Т. Г. Николаева, Ю. М. Щекотихин^а

СТЕРЕОНАПРАВЛЕННЫЙ КАТАЛИТИЧЕСКИЙ СИНТЕЗ ПЕРГИДРОАКРИДИНОВ И ИХ ИЗОЛОГОВ НА ОСНОВЕ ДЕКАГИДРОАКРИДИН-1,8-ДИОНОВ

Изучено каталитическое восстановление декагидроакридин-1,8-дионов под давлением водорода в присутствии Ni Peneя и водородом в момент образования при выщелачивании никель-алюминиевого сплава. Разработаны условия стереонаправленного синтеза 8-гидрокси-*цис*-додекагидроакридин-1-онов и пергидроакридинов *цис-син-цис*- и *цис-анти-цис*-конфигурации. Структура гидроакридинов установлена методами спектроскопии ЯМР ¹H, ¹³C и ИК спектрами, хромато-масс-спектрометрии.

Ключевые слова: 8-гидроксидодекагидроакридин-1-оны, декагидроакридин-1,8-дионы, пергидроакридины, каталитическое гидрирование, стереохимия.

Наличие нескольких реакционных центров в декагидроакридин-1,8-дионах открывает широкие синтетические возможности. Ранее нами были исследованы химические превращения декагидроакридин-1,8-дионов в реакциях фенилгидразинирования, оксимирования и показано, что, в зависимости от строения субстрата и условий, эти процессы могут протекать либо избирательно по карбонильной группе, либо с участием последней и других реакционных центров [1, 2].

Настоящее сообщение посвящено изучению химического поведения 1,8-диоксодекагидроакридинов в реакциях каталитического гидрирования. Известно, что декагидроакридин-1,8-дионы устойчивы к действию комплексных гидридов металлов [3], в присутствии натриевой соли тиогликолевой кислоты происходит лишь восстановление кетогрупп до гидроксильных [4]. Гидрогенизации в условиях гетерогенного катализа декагидроакридин-1,8-дионы ранее не подвергались.

Каталитическое гидрирование декагидроакридин-1,8-дионов осуществлялось в различных условиях – под давлением водорода в присутствии Ni Peнeя и водородом в момент выделения (*in situ*), образующимся при выщелачивании никель-алюминиевого сплава. Последний метод ранее успешно применялся для восстановления пиридинов, хинолинов и других родственных соединений [5, 6].

В качестве субстратов были выбраны 1,8-диоксодекагидроакридины, различающиеся степенью замещения и природой заместителей в положениях 3, 6, 9 и 10, что позволяло проследить влияние структуры исходных соединений на направление изучаемых процессов.

Восстановление акридинов **1** водородом *in situ* (добавление никельалюминиевого сплава в щелочной водно-метанольный раствор последних) протекает при температуре 60 °C в течение 10–12 ч. В этих условиях направление превращений определяется структурой субстрата.

Me Me MeOH,
$$60-65$$
 °C Me $\frac{8a}{4}$ $\frac{OH}{4a}$ $\frac{8a}{9}$ $\frac{OH}{8}$ $\frac{8a}{8}$ $\frac{OH}{8}$ $\frac{10}{8}$ $\frac{10}{8}$ $\frac{5}{9}$ $\frac{6}{10a}$ Me

1а-е
$$R = H$$
, а $R^1 = H$, b $R^1 = Me$, c $R^1 = Ph$, d $R^1 = PhCH_2$, e $R^1 = PhNH$, f $R = 2-C_4H_3O$ (2-фурил), $R^1 = Me$, g $R = R^1 = Me$, h $R = Ph$, $R^1 = H$, i $R = Ph$, $R^1 = PhCH_2$, j $R = 4-MeOC_6H_4$, $R^1 = Ph$, k $R = 4-MeOC_6H_4$, $R^1 = H$; 2a-c $R = H$, a $R^1 = H$, b $R^1 = Me$, c $R^1 = Ph$, d $R = 2-C_4H_3O$ (2-фурил), $R^1 = Me$

Незамещенные в положении 9 декагидроакридиндионы **1a**—**e** претерпевают селективное восстановление одного из оксовинильных фрагментов, превращаясь в 8-гидрокси-*цис*-додекагидроакридин-1-оны **2a**—**c** с выходом 74—89%, причем гидрирование N-бензил- и N-фениламинодекагидроакридиндионов (**1d**,**e**) сопровождается гидрогенолизом связей N—CH₂ и N—NH и приводит к образованию соединения **2a** (выход 72—79%).

