А. В. Варламов, Н. В. Сидоренко, Ф. И. Зубков, А. И. Чернышев, К. Ф. Турчин^а

ЗАМЕЩЕННЫЕ И СПИРОАННЕЛИРОВАННЫЕ ПЕРГИДРО-1,2,3-ОКСАТИАЗИНДИОКСИДЫ-2,2 И 1-БЕНЗИЛ-4-МЕТИЛАЗЕТИДИНЫ

Пергидро-1,2,3-оксатиазиндиоксиды-2,2 получены циклизацией 4-N-бензиламино-4тетраметилен(фенил-, метилфенил-, диметил)бут-1-енов в конц. H₂SO₄ при 25 °C. Действием спиртового раствора щелочи оксатиазины превращены в 2-замещенные и спироаннелированные 1-бензил-4-метилазетидины.

Ключевые слова: азетидины, гомоаллиламины, 1,2,3-оксатиазиндиоксиды-2,2.

Химия полностью гидрированных 1,2,3-оксатиазиндиоксидов-2,2 практически не изучена [1, 2]. Это обусловлено отсутствием простых методов синтеза таких гетероциклических систем, трудностями их выделения, а также их высокой химической лабильностью.

Ранее циклизацией *гем*-бензиламиноаллилциклогексана и -циклооктана под действием конц. H₂SO₄ в кипящем хлороформе были получены спиро[1,2,3-оксатиазин-4,1'-циклогексан(-циклооктан)] и осуществлено их последующее расщепление до соответствующих спиро[азетидин-2,1'-циклоалканов] [3, 4].

С целью изучения границ применимости метода и стереохимии процесса мы исследовали циклизацию ряда гомоаллиламинов **1a**-**d** под действием серной кислоты. Исходные аллиламины **1a**-**d** легко образуются при взаимодействии соответствующих шиффовых оснований с аллилмагнийбромидом [5, 6].

При обработке аминов **1а–d** избытком конц. H_2SO_4 при 25 °C с выходом 43–83% образуются 1,2,3-оксатиазиндиоксиды-2,2 **2а–d**. По-видимому, образование оксатиазинов **2** протекает через циклическую аммонийную соль, последующая дегидратация которой под действием избытка H_2SO_4 дает целевые соединения.

Оксатиазины 2 представляют собой белые, высокоплавкие, трудно растворимые в большинстве органических растворителей мелкокристаллические порошки. Их строение доказано совокупностью спектральных данных (табл. 1 и 2). ИК спектры соединений **2а–d** характеризуются наличием интенсивных полос валентных колебаний группы SO₂ при 1370–1190 см⁻¹. В масс-спектрах соединений **2** отсутствуют пики молекулярных ионов, однако наблюдаются пики фрагментных ионов $[M-80]^+$, отвечающих выбросу из M⁺ молекулы SO₃. Как и следовало ожидать, максимальную интенсивность во всех случаях имеют ионы с m/z 91, обусловленные элиминированием бензильного радикала от атома азота.

Таблица 1

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %		М		Т. пл.,	<i>R</i> ,**	R_{j}^{**} ИК спектр, Выход, Выход, С		
нение*	формула	С	Н	Ν	Найдено [М] ⁺	Вычислено	°C	- 9	CM^{-1} , V_{SO2}		
2a	$C_{15}H_{21}NO_3S$	<u>60.89</u> 60.81	<u>7.23</u> 7.09	$\frac{4.98}{4.73}$	215 [M-SO ₃] ⁺	295	214–215.5	_	1298, 1190	43	
2b	C ₁₇ H ₁₉ NO ₃ S	64.35	5.99	$\frac{4.09}{4.42}$	$237 \ [M-SO_3]^+$	317	87–100 (с разл.)	_	1282, 1231	83	
2c	$C_{18}H_{21}NO_3S$	65.26	6.34	$\frac{4.03}{4.23}$	_	331	185–190 (с разл.)	-	1370, 1215	69	
2d	C ₁₃ H ₁₉ NO ₃ S	57.99	7.06	<u>5.12</u> 5.20	$189 \ [M-SO_3]^+$	296	225–227	-	1233, 1187	51	
3a	$C_{15}H_{21}N$	<u>83.89</u> 83.72	<u>10.01</u> 9.77	<u>6.48</u> 6.51	215	215	-	0.50	-	31	
3b	C ₁₇ H ₁₉ N	86.08	8.02	<u>5.70</u> 5.91	237	237	-	0.30	-	40	
3c	$C_{18}H_{21}N$	86.06	8.37	<u>5.55</u> 5.56	251	251	-	0.47 0.55	-	30	
3d	C ₁₃ H ₁₉ N	82.54	10.05	<u>7.21</u> 7.41	189	189		0.62	-	48	

Физико-химические и спектральные характеристики оксатиазинов 2a-d и азетидинов 3a-d

* Для соединений 2b,с и 3b,с приведены данные для смесей изомеров.
** Значения *R_f* получены в смеси этилацетат–гексан, 1:3 (соединения 3a,d), 1:4 (соединение 3b) и 1:5 (соединение 3c).

