 148 (78), 133 (27).

3-Метил-6-метилтио-4-спироциклогексан-3-циано-5-этоксикарбонил-3,4-дигидропиридин-2(1Н)-он (11). А. К раствору 3.08 г (10 ммоль) соединения **10с** в 10 мл ДМФА прибавляют при перемешивании 5.6 мл (10 ммоль) 10% водного раствора КОН, а затем 0.62 мл (10 ммоль) МеI и перемешивают 2 ч. Через 1 сут образовавшийся осадок отфильтровывают, промывают этанолом и гексаном и получают соединение **11**.

Б. К раствору 1.47 г (5 ммоль) соединения **8a** в 10 мл ДМФА прибавляют при перемешивании 5.6 мл (10 ммоль) 10% водного раствора КОН, а затем 0.62 мл (10 ммоль) MeI и перемешивают 2 ч. Через 1 сут образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Получают соединение **11** с выходом 72%. Температура плавления, данные хроматографии и спектральные характеристики его совпадают с аналогичными данными соединения **11**, полученного по методу А.

Масс-спектр соединения **11** (ЭУ, 70 эВ), *m/z* (*I*_{отн}, %): 322 [M]⁺ (70), 307 (100), 277 (32), 261 (69), 226 (35), 180 (55), 148 (48).

2-Бензоил-3-гидрокси-6-оксо-5-циано-4,5,6,7-тетрагидроспиро(циклогексан-4-тиено-[**2,3**-*b*]пиридин) (12). К раствору 1.99 г (5 ммоль) соединения **10f** в 25 мл этанола прибавляют 2.8 мл (5 ммоль) 10% водного раствора КОН и кипятят 1 ч. Через 1 сут образовавшийся осадок отфильтровывают, промывают этанолом, гексаном и получают соединение **12**.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Д. Дяченко, А. Е. Митрошин, В. П. Литвинов, ХГС, 1235 (1996).
- 2. В. Д. Дяченко, С. Г. Кривоколыско, В. Н. Нестеров, Ю. Т. Стручков, В. П. Литвинов, Изв. АН, Сер. хим., 2535 (1996).
- 3. В. Д. Дяченко, В. П. Литвинов, *ХГС*, 208 (1998).
- 4. В. В. Кузнецов, Хим.-фарм. журн., 25, № 7, 61 (1991).
- 5. В. П. Литвинов, С. Г. Кривоколыско, В. Д. Дяченко, ХГС, 579 (1999).
- V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, A. Senning, *Sulfur Reports*, 13, 1 (1992).
- 7. Н. С. Зефиров, В. А. Палюлин, ДАН, **252**, 111 (1980).
- 8. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- 9. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, P. S1 (1987).
- 10. S. Samdal, H. M. Seip, T. Torgrimsen, J. Mol. Struct., 57, 101 (1979).
- 11. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, CRYSTALS Issue 10, Chemical Crystallography Laboratory, Univ. of Oxford, Oxford, 1996.
- 12. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 13. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).
- 14. H. D. Flack, Acta Crystallogr., A39, 876 (1983).

Луганский национальный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: dvd_lug@online.lg.ua Поступило в редакцию 18.12.2001

^аХарьковский национальный университет им. В. Н. Каразина, Харьков 61070, Украина e-mail: desenko@univer.kharkov.ua

⁶Институт органической химии НАН Украины, Киев 02094 e-mail: iochkiev@ukrpack.net