Восстановление in situ 9- и 9,10-замещенных декагидроакридинов-1,8дионов 1f-i протекает неоднозначно и зависит от строения замещающей группы. Так, 9-(2-фурил)-10-метилдекагидроакридин-1,8-дион (**1f**) превращается, подобно соединениям 1а-с, в соответствующий цис-додекагидроакридинон 2d с выходом 78%. При введении в реакцию 9-арил- или 9-алкил-1,8-диоксоакридинов 12-і ни гетероцикл, ни оксогруппы не восстанавливаются даже при значительном увеличении времени реакции (24-30 ч). В случае 9-арил-10-бензилдекагидроакридин-1,8-дионов 1і, і наблюдается только гидрогенолиз связи N-СН₂ и образуются 9-арил-10H-1,8-диоксодекагидроакридины 1h,k. Отмеченная для 9-арил- и 9-алкилдекагидроакридиндионов 1g-j, в отличие от 9-фурилзамещенного, устойчивость к каталитическому гидрированию обусловлена, очевидно, пространственным расположением арильных или алкильных заместителей в положении 9 относительно 1,4-дигидропиридинового цикла, в результате чего либо затрудняется адсорбция субстрата на поверхности катализатора, либо создаются стерические препятствия для подхода восстановителя.

Более глубоким каталитическим превращениям 1,8-диоксодекагидроакридины подвергаются при проведении гидрогенизации на Ni Ренея в жестких условиях — под давлением водорода 10 МПа и температуре 100–120 °С (реакция проводилась в автоклавах периодического действия в спиртовом растворе). При этом, в зависимости от продолжительности контакта и температуры процесса, удается осуществить направленный переход как к *цис*-додекагидроакридинам, так и к замещенным пергидроакридинам *иис, иис-*строения.

Если гидрогенизацию 1,8-диоксодекагидроакридинов 1a–c,l проводить при $100\,^{\circ}$ С (при более низких температурах реакция не протекает) в течение $8\,$ ч, то образуются, независимо от строения субстрата, 9- R^1 -10- R^2 -8-гидрокси- μ - μ -додекагидроакридиноны 2a–c,e (выход 57–72%). При повышении температуры до $120\,^{\circ}$ С или увеличении продолжительности контакта с катализатором до $24\,$ ч при $100\,^{\circ}$ С наряду с гидрогенизацией гетероцикла происходит восстановление карбонильных групп до метиле-

новых, а в случае соединения **1a** и фенильного заместителя – до циклогексильного. В результате продуктами реакции являются пергидроакридины *цис,цис*-типа **3a–c**: *цис-син-цис*-изомер **3a** был выделен при гидрировании на Ni Peneя при 120 °C в течение 8 ч, *цис-анти-цис*-изомеры **3b,c** – при 100 °C в течение 24 ч. При этом, как показали специальные опыты по изомеризации соединения **3a** в изомер **3b**, первоначально возникают пергидроакридины *цис-син-цис*-конфигурации, которые далее превращаются в термодинамически более стабильные *цис-анти-цис*-формы.