Таблица 2

Соеди- нение*	Химические сдвиги, б, м. д.									КССВ, <i>J</i> , Гц						
	4 д. д	5a	5e	6	6-CH ₃ д	NCH ₂ AB	H–Ar M	${f R}^1 {f R}^2$	4, 5 <i>a</i>	4, 5e	5a, 5e	5a, 6	5e, 6	6, CH3	CH ₂ N AB	
2a	-	2.20 д. д	1.67 д. д	4.59 д. д. к	1.27	4.35 3.97	7.67–7.27 2.00–1.51 M		_	-	16.2	10.7	1.2	6.1	12.2	
2b maj	4.11	2.71-2	2.48 м	4.64 д. к	1.26	3.98 3.63	7.46-7.09 м		10.4	3.1	12.0	9.5	0	6.4	13.7	
2b min	4.42	2.47 д. д. д	2.04 д. д. д	4.93 д. д. к	1.31	3.79 3.64			11.0	4.0	15.0	11.8	3.1	6.1	_	
2c maj	_	2.75 д. д	1.75 д	4.85 д. к	1.36	3.95 3.47	7.75–7.15 1.49 c		-	-	15.8	10.4	0	5.2	13.1	
2c min	-	2.45 д. д	1.84 д	4.70 д. к	0.97	4.04 3.83	1.99 c		-	-	15.6	10.1	0	5.8	-	
2d	-	2.11 д. д	1.65 д. д	4.59 м	1.24	4.21 4.04	7.65–7.35	1.46 c 1.39 c	_	-	15.6	10.7	1.2	6.4	12.8	

Спектры ЯМР ¹ Н 1,2,3-оксатиазиндиоксидов-2,2 2а	-d
---	----

* Спектры ЯМР ¹Н снимали в ДМСО- d_6 (соединение **2a**) и CDCl₃ (соединения **2b**–d).

1, **2** a $R^{1}+R^{2} = (CH_{2})_{4}$; b $R^{1} = H$, $R^{2} = Ph$; c $R^{1} = Me$, $R^{2} = Ph$; d $R^{1} = R^{2} = Me$

По данным ЯМР ¹Н (табл. 2), симметрично замещенные по $C_{(4)}$ оксатиазины **2a** и **2d** образуются в виде одного геометрического изомера, который существует в конформации *кресло* с экваториальной группой 6-Ме. Спектры ЯМР ¹Н этих соединений характеризуются наличием при 4.59 м. д. мультиплета протона H-6. Значение КССВ $J_{5a6a} = 10.7$ Гц однозначно свидетельствует об аксиальном расположении протона H-6.

Циклизация несимметрично замещенных по положению 4 гомоаллиламинов **1b** и **1c** протекает стереоселективно. Соединения **2b** и **2c** образуются в виде смесей двух изомеров по расположению заместителей при $C_{(4)}$ и метильной группы при $C_{(6)}$ оксатиазинового цикла в соотношении ~1:1.7 и 1:1.8 соответственно. На это указывает наличие в их спектрах ЯМР ¹Н двойного набора сигналов для каждой группы протонов (см. табл. 2). Детальный анализ спектров смесей изомеров **2b** и **2c** позволил сделать вывод об их строении. Спектр минорного изомера **2b** характеризуется наличием больших (11.0 и 11.8 Гц) и малых (4.0 и 3.1 Гц) вицинальных КССВ для протонов H-4 и H-6 с химическими сдвигами 4.42 и 4.93 м. д. соответственно. Следовательно, для этого изомера можно предположить конформацию *кресло* с аксиальным расположением протонов H-4 и H-6 и экваториальным – групп 4-Ph и 6-Me.

