А. Д. Дяченко, С. М. Десенко^а, В. Д. Дяченко, А. Н. Чернега⁶

НОВЫЙ ПУТЬ К ЧАСТИЧНО ГИДРИРОВАННЫМ ТИАЗОЛО[3,2-*a*]ПИРИДИНАМ

Взаимодействием функционально замещенных ди- и тетрагидропиридин-2-тиолатов аммония с 2-бромциклогексаноном синтезированы частично гидрированные тиазоло[3,2-*a*]-пиридины. Строение 3-гидрокси-2,3-тетраметилен-5-оксо-6,8-дициано-2,3,4,5,6,7-гекса-гидроспиротиазоло[3,2-*a*]пиридин-7,1'-(4'-метилциклогексана) доказано методом РСА.

Ключевые слова: 2-бромциклогексанон, пиридин-2-тиолаты аммония, тиазоло[3,2-*a*]пиридины, алкилирование, дегидратация, дегидрирование, РСА, циклизация.

Частично гидрированные тиазоло[3,2-*a*]пиридины – известный класс биологически активных соединений [1]. Их получают как конденсацией нециклических молекул 1,5-дикарбонильных соединений с α-амино-βмеркаптопропионовой кислотой [2, 3], так и достраиванием к пиридин-2тионовому фрагменту тиазольного цикла. Последнее направление представлено следующими основными методами: взаимодействие 1,4-дигидропиридин-2-тиолатов с 1,2-дибромэтаном [4], а также внутримолекулярные конденсации 2-карбамоилметилтио-1,4-дигидропиридинов [5], 2-аллилтиопиридинов [6] и 2-циклогекс-2-енилтиопиридинов [7].

Нами предложен метод синтеза 3-гидрокси-2,3-тетраметилен-5-оксо-(амино)-6,8-дициано-2,3,4,5,6,7-гексагидроспиротиазоло[3,2-*a*]пиридин-7,1'-(4'-R-циклогексанов) **1а,b** и **2** алкилированием соответствующих солей **3а,b** и **4** 2-бромциклогексаноном. Первой стадией реакции является алкилирование аниона солей **3а,b** и **4** по атому серы с образованием сульфида **5**, а затем, по-видимому, происходит стереоспецифическая нуклеофильная атака неподеленной парой электронов атома азота по карбонильному атому углерода с последующим образованием частично гидрированных тиазолопиридинов **1а,b** и **2**.

При кипячении соединения **1b** в этаноле в присутствии конц. H_2SO_4 происходит отщепление воды и образуется 2,3-тетраметилен-5-оксо-6,8дициано-4,5,6,7-тетрагидроспиротиазоло[3,2-*a*]пиридин-7-циклогексан (**6**) (метод A). Этот же продукт получен при использовании в качестве водоотнимающего средства уксусного ангидрида (метод Б).

На примере взаимодействия соединения 1b с α -бромацетофеноном в ДМФА в присутствии КОН показана возможность региоселективного алкилирования частично гидрированных тиазолопиридонов по атому $C_{(6)}$ с образованием соединения 7, по структуре соответствующего исходному гетероциклу.

При алкилировании 4-метил-6-оксо-3-циано-1,6-дигидропиридин-2-тиолата морфолиния (8) 2-бромциклогексаноном был получен также содержащий группу ОН 3-гидрокси-2,3-тетраметилен-5-оксо-7-метил-8-циано-2,3,4,5-тетрагидротиазоло[3,2-*a*]пиридин (9).

В то же время алкилирование в тех же условиях 6-метил-5-фенилкарбамоил-4-спироциклогексан-3-циано-1,4-дигидропиридин-2-тиола (10) 2-бромциклогексаноном привело к дегидрированному продукту первоначальной циклизации 11.

Следует отметить также, что арилзамещенные 1,4-дигидропиридинтиолаты 12 при алкилировании 2-бромциклогексаноном претерпевают в ходе реакции ароматизацию, протекающую, вероятно, под действием кислорода воздуха, и образуются 4-арилзамещенные 2-(2-оксоциклогексилтио)пиридины 13.

12, 13 a R = 2-тиенил; b R = 4-пиридил

2-Меркаптопиридины 14а-с при взаимодействии с 2-бромциклогексаноном в основной среде образуют только сульфиды 15а-с.