1, 2 а-с
$$R = Me$$
, $R^1 = H$, а $R^2 = H$, b $R^2 = Me$, c $R^2 = Ph$; 11, 2e $R = R^2 = H$, $R^1 = Ph$; 3b $R^2 = C_6H_{11}$ (циклогексил), c $R^2 = Me$

Таким образом, варьируя условия каталитической гидрогенизации 1,8-диоксодекагидроакридинов, можно осуществлять стереонаправленный синтез пергидроакридинов заданного строения: *цис-син-цис*- (Ni Penes, 100 °C, 24 ч) или *цис-анти-цис*- (Ni Penes, 120 °C, 8 ч). Установлено, что

Таблица 1 Каталитическое гидрирование соединений 1a-f,l, 2b,c на никелевых катализаторах

Исходное соединение	Катализатор	Среда	Температура, °С	Давление, МПа	Время реакции, ч	Продукт реакции	Выход, %
1a	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10–12	2a	89
	Ni Ренея	EtOH	100	10	8	2a	70
1b	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10–12	2b	74
	Ni Ренея	EtOH	100	10	8	2b	67
	Ni Ренея	EtOH	100	10	24	3c	67
1c	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10–12	2c	75
	Ni Ренея	EtOH	100	10	8	2c	57
	Ni Ренея	EtOH	120	10	8	3a	56
	Ni Ренея	EtOH	100	10	24	3b	63
1d	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10–12	2a	72
1e	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10–12	2a	79
1f	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10–12	2d	78
11	Ni Ренея	EtOH	100	10	8	2e	72
2b	Ni Ренея	EtOH	100	10	24	3c	74
2c	Ni Ренея	EtOH	100	10	24	3b	78

во всех случаях промежуточными соединениями являются *цис*-додекагидроакридиноны. Так, при гидрировании соединений **2b**,**c** на Ni Ренея при 100 °C в течение 24 ч были выделены *цис-анти-цис*-пергидроакридины **3b**,**c** с выходом 74–78%.

На основании полученных данных можно заключить, что восстановление 1,8-диоксодекагидроакридинов в присутствии никелевых катализаторов протекает стереонаправленно — с характерным для каталитических процессов *цис*-присоединением водорода, причем исчерпывающему насыщению кратных связей способствуют более жесткие условия гидрогенизации (табл. 1).

Строение соединений **2a**—**e** и **3a**—**c** было установлено на основании данных спектроскопии ЯМР ¹H, ¹³C, ИК спектра и хромато-масс-спектрометрии. Для ИК спектров додекагидроакридинонов **2a**—**e** характерно наличие интенсивной полосы поглощения в области 3300—3500 см⁻¹, подтверждающей присутствие гидроксильных групп, и двух полос поглощения при 1600 и 1640 см⁻¹, соответствующих валентным колебаниям сопряженной системы связей С=С-С=О; в спектрах соединений **3a**—**c** поглощение в этих областях отсутствует. Енаминная группа NH в спектрах соединений **2a**, е характеризуется поглощением в области 3250—3300 см⁻¹, фенильные заместители (соединения **2c**, е) – поглощением при 3080—3100 см⁻¹

Хромато-масс-спектры гидроакридинов **2а-е**, **3а-с** свидетельствуют об их индивидуальности и, следовательно, существовании в виде одного из возможных изомеров. На это указывает присутствие на хроматограмме единственного пика, причем время удерживания соединений **2а-с**, полученных различными путями, совпадает (25.79 мин – для **2a**, 27.51 мин – для **2b** и 28.99 мин – для **2c**). Пики молекулярных ионов соединений **2a-e**, **3a-c** (табл. 2) соответствуют их молекулярным массам.

В масс-спектрах соединений **2а**–**c**, не содержащих заместителя в положении 9, присутствует интенсивный пик иона A_1 , возникающий вследствие потери молекулы C_4H_8 по ретро-реакции Дильса—Альдера, характерной для производных 5,5-диметилциклогекс-2-енона [7–9]. Образование катионов A_2 и A_3 является результатом отщепления радикалов C_5H_{11} от ионов M^+ и A_1 (табл. 2).