В спектре ЯМР ¹Н мажорного изомера **2b** для протона H-6 с химическим сдвигом 4.64 м. д. наблюдается только одна большая КССВ $J_{56} = 9.5$ Гц, вторая константа равна нулю. Для протона H-4 с химическим сдвигом 4.11 м. д. наблюдаются две КССВ $J_{45} = 10.4$ и 3.1 Гц. Значения этих констант позволяют предположить для мажорного изомера *твист*-конформацию. Таким образом, по аналогии с циклизацией 4-N-фениламино- и 4-N-бензиламино-1-бутенов в 2-замещенные 4-метилтетрагидрохинолины и 3-замещенные 5-метилтетрагидробенз-2-азепины [5–8] можно предположить, что изомеры, образующиеся при циклизации гомоаллиламина **1b**, имеют экваториальное расположение групп 6-Ме и различаются лишь ориентацией заместителя 4-Ph.

Минорный изомер с экваториальным расположением заместителей при $C_{(4)}$ и $C_{(6)}$ энергетически выгоден, а мажорный из-за стерического 1,3-диаксиального взаимодействия переходит в *твист*-конформацию, где эти взаимодействия меньше. В пользу высказанных предположений говорят результаты циклизации гомоаллиламина **1с** в оксатиазин **2с**. В этом случае можно было бы также ожидать образования двух изомеров с экваториальной группой 6-Ме и, соответственно, с экваториальным и аксиальным фенильным заместителем при $C_{(4)}$.

1265

В обоих изомерах 1,3-диаксиальное взаимодействие заместителей при $C_{(4)}$ обусловливает их существование в *твист*-форме. В спектрах ЯМР ¹Н изомеров **2с** (табл. 2) наблюдается лишь одна КССВ $J_{56} = 10.1$ для минорного и 10.4 Гц – для мажорного изомера. Вторая КССВ $J_{56} = 0$.

Пергидрооксатиазиндиоксиды-2,2 **2а–d** под действием 15% спиртового раствора гидроксида калия с выходом 30–61% превращаются в азетидины **3а–d** – подвижные масла. На основании литературных данных [9] можно полагать, что на первой стадии в результате атаки атома серы этоксиданионом происходит расщепление связи N–S оксатиазинового цикла. Последующая нуклеофильная атака образовавшегося амид-аниона по атому углерода, несущему сульфогруппу, приводит к конечному азетидину.

Строение азетидинов **3а-d** доказано спектральными методами. В их ИК спектрах отсутствуют полосы поглощения связей NH и OH. В масс-спектрах присутствуют пики молекулярных ионов средней интенсивности, соответствующие их брутто-формулам. Основное направление распада молекулярного иона связано с отрывом бензильного радикала. В масс-спектрах также наблюдаются характерные для фрагментации азетидинов ионы, обусловленные разрывом цикла "пополам" по связям C₍₁₎-C₍₄₎ и C₍₂₎-C₍₃₎.

Несимметрично замещенные по положению 2 азетидины **3b** и **3c** образуются в виде смесей изомеров по расположению заместителей при $C_{(2)}$ и $C_{(4)}$ в соотношении ~1:1. В исходных оксатиазинах **2b** и **2c** соотношение изомеров составляло 1:1.7 и 1:1.8, следовательно, реакция не стереоселективна.

В отличие от изомеров **3b** пространственные изомеры азетидина **3c** имеют различную хроматографическую подвижность и были разделены с помощью колоночной хроматографии.

Их стереохимия установлена с помощью протон-протонного ЯЭО (табл. 3). Наиболее четко ЯЭО проявляется на протонах метильных групп при $C_{(2)}$ и $C_{(4)}$. Так, в спектре хроматографически более подвижного изомера **3сА** (R_f 0.55) ЯЭО для протонов метильных групп отсутствует, а в спектре менее подвижного **3сВ** (R_f 0.47) – наблюдается. Таким образом, в изомере **3сА** метильные группы имеют *транс-*, а в **3сВ** – *цис*-расположение.

Таблица З

Соеди-	OER	Облучаемые протоны									
нение	на протонах*	{2-Me}	{3A-H}	{3B-H}	{ 4- H}	{4-Me}					
3cA	2-Me		+								
	3А-Н	+		+	+						
	3B-H		+			+					
	4- H	+	+			+					
	4-Me			+	+						
3cB	2-Me					+					
	3А-Н			+							
	3B-H	+	+			+					
	4-H		+			+					
	4-Me	+		+	+						

Оценка ЯЭО по спектрам ЯМР ¹Н соединений 3сА и 3сВ

* Знаком + отмечены ЯЭО, превышающие 3%.

