Ю. В. Шкляев, Ю. В. Нифонтов

ПРОСТОЙ СИНТЕЗ 6-ЗАМЕЩЕННЫХ 4а-МЕТИЛ-1,2,3,4,4а,10b-ГЕКСАГИДРОФЕНАНТРИДИНОВ И -9,10-БЕНЗОФЕНАНТРИДИНОВ

Разработан путь синтеза 6-замещенных 4а-метил-1,2,3,4,4а,10b-гексагидрофенантридинов и -9,10-бензофенантридинов. Показано влияние природы заместителя в положении 10 кольца на химический сдвиг протона в положении 10b.

Ключевые слова: 9,10-бензофенантридины, гексагидрофенантридины, диастереомеры, реакция Риттера.

Ароматические фенантридины изучены достаточно хорошо [1–4]. В то же время работы по химии и биологической активности гидрированных фенантридинов единичны, что, вероятно, связано с отсутствием удобных методов их синтеза [3].

В литературе описан синтез 6-R-4а-метил-1,2,3,4,4а,10b-гексагидрофенантридинов (R = Me, CH₂COOEt) из 1-метил-2-фенилциклогексанола [5]. Несмотря на внешнюю простоту, он требует использования труднодоступного 2-фенилциклогексанона и, кроме того, в реакции образуется смесь всех возможных диастереомеров.

R = Me, SMe, CH₂COOEt, CH₂CONH₂; 1 $R^1 = Me$, 2 $R^1 = SMe$, 3 $R^2 = OEt$, 4 $R^2 = NH_2$

Нами обнаружено, что идентичные продукты образуются также по реакции Риттера из 1-фенил-2-метилциклогексанола, полученного из фенил-магнийбромида и 2-метилциклогексанона. Как было показано в работе [6],

при наличии алкильных заместителей у второго атома углерода 1-арил-2,2-диалкилэтанолов наблюдается перенос реакционного центра, и образующийся при этом третичный карбокатион, не стабилизированный соседним арильным радикалом, является единственным, который способен взаимодействовать с нитрильной группой. 1-Фенил-2-метилциклогексанол реагирует с нитрилами подобным образом с образованием фенантридинов 1–4.

Аналогично протекает реакция Риттера и для 1-(1'-нафтил)-2-метилциклогексанола, полученного из 1-нафтилмагнийбромида и 2-метилциклогексанона, что приводит к получению ранее не известных 6-замещенных 4а-метил-1,2,3,4,4а,10b-гексагидро-9,10-бензофенантридинов **5–8**.

5 $R^1 = Me$, **6** $R^1 = SMe$, **7** $R^2 = OEt$, **8** $R^2 = NH_2$

Характерной особенностью соединений 1–8 является наличие сигнала протона в положении 10b фенантридинового кольца в спектре ЯМР ¹Н. Для производных 6-R-1,2,3,4,4а,10b-гексагидрофенантридина 1–4 данный сигнал находится при 2.70–2.73 м. д. Для соединений 5–8 сигнал сдвигается в существенно более слабое поле (для 5 – 3.52, для 6 – 3.38, для 7 – 3.50 и для 8 – 3.39 м. д.), что, на наш взгляд, объясняется значительным дезэкранированием данного протона за счет π -электронов нафталинового кольца. Кроме того, данный сигнал представляет собой дублет дублетов, что, в сочетании с синглетом метильной группы в положении 4a кольца, говорит о наличии только одной пары энантиомеров. Дополнительным подтверждением служит наличие только одного сигнала винильного протона и гетероциклического NH для соединений 3, 4, 7, 8.

С целью выяснения роли заместителя в положении 10 фенантридинового кольца было изучено поведение в данной реакции 1-(2',5'-диметилфенил)-2-метилциклогексанола, полученного из 2-броммагний-*пара*-ксилола и 2-метилциклогексанона. Оказалось, что и в этом случае наблюдается получение только пары энантиомеров производных 4а,7,10-триметил-1,2,3,4,4а,10b-гексагидрофенантридинов **9–12**, однако сигнал протона в положении 10b кольца смещается в более сильные поля 2.52–2.59 м. д. по сравнению с соединениями **1–4**, что объясняется экранированием данного протона метильной группой в положении 10.