Таблица 2 Масс-спектры соединений 2a-e, 3a-c

Соеди-	m/z (I _{отн} , %)
2a	277 [M] ⁺ (15), 262 (9), 221 (23), 190 (100), 150 (11.5), 87 (38)
2b	291 [M] ⁺ (21), 276 (8.5), 235 (29), 204 (100), 164 (14), 87 (34)
2c	353 [M] ⁺ (16.5), 338 (7.5), 297 (34), 266 (100), 226 (9), 87 (31)
2d	357 [M] ⁺ (9), 329 (13), 301 (39), 270 (100), 230 (19), 87 (35)
2e	297 [M] ⁺ (12.5), 295 (5.5), 238 (100), 217 (62), 77 (21)
3a	332 (7), 331 [M] ⁺ (28), 260 (100), 71 (25)
3b	332 (5), 331 [M] ⁺ (19), 260 (100), 71 (28)
3c	264 (7), 263 [M] ⁺ (34), 192 (100), 71 (19)

Таблица 3

Спектры ЯМР ¹Н 8-гидроксидодекагидроакридин-1-онов 2а-е

Соеди-				Химические сдвиги, δ, м	и. д. (КССВ,	<i>J</i> , Гц)			
нение	C ₍₂₎ H, 2H	C ₍₄₎ H, 2H	C ₍₅₎ H, 2H	C ₍₇₎ H, 2H	С ₍₈₎ Н, 1Н, м	С _(8а) Н, 1Н, м	С ₍₉₎ Н, м	С _(10а) Н, 1Н, м	Другие сигналы
2a	2.3 (c)	2.1 (c)	1.3 (π , π , $J_1 = 5.0$, $J_2 = 12.0$, H _a); 1.7 (π , π , $J_1 = 5.0$, $J_2 = 12.0$, H _e)	1.8 (π , π , $J_1 = 5.0$, $J_2 = 12.0$, H_a); 2.2 (π , π , $J_1 = 5.0$, $J_2 = 12.0$, H_e)	4.0	1.9	2.0 (2H)	3.4	0.8–1.0 (12H, c, 4CH ₃); 4.5 (1H, ym. c, OH); 6.7 (1H, c, NH)
2b	2.3 (c)	2.1 (c)	1.3 (π . π , $J_1 = 5.5$, $J_2 = 11.5$, H _a); 1.7 (π . π , $J_1 = 5.5$, $J_2 = 11.5$, H _e)	1.8 (π . π , $J_1 = 5.0$, $J_2 = 12.0$, H_a); 2.4 (π . π , $J_1 = 5.0$, $J_2 = 12.0$, H_e)	4.0	1.9	2.0 (2H)	3.4	0.8–1.0 (12H, c, 4 CH ₃); 4.6 (1H, yui. c, OH); 3.0 (3H, c, NCH ₃)
2c	2.4 (c)	2.1 (c)	1.3 (π . π , $J_1 = 5.0$, $J_2 = 11.0$, H _a); 1.7 (π . π , $J_1 = 5.0$, $J_2 = 11.0$, H _e)	1.8 (π . π , J_1 = 5.0, J_2 = 12.0, H_a); 2.3 (π . π , J_1 = 5.0, J_2 = 12.0, H_e)	4.2	1.9	2.0 (2H)	3.6	0.7–0.9 (12H, c, 4 CH ₃); 4.8 (1H, c, OH); 7.1 (3H, M, C ₆ H ₅); 7.3 (2H, M, C ₆ H ₅)
2d	2.4 (c)	2.2 (c)	1.3 (π . π , $J_1 = 6.0$, $J_2 = 11.5$, H _a); 1.7 (π . π , $J_1 = 6.0$, $J_2 = 11.5$, H _e)	1.8 (д. д. $J_1 = 5.5$, $J_2 = 12.0$, $J_2 $	4.3	1.9	3.0 (1H)	3.5	0.9–1.0 (12H, c, 4 CH ₃); 3.1 (3H, c, NCH ₃); 4.7 (1H, yμι. c, OH); 6.1 (1H, π, <i>J</i> = 3.6, Fur); 6.3 (1H, τ, Fur); 7.2 (1H, π, <i>J</i> = 3.6, Fur)
2e	2.3 (м)	2.0 (M)	1.1 (M)	1.3 (м)	4.4	1.9	2.9 (1H)	3.5	7.3 (1H, c, NH); 7.2 (5H, м, C ₆ H ₅); 4.9 (1H, c, OH); 0.9–1.4 (4H, c, C ₍₃₎ H и C ₍₆₎ H)