Спектры ЯМР ¹Н азетидинов **За–d** (табл. 4) характеризуются наличием дублетного сигнала протонов группы 4-Ме при 1.1–0.9 м. д. ($J_{4Me} = 5.8-6.2 \Gamma \mu$), двух дублет-дублетных сигналов от метиленовых протонов при C₍₃₎ с хи-мическим сдвигом 2.7–1.6 м. д. и мультиплета от протона H-4 при 3.6–3.2 м. д. Метиленовые протоны N-бензильной группы химически неэквивалентны и регистрируются при 3.9–3.2 м. д. (АВ-система, $J_{AB} = 12.8-14.0 \Gamma \mu$). В спектрах ЯМР ¹³С (табл. 4) изомеров **ЗсА** и **ЗсВ** наблюдаются

В спектрах ЯМР ¹³С (табл. 4) изомеров **3сА** и **3сВ** наблюдаются сигналы от всех атомов углерода в молекуле, их мультиплетность и значения КССВ также хорошо коррелируют со структурой. В частности, при 53.44–65.09 м. д. расположены сигналы атомов углерода N–CH₂, $C_{(2)}$ и $C_{(4)}$, связанных с электроотрицательным атомом азота.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на спектрометрах UR-20 или Specord IR-75 в таблетках KBr (для кристаллических веществ) или в пленке (для масел). Масс-спектры записывали на масс-спектрометрах Finnigan MAT 95 XL и HP MS 5988 с прямым вводом образца в источник ионов. Ионизирующее напряжение 70 эВ. Спектры ЯМР ¹H и ¹³C получали при 20 °C на приборах Bruker WP-200 (200 МГц) или Bruker WH-400 (400 и 100 МГц для ¹H и ¹³C соответственно), внутренний стандарт ТМС. Для ТСХ использовали пластины Silufol UV-254 (проявление парами иода).

Физико-химические и спектральные характеристики приведены в таблю 1, 2, 4.

3-Бензил-6-метил-3,4,5,6-тетрагидроспиро[1,2,3-оксатиазин-2,2-диоксид-4,1'-циклопентан] (2а), 6-метил-3,4,5,6-тетрагидро-4-фенил- (2b), [-4,6-диметил-4-фенил- (2c), -4,4,6-триметил- (2d)]-3-бензил-1,2,3-оксатиазин-2,2-диоксиды (общая методика). К 25 мл охлажденной до ~0 °C 96% H₂SO₄ осторожно добавляют 0.015 моль гомоаллиламина 1а-d, перемешивают до полной гомогенизации реакционной смеси и оставляют при комнатной температуре на 1 сут. На следующий день реакционную массу выливают на ~100 см³ льда, нейтрализуют 25% водным раствором аммиака при охлаждении ледяной

1267

Таблица 4

Соеди- нение		Химические сдвиги, δ, м. д.									КССВ, Ј, Гц							
	2 д. д	3A	3B	4	4-Ме д	NCH ₂ AB	H–Ar M	$R^1 \\ R^2$	2,3A	2,3B	3A,3B	3A,4	3B,4	4,Me	CH ₂ N AB			
3a	-	1.96 д. д	1.64 д. д	3.19 д. д. к	0.90	3.69 3.46	7.45– 7.10	1.25— 2.00 м	_	-	9.8	7.3	8.2	6.1	12.8			
3bA	3.23	1.83 м	2.21 м	3.40 м	0.85	3.87 3.51	7.50– 7.10	_	8.2	6.9	10.0	8.2	7.3	6.1	12.8			
3bB	3.00	~1.90** м	2.80 м	~3.50** м	1.05	3.48 3.15	7.50– 7.10	_	7.0	8.0	10.0	7.2	7.2	6.1	12.8			
3cA	-	1.81 д. д	2.23 д. д	3.37 м	0.83	3.91 3.53	7.50– 7.10	1.60 c	-	-	10.1	8.2	7.3	5.8	13.1			
3cB	-	1.92 д. д	2.75 д. д	3.56 м	1.09	3.44 3.21	7.50– 7.10	1.64 c	-	-	11.0	7.0	7.6	6.1	14.0			
3d	-	1.90 д. д	2.20 д. д	3.22 д. д. к	0.90	3.70 3.40	7.45– 7.15	0.85 c 0.89 c	-	-	9.7	7.0	8.0	6.1	13.0			

