Г. Б. Сойфер, В. П. Фешин^а

КВАНТОВО-ХИМИЧЕСКОЕ ИЗУЧЕНИЕ СТРОЕНИЯ ИЗОМЕРОВ 1,2,2,3,4,4-ГЕКСАХЛОР-1,3-ДИФОСФЕТАНА

Методом RHF/6-31G* оптимизированы геометрические параметры трех изомеров молекулы (ClP–CCl₂)₂. Установлено, что наиболее стабилен *транс*-изомер, который энергетически выгоднее двух *цис*-изомеров на 7.8 и 14.2 кДж/моль соответственно.

Ключевые слова: 1,2,2,3,4,4-гексахлор-1,3-дифосфетан, *цис-* и *транс-*изомеры, метод RHF/6-31G*, неэмпирические расчеты, строение молекул.

Особенности строения молекул с четырехчленным фосфоруглеродным гетероциклом привлекают внимание исследователей достаточно давно, см., например, [1]. В работе [2] с помощью РСА изучена молекулярная структура кристаллического 1,2,2,3,4,4-гексахлор-1,3-дифосфетана (ClP–CCl₂)₂, в результате чего установлено, что его молекулы в твердом теле существуют в виде *транс*-изомера в противоположность мнению о предпочтительности *цис*-изомера (см. обсуждение в [2]). Поэтому представляло интерес выяснить посредством квантово-химических расчетов, который из изомеров данного дифосфетана энергетически более выгоден, а также структурные особенности его возможных изомеров.

С этой целью нами проведен неэмпирический квантово-химический расчет названной молекулы с полной оптимизацией ее геометрии ограниченным методом Хартри–Фока (RHF) в валентно-расщепленном базисе $6-31G^*$ по программе Gaussian 94W [3] и установлено, что четырехчленный гетероцикл РСРС неплоский с перегибом по линии С...С (такая же непланарность цикла обнаружена методом РСА [2]). Следовательно, возможно существование трех изомеров: одного *mpanc*- (1) и двух *цис*-изомеров (2 и 3).

В *транс*-изомере **1** связи Р–СІ находятся по разные стороны непланарного цикла P_2C_2 , а в двух других эти связи расположены со стороны либо вогнутости (*цис*-изомер **2**), либо выпуклости цикла (*цис*-изомер **3**). Согласно расчету, угол перегиба цикла P_2C_2 по линии C(1)...C(2) в *транс*форме **1** равен 21.2°, а в *цис*-формах **2** и **3** – 8.6 и 27.8° соответственно. Для сравнения отметим, что у *транс*-изомера в кристалле этот угол перегиба достигает 29.9° [2].

Как видно из рассчитанных энергий *Е*-изомеров (см. таблицу), для свободной молекулы наиболее стабилен *транс*-изомер, т. е. тот же, что экспериментально установлен в случае кристалла изучаемого соединения[2]. При этом разности полных энергий изомерных форм свидетельствуют, что *транс*-изомер **1** устойчивее *цис*-изомеров **2** и **3** на 7.8 и 14.2 кДж/моль соответственно. Эти данные согласуются с выводом [2], что в результате димеризации фосфаалкена $Cl_2C=PCl$ образуется в основном *транс*-изомер **1**. Они позволяют полагать также, что другим продуктом димеризации, выход которого составляет ~2% [4], может являться *цис*изомер **2**.

Сравнение вычисленных длин связей и валентных углов с найденными методом РСА (см. табл. 1–3) указывает на их удовлетворительное согласие, с учетом того, что расчет выполнен для свободной молекулы, а экспериментальная структура относится к кристаллу.

Обращает на себя внимание заметное различие между длинами двух связей P–Cl в *транс*-изомере: связь P(1)–Cl(1) длиннее связи P(2)–Cl(2). Это различие, несколько иное по значению, проявляется и в эксперименте. Также качественно одинаковы различия в рассчитанных и экспериментальных длинах связей P–C других двух частей димерного цикла в случае *транс*-изомера. Подобная картина наблюдается и для углов ClPC и CPC в разных половинах данного изомера (см. таблицу). Все эти особенности структуры *транс*-изомера обусловлены разной направленностью двух связей P–Cl в молекуле по отношению к линии перегиба цикла четырехчленного P_2C_2 , что приводит к неравноценности не только самих связей P–Cl, но и валентных углов при двух атомах фосфора.

Отметим, что в *транс*-изомере **1** двугранный угол Cl(1)P(1)P(2)Cl(2), по данным PCA, составляет -179.85° [2], а расчет дает -179.97° (в *цис*изомерах **2** и **3** этот угол после полной оптимизации их геометрии равен 0°). При этом в *транс*-изомере **1**, согласно расчету, цикл P_2C_2 , а вместе с ним и вся молекула в свободном состоянии, имеет плоскость симметрии, проходящую через атомы Cl(1), P(1), P(2), Cl(2). В кристалле, как видно из данных PCA [2], такая симметрия (C_s) отсутствует. Кристаллические эффекты приводят к искажению цикла P_2C_2 , в результате чего нарушается попарное равенство длин связей Р–С и углов ClPC в каждой из половин димерной структуры 1 (табл. 1, 2).

Если в *транс*-изомере имеется отчетливое различие в длинах двух связей P–Cl и вызванная этим неравноценность половин четырехчленного цикла, то в *цис*-изомерах наблюдается полная тождественность двух частей димера. Последнее означает наличие у молекулы симметрии C_{2v}, т. е. кроме плоскости симметрии, присущей свободному *транс*-изомеру, *цис*-изомер обладает еще одной плоскостью симметрии и поворотной осью симметрии второго порядка.