Таблица 4 Спектры ЯМР ¹³С 8-гидрокси-*цис*-додекагидроакридин-1-онов 2а—е

	Химические сдвиги, δ м. д.													_			
Со- еди-														I	₹		
не-	C ₍₁₎	C ₍₂₎	C ₍₃₎	C ₍₄₎	C _(4a)	C ₍₅₎	C ₍₆₎	C ₍₇₎	C ₍₈₎	C _(8a)	C ₍₉₎	C _(9a)	C _(10a)	Ме (при С ₍₃₎)	Ме (при С ₍₆₎)	R ¹	R ²
2a	190.79	50.05	32.29	45.75	159.92	41.82	31.17	45.75	68.11	41.33	21.89	102.17	47.16	28.92 _e ; 28.21 _a	34.40 _e ; 28.30 _a	_	_
2b	191.40	49.21	31.49	40.89	156.84	36.49	30.33	39.57	66.31	37.31	14.01	101.69	57.79	29.17 _e ; 25.76 _a	32.97 _e ; 27.77 _a	-	37.10
2c	192.88	49.57	32.04	45.31	156.59	42.12	31.08	44.78	68.46	41.25	21.92	105.41	54.50	28.53 _e ; 7.75 _a	34.19 _e ; 27.91 _a	_	142.18; 129.74*; 129.39*; 127.78
2d	191.91	49.48	31.70	41.63	157.02	36.55	29.84	41.05	68.66	40.67	25.51	103.38	58.82	29.62 _e ; 27.61 _a	32.60 _e ; 28.11 _a	158.01; 139.15; 111.11; 107.38	37.90
2 e	190.41	36.67	21.48	28.51	159.30	29.17	20.49	29.17	69.95	42.58	34.37	106.56	51.95	-	-	145.48*; 126.72*; 125.20*	_

^{*} Сигнал соответствует двум атомам углерода.

Для спектра 9-фенил-8-гидроксидодекагидроакридинона (2e) характерно наличие интенсивных пиков $A_3 - m/z$ 238 и $A_4 - m/z$ 217 (последний возникает в результате отщепления фенильного радикала от иона $[M]^+$). Причем отсутствие геминальных метильных заместителей в алицикле соединения 2e, по-видимому, исключает распад по ретро-реакции Дильса—Альдера.

Масс-спектры пергидроакридинов **3а**–**c** в общем малоинформативны и содержат помимо пика $[M]^+$, интенсивный пик $[M^+-C_5H_{11}^{\bullet}]-m/z$ 260 (для соединений **3a,b**) и 192 (для соединения **3c**).

Спектры ЯМР ¹Н додекагидроакридинонов **2а**—**e** (табл. 3) и пергидроакридинов **3а**—**c** полностью отвечают их структуре. Для соединений **2а**—**e** наиболее характерны сигналы протонов гидроксигруппы, которые проявляются в виде уширенного синглета в области 4.5—4.9 м. д., а хими-

ческий сдвиг атома водорода в положении 8 – при 4.0–4.4 м. д., что свидетельствует об экваториальном расположении гидроксильных функций [10]. Присутствие фенильных заместителей в соединениях 2c,e подтверждается наличием мультиплетов при 7.1–7.3 м. д., химический сдвиг протонов группы N–Me в соединениях 2b,d находится в области 3.0–3.1 м. д. Сигналы ангулярных протонов при $C_{(8a)}$ и $C_{(10a)}$ (мультиплеты) находятся в области 1.8–1.9 и 3.4–3.6 м. д., соответственно, что позволяет сделать вывод об однотипном пространственном строении додекагидроакридинонов 2a–e независимо от степени и характера замещения последних. Расположение сигнала протона у атома $C_{(10a)}$ при 3.4–3.6 м. д. в соединениях 2a–e, по данным работы [11], соответствует μc -сочленению карбо- и гетероциклов, а в случае N-фенилзамещенного соединения 2c это приводит к расщеплению сигнала протонов фенильного заместителя при атоме азота.