Спектры ЯМР ¹Н и ¹³С азетидинов За–d*

^{*} Химические сдвиги в спектрах ЯМР ¹³С измерены относительно сигнала растворителя CDCl₃, δ 77.0 м. д.; спектр ЯМР ¹³С, δ, м. д., соединения **3cA**: 150.31 и 140.17 (с, четв.-Ph), 128.93, 127.89, 127.88, 124.67 (д, м, *o*-Ph), 126.57 и 125.81 (д, *p*-Ph), 63.65 (с, C₍₂₎), 57.64 (д, C₍₄₎), 55.49 (т, CH₂N), 41.96 (т, C₍₃₎), 20.43 (к, 2-Me), 22.85 (к, 4-Me); соединения **3cB**: 144.27 и 140.27 (с, четв.-Ph), 128.53, 127.88, 127.78, 126.53 (д, м, *o*-Ph), 126.49 и 126.32 (д, *p*-Ph), 63.09 (с, C₍₂₎), 55.99 (д, C₍₄₎), 53.44 (т, CH₂N), 40.41 (т, C₍₃₎), 29.14 (к, 2-Me), 21.74 (к, 4-Me).

** Точное определение затруднено из-за взаимного перекрывания сигналов протонов.

водой и доводят до pH ~8–9. Продукты реакции экстрагируют хлороформом (5 \times 40 мл), экстракт сушат Na₂SO₄. После удаления растворителя выпавшие кристаллы многократно промывают этилацетатом. Получают оксатиазины **2** в виде белых мелкокристаллических порошков.

1-Бензил-4-метилспиро[азетидин-2,1'-циклопентан] (3а), **1-бензил-4-метил-2-фенилазетидин** (3b), **2,4-диметил-2-фенил-** (3c), **1-бензил[2,2,4-триметил-** (3d)]азетидины (общая методика). Кипятят 7.00 ммоль оксатиазина 3a-d в 25 мл 15% этанольного раствора КОН в течение 20 ч. Затем реакционную массу выливают в воду (100 мл), экстрагируют эфиром (3 × 50 мл), экстракт сушат MgSO₄. После отгонки растворителя остаток очищают на оксиде алюминия (2 × 2 см), элюент эфир. Получают азетидины 3a-d в виде желтых подвижных масел. Смесь изомеров соединения 3c хроматографируют на колонке (25 × 0.7 см) с оксидом алюминия, элюент этилацетат–гексан, 1:30. Выделяют в индивидуальном виде азетидины 3cA (11%, R_f 0.55) и 3cB (7%, R_f 0.47).

Выходы, физико-химические характеристики и данные элементного анализа азетидинов **За–d** представлены в табл. 1, данные спектроскопии ЯМР ¹Н и ¹³С – в табл. 4.

Работа выполнена при финансовой поддержке РФФИ (гранты № 99-03-32942a и 01-03-32844).

СПИСОК ЛИТЕРАТУРЫ

- 1. K. K. Andersen, M. G. Kocioler, J. Org. Chem., 60, 2003 (1995).
- 2. D. Alker, K. J. Doyle, L. M. Harwood, A. McGregor, *Tetrahedron Asymmetry*, 1, 877 (1990).
- 3. А. В. Варламов, Ф. И. Зубков, А. И. Чернышев, В. В. Кузнецов, А. П. Пальма, *XГС*, 223 (1999).
- 4. L. M. Vargas, W. Rozo, V. V. Kouznetsov, Heterocycles, 53, 785 (2000).
- 5. В. В. Кузнецов, С. В. Ланцетов, А. Э. Алиев, А. В. Варламов, Н. С. Простаков, *ЖОрХ*, **28**, 74 (1992).
- 6. A. V. Varlamov, V. V Kouznetsov, F. I. Zubkov, A. I. Chernyshev, G. G. Alexandrov, A. Palma, L. Vargas, S. Salas, *Synthesis*, 849 (2001).
- 7. В. В. Кузнецов, А. Э. Алиев, Н. С. Простаков, ХГС, 73 (1994).
- 8. L. Y. Vargas, V. Kouznetsov, Heterocycl. Commun., 4, 341 (1998).
- 9. B. J. Littler, T. Gallagher, I. K. Boddy, P. D. Riordan, Synlett, 22 (1997).

Российский университет дружбы народов, Москва 117198 e-mail: avarlamov@sci.pfu.edu.ru Поступило в редакцию 23.11.2001

^аЦентр по химии лекарственных средств – Всероссийский научно-исследовательский химико-фармацевтический институт, Москва 119815 e-mail: turchin@drug.org.ru