14, 15 а R = 4-HOC₆H₄; b R = 2-фурил; c R = 4-Me₂CHC₆H₄

Таблица 1

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %	Т пл °С*	Buxon %	
нение	формула	С	Н	Ν	1. mi., C	Выход, 70
1a	$C_{19}H_{23}N_3O_2S$	<u>63.89</u> 63.84	<u>6.30</u> 6.48	<u>11.93</u> 11.76	223–225	59
1b	$C_{18}H_{21}N_{3}O_{2}S$	<u>63.11</u> 62.95	<u>5.92</u> 6.16	<u>12.41</u> 12.23	174–176	64
2	$C_{18}H_{22}N_4OS$	<u>62.98</u> 63.13	<u>6.35</u> 6.48	<u>16.41</u> 16.36	197–199	73
6	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{OS}$	<u>66.39</u> 66.43	<u>5.72</u> 5.88	<u>13.04</u> 12.91	150-152	55
7	$C_{26}H_{27}N_{3}O_{3}S$	<u>67.50</u> 67.65	<u>5.81</u> 5.90	<u>8.96</u> 9.10	230–232	58
9	$C_{13}H_{14}N_2O_2S$	<u>59.65</u> 59.52	<u>5.17</u> 5.38	<u>10.59</u> 10.68	193–195	81
11	$C_{25}H_{27}N_3OS$	<u>72.02</u> 71.91	<u>6.47</u> 6.52	<u>9.89</u> 10.06	137–139	76
13a	$C_{24}H_{21}N_{3}O_{2}S_{2} \\$	<u>64.25</u> 64.40	<u>4.57</u> 4.73	<u>9.43</u> 9.39	207–209	53
13b	$C_{25}H_{22}N_4O_2S$	<u>67.71</u> 67.85	$\frac{4.86}{5.01}$	<u>12.73</u> 12.66	209–211	51
15a	$C_{19}H_{16}N_4O_2S\\$	<u>62.79</u> 62.62	$\frac{4.51}{4.43}$	<u>15.44</u> 15.38	230–231	53
15b	$C_{17}H_{14}N_4O_2S$	<u>60.47</u> 60.34	<u>3.98</u> 4.17	<u>16.69</u> 16.56	222–224	60
15c	$C_{22}H_{22}N_4OS$	<u>67.81</u> 67.66	<u>5.51</u> 5.68	<u>14.48</u> 14.35	267–268	57

Характеристики синтезированных соединений

* Кристаллизовали соединения **1а,b**, **2**, **6**, **11**, **13а,b** из ЕtOH, соединения **7**, **9**, **15а–с** – из AcOH.

Физико-химические и спектральные характеристики подтверждают строение синтезированных соединений. Особенностью спектров ЯМР ¹Н (ДМСО-d₆) частично гидрированных тиазолопиридинов **1a** и **1b** является наличие удвоенных равноинтенсивных сигналов протонов SCH–, HO– и $C_{(6)}$ Н, что объясняется, по-видимому, наличием в растворе равных количеств двух диастереомеров (табл. 2). Однако в спектре ЯМР ¹Н соединения **1a**, измеренном в CDCl₃, удвоения сигналов не наблюдается. Этот факт требует дополнительных исследований, которые будут проведены в ближайшее время.

Рис. 1. Общий вид молекулы (**1a**) с нумерацией атомов (из атомов водорода показан лишь атом H₍₁₎)

Рис. 2. Кристаллическая упаковка соединения (1а)