Спектры ЯМР ¹Н пергидроакридинов **3а–с** свидетельствуют об отсутствии в структуре этих соединений ароматических заместителей или гидроксильных функций. Они содержат сигналы метильных, метиленовых групп и метиновых протонов в области 0.9–3.7 м. д., из которых наиболее характерными являются химические сдвиги геминальных метильных заместителей (0.9–1.1 м. д.) и группы N–Ме в соединении **3c** (2.2 м. д.).

При анализе спектров ЯМР ¹³С додекагидроакридинонов **2а**–е и пергидроакридинов **3а**–с для отнесения сигналов использовались спектры внерезонансной развязки и литературные данные спектров ЯМР ¹³С изомерных пергидроакридинов [12–14] и 3,3-диметилгидроксантенов [15].

Использование спектров off-резонанса для соединений 2a-е позволило выделить третичные атомы $C_{(8)}$, $C_{(8a)}$ и $C_{(10a)}$. Наиболее слабопольными являются сигналы атома $C_{(8)}$, расположенные в области 66.31–69.95 м. д. (табл. 4). Резонансные сигналы узловых атомов $C_{(8a)}$ и $C_{(10a)}$, положение которых находится в прямой зависимости от характера сочленения колец, проявляются при 37.31-42.58 и 47.16-58.82 м. д. соответственно. Химические сдвиги сигналов $C_{(8a)}$ и $C_{(10a)}$ в соединениях **2b**-е хорошо коррелируют с данными для соответствующих 10- и 9,10-замещенных пергидроакридинов *цис*-типа [12, 13]. Смещение сигнала атома $C_{(10a)}$ в соединении 2а в сильное поле (47.16 м. д.), по-видимому, можно объяснить уменьшением дезэкранирующего влияния атома азота из-за отсутствия при нем электронодонорных заместителей. Наличие в спектрах соединений 2а-е сильнопольного сигнала в области 14.01-21.92 м. д. свидетельствует, что указанные додекагидроакридиноны являются иисизомерами [12-15]. Появление этого сигнала объясняется гош-взаимодействием гетероатома с атомом углерода, находящимся в у-положении. В 3,3,6,6-тетраметил-8-гидроксидодекагидроакридин-1-онах этот эффект возможен только при участии атома С(9). В связи с этим сигналы в области 14.01-21.29 м. д. были приписаны указанному атому (табл. 4). Наибольшее сильнопольное смещение испытывает атом $C_{(9)}$ в додекагидроакридине 2b, что связано с усилением экранирующего влияния гетероатома благодаря введению к нему метильной группы. Аналогичный эффект можно наблюдать уже на примере пиперидина и N-метилпиперидина [16].

В случае додекагидроакридинона **2e**, не содержащего в положениях 3 и 6 *гем*-диметильных заместителей, наибольший χ -*гош*-эффект испытывают атомы $C_{(3)}$ и $C_{(6)}$, резонансные сигналы которых проявляются в области 21.48 и 20.49 м. д., соответственно, а химический сдвиг атома $C_{(9)}$, содержащего фенильный радикал, в этом случае находится при 34.37 м. д.

В спектрах соединений $2\mathbf{a}$ — \mathbf{e} (табл. 4) сигналы атомов $C_{(1)}$ — $C_{(4)}$, $C_{(4a)}$, $C_{(6)}$ и $C_{(9a)}$ и геминальных метильных групп хорошо коррелируют со спектрами соответствующих *цис*-додекагидроксантенонов. Отнесение других резонансных сигналов было уточнено при сравнении со спектрами 3,3-диметилпергидроксантенов и изомерных пергидроакридинов.