Таблица 1

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)							
		3Н, с, 4а-Ме	8H, сл. м, (CH ₂) ₄	1Н, д. д, 10b-Н*	Н аром.	Другие протоны			
1-HOC ₆ H ₄ COOH**	-	0.73	1.35-2.00	2.70	6.80-7.78 (8Н, м)	2.47 (3H, c, 6-CH ₃)			
2	1620, 1580, 1500, 1320	0.80	1.12-1.96	2.72	7.10–7.56 (4Н, м)	2.54 (3H, c, 6-SCH ₃)			
3	3280, 1735, 1605, 1580	0.83	1.16-2.01	2.73	7.02–7.49 (4Н, м)	1.20 (3Н, т, CH ₃ -сл. эфир.); 4.10 (2Н, кв, OCH ₂); 5.19 (1Н, с, CH); 8.80 (1Н, с, NH)			
4	3440, 3360, 3190, 1650, 1610	0.82	1.21-2.00	2.72	7.13–7.71 (4Н, м)	5.21 (1H, с, CH); 6.32 (2H, уш. с, NH ₂); 8.60 (1H, с, NH)			
5	1620, 1580, 1500	0.75	1.00-2.00	3.52	7.50–7.93 (5Н, м); 8.20 (1Н, д, 7-Н)	2.40 (3H, c, 6-CH ₃)			
6	1622, 1585, 1510	0.80	0.99–2.10	3.38	7.60–7.95 (5Н); 8.25 (1Н, д, 7-Н)	2.47 (3H, c, SCH ₃)			
7	3250, 1725, 1610	0.97	1.43-1.92	3.50	7.60–7.99 (5Н, м); 8.23 (1Н, д, 7-Н)	1.22 (3Н, т, CH ₃ -сл. эфир.); 4.10 (2Н, кв, OCH ₂); 5.23 (1Н, с, CH); 8.90 (1Н, с, NH)			
8	3310, 3245, 1645, 1610	0.95	1.20-1.80	3.39	7.50–7.80 (5Н, м); 8.15 (1Н, д, 7-Н)	5.23 (1H, c, CH); 6.25 (2H, уш. c, NH ₂); 9.40 (1H, c, NH)			
9-HOC ₆ H ₄ COOH**	-	0.73	1.22–1.99	2.52	6.93-7.66 (6Н, м)	2.43 (3H, c, 6-CH ₃); 2.31 (3H, c, 7-CH ₃); 2.28 (3H, c, 10-CH ₃)			
10	1620, 1585, 1510	0.58	1.30-2.05	2.55	6.88 (1Н, д); 6.93 (1Н, д)	2.27 (3H, c, 10-CH ₃); 2.34 (3H, c, 7-CH ₃); 2.60 (3H, c, 6-SCH ₃)			
11	3280, 1735, 1605, 1580	0.86	1.30–1.90	2.53	7.05(1Н, д); 7.12 (1Н, д)	1.22 (3H, т, <i>J</i> = 7.4, CH ₃ -сл. эфир.); 2.27 (3H, с, 10-CH ₃); 2.48 (3H, с, 7-CH ₃); 4.08 (2H, кв, <i>J</i> = 7.3, OCH ₂); 4.73 (1H, с, CH); 9.03 (1H, с, NH)			
12	3440, 3355, 3190, 1650, 1605	0.81	1.20-1.80	2.59	7.00 (1Н, д); 7.04 (1Н, д)	2.26 (3H, c, 10-CH ₃); 2.47 (3H, c, 7-CH ₃); 4.79 (1H, c, CH); 6.20 (2H, ym. c, NH ₂); 9.60 (1H, c, NH)			

Спектральные характеристики соединений 1–12

* J = 8.3 Гц.
** Соединения 1 и 9 идентифицированы в виде салицилатов.

9 $R^1 = Me$, **10** $R^1 = SMe$, **11** $R^2 = OEt$, **12** $R^2 = NH_2$

Таблица 2

Соеди-	Брутто-	E	<u>Найдено, %</u> Зычислено, %	Т. пл., ⁰С	Выход,	
нение	формула	С	Н	Ν		/0
1-HOC ₆ H ₄ COOH*	C ₂₂ H ₂₅ NO ₃	<u>75.33</u> 75.21	<u>7.03</u> 7.12	$\frac{4.11}{3.99}$	123–124 (этилацетат)	39
2	$C_{15}H_{19}NS$	<u>73.60</u> 73.47	<u>7.85</u> 7.76	<u>5.84</u> 5.71	85–86 (гексан)	50
3	$C_{18}H_{23}NO_2$	<u>75.50</u> 75.79	<u>8.12</u> 8.07	<u>5.00</u> 4.91	64–65 (гексан)	61
4	$C_{16}H_{20}N_2O$	<u>75.31</u> 75.00	<u>8.01</u> 7.81	<u>10.80</u> 10.94	129–130 (бензол)	66
5	$C_{19}H_{21}N$	<u>86.83</u> 86.69	<u>8.05</u> 7.98	<u>5.12</u> 5.33	117–118 (гексан)	49
6	$C_{19}H_{21}NS$	<u>77.00</u> 77.29	<u>7.20</u> 7.12	<u>4.84</u> 4.75	69–70 (гексан)	62
7	$C_{22}H_{25}NO_2$	<u>78.61</u> 78.81	<u>7.55</u> 7.46	<u>4.31</u> 4.18	115–116 (гексан)	81
8	$C_{20}H_{22}N_2O$	$\frac{78.21}{78.43}$	$\frac{7.30}{7.19}$	<u>9.31</u> 9.15	210–211 (этанол)	83
9-HOC ₆ H₄COOH*	C ₂₄ H ₂₉ NO ₃	<u>75.85</u> 75.99	<u>7.72</u> 7.65	<u>3.79</u> 3.69	127–128 (этанол)	39
10	$C_{17}H_{23}NS$	<u>74.83</u> 74.67	<u>8.37</u> 8.48	<u>5.20</u> 5.13	102–103 (гексан)	53
11	$C_{20}H_{27}NO_2$	<u>76.80</u> 76.68	<u>8.54</u> 8.63	<u>4.60</u> 4.47	89–90 (гексан)	59
12	$C_{18}H_{24}N_2O$	<u>75.91</u> 76.06	<u>8.53</u> 8.51	<u>10.00</u> 9.86	119–120 (этилацетат)	62