Таблица 2

Со- Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)		Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)	ИК спектр, v, см ⁻¹					
еди- не- ние	M^+	Другие фрагменты	ОН	NH (NH ₂)	C≡N	C=O	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)	
1a	_*	_*	3330	-	2197, 2252	1710	7.23 и 7.13 (1Н, два с, ОН); 4.82 и 4.48 (1Н, два с, С ₍₆₎ Н); 3.67–3.39 (1Н, м, SCH); 2.12–1.17 (17Н, м, СН и (СН ₂) ₈); 0.93 (3Н, д, <i>J</i> = 5.8, СН ₃)	
1b	343 (59)	310 (23), 300 (27), 246 (47), 216 (23), 128 (25), 97 (100), 69 (47)	3450	-	2195, 2250	1690	7.10 и 7.01 (1Н, два с, ОН); 4.49 и 4.36 (1Н, два с, С ₍₆₎ Н); 3.50 и 3.60 (1Н, два т, <i>J</i> = 4.4, SCH); 2.17–1.23 (18Н, м, (CH ₂) ₉)	
2	342 (62)	324 (10), 299 (41), 245 (83), 203 (25), 147 (10), 41 (100)	3420	3330	2160, 2188	-	7.92 (1H, с, OH); 6.13 (2H, уш. с, NH ₂); 3.89 (1H, м, SCH); 2.21–1.43 (18H, м, (CH ₂) ₉)	
6	325 (20)	300 (38), 246 (33), 179 (15), 97 (35)	-	-	2200, 2249	1700	4.82 (1H, c, C ₍₆₎ H); 2.73 (2H, м, CH ₂); 2.38 (2H, м, CH ₂); 1.85–1.15 (14H, м, (CH ₂) ₇)	
7	461 (32)	356 (43), 260 (58), 179 (29), 105 (100), 77 (91)	3430	-	2190, 2268	1710, 1740	8.05–8.01 (2H, м, C ₍₂₎ H и C ₍₆₎ H, C ₆ H ₅); 7.63–7.47 (3H, м, C ₆ H ₅); 7.03 (1H, c, OH); 3.98–3.59 (3H, м, SCH и CH ₂ CO); 2.07–1.23 (18H, м, (CH ₂) ₉)	
9	262 (66)	244 (29), 219 (55), 97 (54), 96 (52), 55 (54), 41 (100), 39 (45)	3380	_	2205	1680	7.10 (1H, c, OH); 6.02 (1H, c, CH); 3.88 (1H, т, <i>J</i> = 4.4, SCH); 2.33 (2H, м, CH ₂); 2.23 (3H, c, CH ₃); 2.14–1.79 (2H, м, CH ₂); 1.59–1.47 (4H, м, (CH ₂) ₂)	

Спектры ЯМР ¹Н, ИК и масс-спектры соединений 1а,b, 2, 6, 7, 9, 11, 13а,b, 15а-с

11	417 (38)	374 (100), 297 (21), 259 (10), 198 (5), 77 (15)	_	3360	2170	1670	10.03 (1H, уш. с, NH); 7.61 (2H, д, C ₍₂₎ H и C ₍₆₎ H, C ₆ H ₅); 7.37 (2H, д. д, $J = 7.7$ и $J = 8.4$, C ₍₃₎ H и C ₍₅₎ H, C ₆ H ₅); 7.02 (1H, д. д, C ₍₄₎ H, C ₆ H ₅); 2.65 (2H, м, CH ₂); 2.12 (3H, с, CH ₃); 1.29–1.92 (16H, м, (CH ₂) ₈)
1 3 a	_*	_*	-	3320	2215	1680, 1710	10.36 (1H, уш. с, NH); 7.69–7.06 (8H, м, 3H, C ₄ H ₃ S +5H, C ₆ H ₅); 4.86 (1H, м, SCH); 2.59 (3H, с, CH ₃); 2.13–1.81 (8H, м, (CH ₂) ₄)
13b	442 (100)	413 (42), 350 (61), 315 (84), 254 (69), 238 (46), 194 (21), 93 (20)	_	3330	2220	1670, 1710	10.28 (1H, уш. с, NH); 9.23 (2H, д, $J = 6.0$, $C_{(3)}$ H и $C_{(5)}$ H, C_5 H ₄ N); 7.43 (2H, д, $C_{(2)}$ H и $C_{(6)}$ H, C_3 H ₄ N); 7.35 (2H, д, C_6 H ₅); 7.21 (2H, д. д, $J = 7.6$ и $J = 8.2$, $C_{(3)}$ H и $C_{(5)}$ H, C_6 H ₅); 7.03 (1H, д. д, $C_{(4)}$ H, C_6 H ₅); 4.87 (1H, м, SCH); 2.62 (3H, с, CH ₃); 2.15–1.82 (8H, м, (CH ₂) ₄)
15a	_*	_*	3450	3330, 3250	2215	1710	9.82 (1H, уш. с, OH); 7.68 (2H, уш. с, NH ₂); 7.30 (2H, д, <i>J</i> = 10.8, C ₍₃₎ H и C ₍₅₎ H, C ₆ H ₄ OH); 6.91 (2H, д, C ₍₂₎ H и C ₍₆₎ H, C ₆ H ₄ OH); 4.81 (1H, д. д, <i>J</i> = 5.1 и <i>J</i> = 8.5, SCH); 2.63 (2H, м, CH ₂); 2.12–1.76 (6H, м, (CH ₂) ₃)
15b	_*	_*	-	3330	2205	1690	7.96 (1H, π , $J = 2.2$, $C_{(5)}$ H, C_4 H ₃ O); 7.72 (2H, ym. c, NH ₂); 7.39 (1H, π . π , $C_{(4)}$ H, C_4 H ₃ O); 6.75 (1H, π , $J = 3.0$, $C_{(3)}$ H, C_4 H ₃ O); 4.79 (1H, π . π , $J = 4.8$ H $J = 8.3$, SCH); 2.65 (2H, M, CH ₂); 2.23–1.78 (6H, M, (CH ₂) ₃)
15c	390 (65)	347 (100), 319 (36), 279 (31), 263 (81)	_	3314, 3330, 3472	2196	1711	7.78 (2H, уш. с, NH ₂); 7.43 (4H, с, Ar); 5.01 (1H, д. д, <i>J</i> = 5.9 и <i>J</i> = 8.9, SCH); 3.02 (1H, м, CH); 2.67 (2H, м, CH ₂); 2.23–1.92 (6H, м, (CH ₂) ₃); 1.31 (6H, д, <i>J</i> = 8.1, (CH ₃) ₂)