Таким образом, додекагидроакридин-1-оны $2\mathbf{a}$ — \mathbf{e} в условиях каталитического синтеза получаются в виде *цис*-изомеров. Критерием *цис*-сочленения циклогексанового и гидропиридинового колец, как и в случае пергидроакридинов [12–14] и гидроксантенов [15], является наличие сильнопольного сигнала, который, в зависимости от наличия или отсутствия замещающих групп в положениях 3 и 6, может принадлежать либо атому $C_{(9)}$ (соединения $2\mathbf{a}$ — \mathbf{d}), либо атомам $C_{(3)}$ и $C_{(6)}$ (соединение $2\mathbf{e}$).

В спектрах изомеров $3\mathbf{a}$ —с (табл. 5) пергидроакридиновому скелету принадлежат 7 резонансных сигналов, один из которых является сильнопольным и расположен в области 25.34—25.87 м. д., что, как уже отмечалось выше, является критерием *цис*-сочленения гетеро- и карбоциклов — *цис-син-цис* или *цис-анти-цис* [12–14]. В первом случае уменьшение числа сигналов связано с симметричностью строения молекулы, а во втором — с легкостью инверсии возможных конформеров, легко переходящих друг в друга уже при комнатной температуре, что приводит к уменьшению числа сигналов в спектрах ЯМР 13 С и их уширению, кроме сигналов атомов $C_{(9)}$ и атомов углерода заместителей [14]. Подобная картина наблюдается в спектрах соединений $\mathbf{3b}$, с, в отличие от спектра изомера $\mathbf{3a}$, где резонансные сигналы атомов углерода не уширены. Различный характер спектров пергидроакридинов $\mathbf{3a}$ —с послужил основанием для отнесения соединения $\mathbf{3a}$ к изомерам с *цис-син-цис*-конфигурацией, а соединений $\mathbf{3b}$, с — к изомерам с *цис-син-цис*-конфигурацией, а соединений $\mathbf{3b}$, с — к изомерам с *цис-син-цис*-конфигурацией, а соединений $\mathbf{3b}$, с — к изомерам с *цис-син-цис*-конфигурацией, а соединений

Особенностью *цис-син-цис*-пергидроакридина является возможность существования в виде двух различных по энергии конформеров A (аксиальные связи C–C находятся в β -положении к гетероатому) и B (аксиальные связи C–C находятся в α -положении к атому азота). Как известно [12–14], конформационной меткой в этом случае служат положение и интенсивность атома $C_{(9)}$: для конформера A этот сигнал проявляется в более слабом поле (~35 м. д. и выше), тогда как для конформера B наблюдается смещение химического сдвига атома $C_{(9)}$ на ~11 м. д. в сильное поле. В спектре соединения a резонансный сигнал атома a резонансный сигнал атома a резонансный сигнал атома a резонансными a резонансными a хорошая корреляция между резонансными сигналами ангулярных атомов a хорошая корреляция в соединениях a с и соответствующих a N-a пергидроакридинах [14] является дополнительным аргументом в пользу выводов о пространственном строении изомеров a

Спектры ЯМР ¹³С пергидроакридинов 3а-с

Соеди-	Химические сдвиги, δ , м. д.										
нение	C ₍₁₎ , C ₍₈₎	C ₍₂₎ , C ₍₇₎	$C_{(3)}, C_{(6)}$	C ₍₄₎ , C ₍₅₎	C _(4a) , C _(10a)	$C_{(8a)}, C_{(9a)}$	C ₍₉₎	Me _a	Me_e	R	
3a	39.45	31.37	31.94	34.33	56.89	37.67	23.22	25.36	33.79	50.67 ($C_{(\alpha)}$); 28.23 ($C_{(\beta)}$ и $C_{(\beta')}$); 26.10 ($C_{(\delta)}$); 25.73 ($C_{(\chi)}$ и $C_{(\chi')}$)	
3b	33.80	31.06	31.36	32.64	58.62	37.62	25.34	30.85	31.46	56.89 ($C_{(\alpha)}$); 27.13 ($C_{(\beta)}$ и $C_{(\beta')}$); 26.83 ($C_{(\delta)}$); 26.42 ($C_{(\chi)}$ и $C_{(\chi')}$)	
3c	34.29	30.67	31.69	33.30	57.07	37.53	25.87	29.82	32.51	40.44	