Соответственно распределяются и заряды q на атомах: в *транс*-изомере заряды на атомах хлора двух связей P–Cl различны (как и на атомах фосфора, хотя в значительно меньшей степени), тогда как в каждом из *цис*-изомеров эти заряды одинаковы (табл. 3). Естественно, как в *транс*-, так и в *цис*-изомерах неэквивалентными остаются связи C–Cl, находящиеся по разные стороны непланарного цикла P₂C₂, что проявляется в различиях их длин и зарядов на соответствующих атомах хлора (табл. 1 и 3). Как видно отношения зарядов на атомах хлора связей C–Cl и длин последних с разных сторон цикла в *цис*-изомерах **2** и **3** зависят от положения связей P–Cl по отношению к перегибу цикла P₂C₂: более короткие связи C–Cl находятся с той же стороны цикла, что и связи P–Cl. В *транс*-изомере различия в длинах связей C–Cl значительно меньше.

В целом в результате квантово-химического исследования конформаций свободной молекулы (ClP–CCl₂)₂ установлена наибольшая стабильность ее *транс*-изомера, которая по данным работы [2] проявляется и в твердом теле. Побочным продуктом димеризации фосфаалкена Cl₂C=PCl [4], по-видимому, является *цис*-изомер **2**.

Таблица 1

Связь	<i>d</i> , Å				
	PCA (1)	1	2	3	
P(1)–Cl(1)	2.032	2.048	2.042	2.027	
P(2)–Cl(2)	2.013	2.033	2.042	2.027	
P(1)–C(1), P(1)–C(2)	1.911, 1.890	1.915	1.912	1.906	
P(2)–C(1), P(2)–C(2)	1.876, 1.879	1.889	1.912	1.906	
C(1)–Cl(3), C(2)–Cl(5)	~1.761	1.767	1.755	1.779	
C(1)–Cl(4), C(2)–Cl(6)	~1.770	1.774	1.790	1.761	

Длины связей (*d*) *транс*- (**1**) и *цис*-изомеров (**2** и **3**) молекулы (CIP–CCl₂)₂, рассчитанные методом RHF/6-31G*, и *транс*-изомера, по данным PCA [2], и энергии молекул (–*E*)*

* Энергия молекулы, -Е, а. е.: 3514.03628 (1); 3514.029672 (2); 3514.027235 (3).

Угол	α, град.			
	PCA (1)	1	2	3
Cl(1)P(1)C(1)	100.1	102.2	102.7	106.8
Cl(1)P(1)C(2)	100.6	102.2	102.7	106.8
Cl(2)P(2)C(1)	105.3	107.4	102.7	106.9
Cl(2)P(2)C(2)	105.5	107.4	102.7	106.9
Cl(3)C(1)P(1)		117.2	117.8	111.1
Cl(3)C(1)P(2)		112.1	117.8	111.1
Cl(4)C(1)P(1)		107.0	106.7	116.9
Cl(4)C(1)P(2)		117.5	106.7	116.9
Cl(3)C(1)Cl(4)		109.2	109.2	109.4
Cl(5)C(2)P(1)		117.2	117.8	111.1
Cl(5)C(2)P(2)		112.1	117.8	111.1
Cl(6)C(2)P(1)		107.0	106.7	116.9
Cl(6)C(2)P(2)		117.5	106.7	116.9
Cl(5)C(2)Cl(6)		109.2	109.2	109.4
C(1)P(1)C(2)	81.3	82.0	81.9	82.7
C(1)P(2)C(2)	82.5	83.4	81.9	82.7
P(1)C(1)P(2)	93.4	93.3	97.5	90.3
P(1)C(2)P(2)	94.0	93.3	97.5	90.3
$\Gamma(1)C(2)\Gamma(2)$	74.0	,5.5	71.5	70.5

Валентные углы (α) *транс*- (1) и *цис*-изомеров (2 и 3) молекулы (CIP-CCl₂)₂, рассчитанные методом RHF/6-31G*, и *транс*-изомера 1, по данным PCA [2]

Таблица З

Заряды на атомах (q) *транс-* (1) и *цис-*изомеров (2 и 3) молекулы (ClP–CCl₂)₂, рассчитанные методом RHF/6-31G*

Атом	<i>q</i> , e			
	1	2	3	
P(1)	+0.760	+0.777	+0.742	
P(2)	+0.763	+0.777	+0.742	
Cl(1)	-0.226	-0.224	-0.199	
Cl(2)	-0.213	-0.224	-0.199	
C(1), C(2)	-0.658	-0.664	-0.653	
Cl(3), Cl(5)	+0.055	+0.075	+0.033	
Cl(4), Cl(6)	+0.061	+0.037	+0.077	

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Н. Чернега, М. Ю. Антипин, Ю. Т. Стручков, Е. А. Мельничук, Н. Г. Фещенко, *Журн. структур. химии*, **31**, № 1, 177 (1990).
- 2. А. Н. Чернега, Г. Н. Койдан, А. П. Марченко, *Журн. структур. химии*, **33**, № 5, 155 (1992).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, Y. P. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian 94, Revision E.3, Gaussian, Inc., Pittsburgh PA, 1995.
- 4. И. Ф. Луценко, З. С. Новикова, А. А. Прищенко, А. А. Борисенко, А. В. Громов, *Химия* и применение фосфорорганических соединений, Наука, Ленинград, 1987, 223.

Пермский государственный университет, Пермь 614600, Россия e-mail: info@psu.ru Поступило в редакцию 25.05.2001

^аИнститут технической химии УрО РАН, Пермь 614600 e-mail: cheminst@mpm.ru