* Масс-спектр не снимали.

Таблица 4

	7 8	X7	
Связь	<i>d</i> , A	У ГОЛ	ω, град.
$S_{(1)}-C_{(1)}$	1.745(3)	$C_{(1)} - S_{(1)} - C_{(15)}$	91.90(14
$S_{(1)} - C_{(15)}$	1.820(3)	$C_{(1)} - N_{(1)} - C_{(5)}$	121.4(3)
O ₍₁₎ -C ₍₁₄₎	1.391(4)	$C_{(1)} - N_{(1)} - C_{(14)}$	115.4(2)
O(2)-C(5)	1.202(4)	$C_{(5)}-N_{(1)}-C_{(14)}$	122.8(2)
$N_{(1)}-C_{(1)}$	1.381(4)	$S_{(1)} - C_{(1)} - N_{(1)}$	110.6(2)
N(1)-C(5)	1.379(4)	$N_{(1)}-C_{(1)}-C_{(2)}$	123.8(3)
$N_{(1)}-C_{(14)}$	1.508(4)	$C_{(1)} - C_{(2)} - C_{(3)}$	121.3(3)
C(1)-C(2)	1.344(4)	$C_{(2)} - C_{(3)} - C_{(4)}$	103.9(2)
C ₍₂₎ -C ₍₃₎	1.529(4)	$C_{(3)}$ - $C_{(4)}$ - $C_{(5)}$	113.8(3)
C(3)-C(4)	1.555(4)	$N_{(1)}-C_{(5)}-C_{(4)}$	112.6(3)
C(4)-C(5)	1.529(5)	$N_{(1)}$ - $C_{(14)}$ - $C_{(15)}$	102.8(2)
$C_{(14)} - C_{(15)}$	1.533(4)	$S_{(1)}-C_{(15)}-C_{(14)}$	105.1(2)

Основные длины связей (d) и валентные углы (w) в молекуле соединения 1a

Таблица 5

Координаты атомов и эквивалентные изотропные тепловые параметры $U_{\rm экв}~$ в структуре 1а