Физико-химические свойства соединений 1–12

* Соединения 1 и 9 идентифицированы в виде салицилатов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры снимали на спектрофотометре UR-20 в вазелиновом масле. Спектры ЯМР ¹Н регистрировали на спектрофотометре Bruker AM 300 (300 МГц) в ДМСО-d₆, внутренний стандарт ТМС.

Ход реакции и чистоту полученных соединений контролировали методом TCX на пластинках Silufol UV-254 (хлороформ-ацетон, 9:1), проявитель 0.5% раствор хлоранила в толуоле.

2-Метилциклогексанон фирмы Lancaster использовали без предварительной очистки. Синтез исходных карбинолов осуществляли по стандартной методике из 2-метилциклогексанона и соответствующего арилмагнийбромида в диэтиловом эфире. После перегонки в вакууме полученную смесь карбинола и соответствующего стирола (~3:1, по данным ЯМР ¹Н и жидкостной хроматографии) использовали в реакции без дальнейшей очистки с учетом молярного содержания компонентов.

6-Замещенные 4а-метил-1,2,3,4,4а,10b-гексагидрофенантридины и этиловые эфиры (4а-метил-1,2,3,4,4а,5,6,10b-октагидрофенантридилиден-6)уксусной кислоты (1-3, 5–7, 9–11) (общая методика). Смесь 0.1 моль карбинола и 0.1 моль нитрила прибавляют по каплям при охлаждении (0–10 °C) и перемешивании к 50 мл конц. H₂SO₄. Перемешивают 30 мин, разбавляют 300 мл воды, экстрагируют 50 мл толуола, органический слой отбрасывают, остаток подщелачивают водным аммиаком до рН 8–9. Выделившийся осадок (для соединений 2, **3**, **5–7**, **10**, **11**) отделяют, промывают водой, сушат на воздухе и перекристаллизовывают из соответствующего растворителя.

Соединения 1 и 9 представляют собой масло и идентифицированы в виде салицилатов: к раствору 0.01 моль замещенного 4а-метил-1,2,3,4,4а,10b-гексагидрофенантридина 1 или 9 в 10 мл сухого диэтилового эфира прибавляют одной порцией раствор 1.38 г (0.01 моль) салициловой кислоты в 20 мл сухого эфира. Смесь перемешивают 1 мин и оставляют на 30 мин. Выделившийся осадок отделяют, промывают на фильтре 20 мл эфира и перекристаллизовывают.

Амиды (4а-метил-1,2,3,4,4а,5,6,10b-октагидрофенантридилиден-6)уксусной кислоты (4, 8, 12) (общая методика). Растворяют при перемешивании 1.68 г (0.02 моль) цианацетамида в 15 мл холодной конц. H₂SO₄ и быстро прибавляют одной порцией 4.28 г (0.02 моль) соответствующего карбинола. Перемешивают 15 мин, разбавляют 100 мл воды, экстрагируют 20 мл бензола. Органический слой отбрасывают, водный подщелачивают до рН 8–9. Выделившийся осадок отфильтровывают, промывают водой, сушат на воздухе и перекристаллизовывают.

Работа выполнена при финансовой поддержке РФФИ (грант № 01-03-96479).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гетероциклические соединения*, под ред. Р. Эльдерфилда, Изд-во иностр. лит., Москва, 1955, **4**, 430.
- 2. А. Г. Михайловский, М. И. Вахрин, *ХГС*, 1361 (1991).
- 3. Д. Б. Рубинов, А. Г. Михайловский, Ф. А. Лахвич, ХГС, 1617 (1992).
- А. Г. Михайловский, Т. Г. Таранова, Б. Я. Сыропятов, М. И. Вахрин, Хим.-фарм. журн., 26, № 11–12, 53 (1992).
- 5. А. Г. Михайловский, В. С. Шкляев, Г. А. Вейхман, М. И. Вахрин, ХГС, 1374 (1993).
- 6. В. А. Глушков, О. Г. Аушева, Ю. В. Шкляев, *ХГС*, 693 (2000).

Институт технической химии УрО РАН, Пермь 614990 e-mail: cheminst@mpm.ru Поступило в редакцию 23.10.2001