Атом	x	у	Z	$U_{ m _{3KB}}$, Å 2
S ₍₁₎	0.09236(8)	0.04485(9)	0.25959(8)	0.0484
O ₍₁₎	0.5206(3)	0.0417(3)	0.3392(3)	0.0534
O(2)	0.5890(2)	0.2610(3)	0.5921(3)	0.0675
N(1)	0.3502(3)	0.1552(3)	0.4490(2)	0.0415
N(2)	-0.1603(3)	0.1474(4)	0.4496(3)	0.0711
N ₍₃₎	0.5899(4)	0.3832(5)	0.9229(4)	0.1011
C ₍₁₎	0.1946(3)	0.1422(3)	0.4303(3)	0.0382
C(2)	0.1332(3)	0.2037(3)	0.5297(3)	0.0394
C ₍₃₎	0.2344(3)	0.3008(3)	0.6719(3)	0.0384
C ₍₄₎	0.3806(3)	0.2406(4)	0.6938(3)	0.0439
C(5)	0.4546(3)	0.2230(3)	0.5769(3)	0.0460
C ₍₆₎	-0.0302(4)	0.1747(3)	0.4902(3)	0.0471
C ₍₇₎	0.4997(4)	0.4997(4)	0.8224(4)	0.0662
C ₍₈₎	0.2717(4)	0.4507(4)	0.6757(4)	0.0510
C ₍₉₎	0.1339(5)	0.5174(4)	0.6734(4)	0.0662
C(10)	0.0667(5)	0.5172(4)	0.7924(4)	0.0694
C ₍₁₁₎	0.0306(4)	0.3705(4)	0.7941(4)	0.0597
C ₍₁₂₎	0.1640(4)	0.2973(4)	0.7894(3)	0.0475
C ₍₁₃₎	-0.0742(6)	0.5790(6)	0.7840(6)	0.0997
C ₍₁₄₎	0.3973(3)	0.1053(3)	0.3190(3)	0.0421
C ₍₁₅₎	0.2609(3)	-0.0139(3)	0.2231(3)	0.0454
C(16)	0.2544(4)	-0.0506(4)	0.0716(4)	0.0616
C ₍₁₇₎	0.2807(5)	0.0741(5)	0.0285(4)	0.0716
C ₍₁₈₎	0.4300(5)	0.1756(5)	0.1196(4)	0.0732
C ₍₁₉₎	0.4263(4)	0.2251(4)	0.2690(4)	0.0554
H ₍₁₎	0.591(6)	0.118(6)	0.394(6)	0.11(2)

Молекулярная и кристаллическая структуры 3-гидрокси-2,3-тетраметилен-5-оксо-6,8-дициано-2,3,4,5,6,7-гексагидроспиротиазоло[3,2-а]пиридин-7,1'-(4'-метилциклогексана) (1а) доказана рентгеноструктурным методом (рис. 1 и табл. 4). Как шестичленный гетероцикл N₍₁₎C₍₁₋₅₎, так и пятичленный гетероцикл S₍₁₎C₍₁₎N₍₁₎C₍₁₄₎C₍₁₅₎ существенно неплоские – отклонения атомов от среднеквадратичных плоскостей достигают, соответственно, 0.33 и 0.24 Å. При этом двугранный угол между плоскостями 5- и 6-членного циклов составляет 13.4°. Пятичленный гетероцикл имеет конформацию конверта: атомы S₍₁₎, C₍₁₎, N₍₁₎ и C₍₁₄₎ копланарны в пределах 0.05 Å, а атом C₍₁₅₎ выходит из этой плоскости на 0.60 Å; двугранный угол между плоскостями S₍₁₎C₍₁₎N₍₁₎C₍₁₄₎ и S₍₁₎C₍₁₄₎C₍₁₅₎ составляет 36.6°. Выполненный для 6-членного гетероцикла N₍₁₎C₍₁₋₅₎ расчет модифицированных параметров Кремера–Попла [8] (S = 0.69, $\theta = 41.71^{\circ}$, $\psi = 13.61^{\circ}$) показал, что данный цикл имеет конформацию, промежуточную между полукреслом и полуванной. Атом N(1) имеет плоскотригональную конфигурацию связей (сумма валентных углов при этом атоме составляет 359.6(7)°). Заметное укорочение связей N₍₁₎-C₍₁₎ 1.381(4) и N₍₁₎-C₍₅₎ 1.379(4) Å по сравнению с интервалом значений 1.43-1.45 Å, характерным для "чисто одинарной" связи $N(sp^2)$ – $C(sp^2)$ [9, 10], указывает на достаточно эффективное $n(N_{(1)})-\pi^*(C_{(1)}=C_{(2)})$ и $n(N_{(1)})-\pi^*(O_{(2)}=C_{(5)})$ сопряжение. Отметим, что конформация молекулы 1а весьма благоприятна для такого взаимодействия: торсионные углы C₍₅₎-N₍₁₎-C₍₁₎-C₍₂₎ и C₍₁₄₎-N₍₁₎-C₍₁₎-C₍₂₎ составляют 6.2 и -167.2°, торсионные углы С₍₁₎-N₍₁₎-С₍₅₎-О₍₂₎ и С₍₁₄₎-N₍₁₎-С₍₅₎-О₍₂₎ равны -164.3 и 8.6°. Особенностью структуры соединения 1a является внутримолекулярная водородная связь O₍₁₎-H₍₁₎···O₍₂₎ (O₍₁₎···O₍₂₎ 2.809(4), $H_{(1)} \cdots O_{(2)} 2.18(6) \text{ Å}, O_{(1)}H_{(1)}O_{(2)} 127(3)).$

Наличие в кристалле соединения **1a** укороченных межмолекулярных контактов $O_{(1)} \cdots N_{(2)}$ 2.818(4) ($H_{(1)} \cdots N_{(2)}$ 2.18(6) Å, $O_{(1)}H_{(1)}N_{(2)}$ 129(3)°) указывает на возможность образования водородных связей $O_{(1)}-H_{(1)}\cdots N_{(2)}$ (рис. 2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на спектрофотометре ИКС-29 в вазелиновом масле. Спектры ЯМР ¹Н регистрировали на приборах Bruker WP-100 SY (100 МГц) (соединение **1a**), Gemini-200 (199 МГц) (соединения **6**, 7), Bruker WM-250 (250 МГц) (соединение **15c**), Bruker AM-300 (300 МГц) (соединения **1b**, **2**, **9**, **11**, **13a**,**b**, **15a**,**b**) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры снимали на спектрометре Kratos MS-890 (70 эВ). Температуры плавления определяли на блоке Кофлера. Контроль за ходом реакции и чистотой полученных соединений осуществляли методом ТСХ (Silufol UV-254, ацетон-гексан, 3:5, проявитель – пары иода).

Рентгеноструктурное исследование монокристалла соединения 1а с линейными размерами 0.16 × 0.22 × 0.34 мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (Си K_a -излучение, отношение скоростей сканирования $\omega/2\theta = 1.2$, $\theta_{max} = 60^\circ$, сегмент сферы $0 \le h \le 11$, $-12 \le k \le 12$, $-12 \le l \le 12$). Всего было собрано 2896 отражений, из которых 2700 являются симметрически независимыми (*R*-фактор усреднения 0.020). Кристаллы соединения 1а триклинные, a = 9.199(2), b = 10.286(2), c = 10.651(2) Å, $\alpha = 107.62(2)$, $\beta = 103.37(2)$, $\gamma = 97.83(2)^\circ$, V = 896.6 Å³, M = 357.47, Z = 2, $d_{BBH} = 1.32$ г/см³, $\mu = 17.009$ см⁻¹, пространственная группа *P*1(N2). Учет поглощения в кристалле был выполнен по методу азимутального сканирования [11]. Структура расшифрована прямым методом и уточнена MHK в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [12]. В уточнении использовано 1977 отражений с $I > 3\sigma(I)$ (230 уточняемых параметров, число отражений на параметр 8.6). Все атомы водорода выявлены из разностного синтеза электронной плотности и включены в расчет с фиксированными позиционными и тепловыми параметрами, лишь атом H₍₁₎ был уточнен изотропно. При уточнении использовалась весовая схема Чебышева [13] с параметрами 1.56, -1.21, 0.80 и -0.74. Окончательные значения факторов расходимости R = 0.055 и $R_W = 0.054$, GOF = 1.088. Остаточная электронная плотность из разностного ряда Фурье 0.24 и -0.36 e/Å³. Координаты атомов приведены в табл. 4.

3-Гидрокси-2,3-тетраметилен-5-оксо-6,8-дициано-2,3,4,5,6,7-гексагидроспиротиазоло[3,2-*a*]пиридин-7,1'-(4'-метилциклогексан) (1а), 3-гидрокси-2,3-тетраметилен-5-оксо-6,8-дициано-2,3,4,5,6,7-гексагидроспиротиазоло[3,2-*a*]пиридин-7-циклогексан (1b), 5-амино-3-гидрокси-2,3-тетраметилен-6,8-дициано-2,3,4,7-

тетрагидроспиротиазоло[3,2-а]пиридин-7-циклогексан 3-гидрокси-2,3-(2). тетраметилен-5-оксо-7-метил-8-циано-2,3,4,5-тетрагидротиазоло[3,2-а]пиридин (9), 2,3-тетраметилен-5-метил-6-фенилкарба-моил-8-циано-4,7-дигидроспиротиазоло[3,2а]пиридин-7-циклогексан (11), 6-метил-2-(2'-оксоциклогексилтио)-4-(2'-тиенил)-5фенилкарбамоил-3-цианопиридин (13а), 6-метил-2-(2'-оксоциклогексилтио)-4-(4'пиридил)-5-фенилкарбамоил-3-цианопиридин (13b), 6-амино-4-(4'-гидроксифенил)-2-(2'оксоциклогексилтио)-3,5-дицианопиридин (15а), 6-амино-2-(2'-оксоциклогексилтио)-4-(2'-фурил)-3,5-дицианопиридин (15b) и 6-амино-2-(2'-оксоциклогексилтио)-4-(4'изопропилфенил)-3,5-дицианопиридин (15с) (общая методика). Смесь 10 ммоль соответствующего тиона или его соли и 1.77 г (10 ммоль) 2-бромциклогексанона в 10 мл ДМФА при 20 °С перемешивают 4 ч и оставляют на 1 сут. Выпавший осадок отфильтровывают, промывают 40% водным раствором этанола и гексаном и получают соединения 1a,b, 2, 9, 11, 13a,b, 15a-с (табл. 1, 2). Спектр ЯМР ¹Н (CDCl₃) соединения 1a, δ, м. д. (J, Гц): 4.58 (1H, с, OH); 3.82 (1H, т, J=4.1, С(2)H); 3.66 (1H, с, С(6)H); 2.27–1.22 (17H, м, (CH₂)₄ и (CH₂)₂CH(CH₂)₂); 0.96 (3H, д, J = 5.7, CH₃).

2,3-Тетраметилен-5-оксо-6,8-дициано-4,5,6,7-тетрагидроспиротиазоло[3,2-а]пиридин-7-циклогексан (6). А. Смесь 1.7 г (5 ммоль) соединения **1b** и 0.49 мл (5 ммоль) конц. H₂SO₄ в 15 мл этанола кипятят 2 ч. Через 1 сут образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Получают соединение **6** (табл. 1–3).

Б. Кипятят 1.7 г (5 ммоль) соединения **1b** в течение 1 ч в 5 мл Ac₂O. Образовавшийся через 1 сут осадок отфильтровывают, промывают этанолом и гексаном. Получают соединение **6** с выходом 71%, идентичное по данным TCX и спектра ЯМР ¹H, полученному по методу A.

6-Бензоилметилен-5-оксо-6,8-дициано-2,3-тетраметилен-2,3,4,5,6,7-гексагидроспиротиазоло[3,2-*а***]пиридин-7-циклогексан (7). К суспензии 1.7 г (5 ммоль) соединения 1b в 10 мл ДМФА при перемешивании прибавляют 2.8 мл (5 ммоль) 10% водного раствора КОН, а через 5 мин 1 г (5 ммоль) α-бромацетофенона и перемешивают реакционную смесь 4 ч. Через 1 сут образовавшийся осадок отфильтровывают, промывают этанолом, гексаном. Получают соединение 7 (табл. 1–3).**

Методы синтеза и характеристики исходных соединений **3a,b**, **4**, **8**, **10**, **12a,b**, **14а**–с приведены в работе [14].

СПИСОК ЛИТЕРАТУРЫ

- 1. V. P. Litvinov, L. A. Rodinovskaya, Y. A. Sharanin, A. M. Shestopalov, A. Senning, *Sulfur Reports*, **13**, 1 (1992).
- 2. A. Roth, K. Goerlitzer, Arch. Pharm., 326, 642 (1993).
- 3. K. Goerlitzer, A. Roth, Pharmazie, 50, 729 (1995).
- 4. А. Д. Дяченко, С. М. Десенко, В. Д. Дяченко, В. П. Литвинов, ХГС, 554 (2000).
- 5. А. Краузе, Г. Дубурс, ХГС, 1134 (1996).

- А. М. Шестопалов, Л. А. Родиновская, Ю. А. Шаранин, В. П. Литвинов, ЖОрХ, 58, 840 (1988).
- 7. В. П. Литвинов, А. М. Шестопалов, Ю. А. Шаранин, В. Ю. Мортиков, В. Н. Нестеров, ДАН, **299**, 135 (1988).
- 8. Н. С. Зефиров, В. А. Палюлин, ДАН, **252**, 111 (1980).
- 9. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- 10. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, P. S1 (1987).
- 11. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 12. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS Issue 10, Chemical Crystallography Laboratory*, Univ. of Oxford, 1996.
- 13. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).
- 14. В. Д. Дяченко, Дис. докт. хим. наук, Москва, 1998.

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: dvd_lug@online.lg.ua Поступило в редакцию 13.06.2001 После доработки 14.02.2002

^аХарьковский национальный университет им. В. Н. Каразина, Харьков 61070, Украина

⁶Институт органической химии НАН Украины, Киев 02094 e-mail: iochkiev@ukrpack.net