Таблица 6

Соеди-	Брутто- формула		Т. пл., °С			
нение	формула	С	Н	N		
2a	$C_{17}H_{27}NO_2$	73.33 73.65	9.97 9.75	<u>5.17</u> 5.05	220–222	
2 b	$C_{18}H_{29}NO_2$	74.57 74.23	10.00 9.97	<u>5.00</u> 4.81	229–231	
2c	$C_{23}H_{31}NO_2$	77.83 78.19	9.02 8.78	<u>4.11</u> 3.97	237–238	
2d	$C_{22}H_{31}NO_3$	74.17 73.95	8.89 8.68	3.92 3.92	230–232	
2e	$C_{19}H_{23}NO_2$	77.00 76.77	8.13 7.74	4.83 4.71	281–283	
3a	$C_{23}H_{41}N$	83.86 83.38	12.30 12.39	4.81 4.23	86–87	
3b	$C_{23}H_{41}N$	83.54 83.38	12.55 12.39	4.29 4.23	71–73	
3c	$C_{18}H_{33}N$	82.07 82.13	12.68 12.55	5.49 5.32	64–65	

Характеристики синтезированных соединений

Отнесения других атомов углерода (табл. 5) были уточнены при сравнении со спектрами изомерных пергидроакридинов и пергидроксантенов [12–15]. Введение двух метильных групп в положения $C_{(3)}$ и $C_{(6)}$ удовлетворительно описывается α -, β - и χ -инкрементами для диметилзамещенных циклогексанов [17] и 3,3-диметилпергидроксантенов [15].

Таким образом, нами впервые изучено каталитическое гидрирование декагидроакридин-1,8-дионов в различных условиях и найдены условия их восстановления до *цис*-додекагидроакридин-1-онов и пергидроакри-динов *цис-син-цис-* и *цис-анти-цис*-типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Specord M-80 (суспензия в вазелиновом масле и гексахлорбутадиене), спектры ЯМР 1 Н и 13 С — на спектрометре Bruker AC-300 (300 и 75 МГц соответственно) в CDCl $_3$ и CD $_3$ OD, внутренний стандарт ТМС. Хромато-масс-спектры получены на газовом хроматографе Hewlett-Packard HP-5972A с масс-селективным детектором HP-5890, на капиллярной колонке (30 м × 0.25 мм) с 5% метилфенилсиликона, газ-носитель — азот; энергия ионизирующих электронов 70 эВ. Контроль за ходом реакции и индивидуальностью выделяемых соединений осуществлялся методом ТСХ на пластинках Silufol UV-254, элюент гексан–ацетон–хлороформ, 3:1:1, проявитель пары иода.

Декагидроакридин-1,8-дионы **1a**-l синтезированы по известным методикам [1, 2].

8-Гидрокси-3,3,6,6,10-пентаметил-9-(2-фурил)-1,2,3,4,5,6,7,8,8а,9,10,10а-*иис-***додека-гидроакридин-1-он (2d)**. В трехгорлую колбу объемом 0.5 л, снабженную механической мешалкой, обратным холодильником и термометром, помещают 5.295 г (15 ммоль) акридиндиона **1f**, 100 мл метанола и 100 мл 1 М раствора КОН. При перемешивании смесь доводят до кипения (температура 60 °C) и каждые 20–30 мин осторожно добавляют мелко-измельченный сплав Ni–Al (40% Ni) порциями по 0.5 г. По окончании реакции (10–12 ч) горячую реакционную смесь фильтруют, осадок – $Al(OH)_3$ +Ni промывают горячим метанолом (4×20 мл). Фильтрат упаривают, остаток кипятят в 50 мл ацетона в течение 20 мин, затем, не охлаждая, отфильтровывают дополнительную порцию $Al(OH)_3$. Из фильтрата при

упаривании наполовину и охлаждении выпадает кристаллический осадок соединения 2d, его отделяют, перекристаллизовывают из метанола.

Соединения 2a-с получают аналогично на основе акридиндионов 1a-е (см. табл. 1 и 6).

Восстановление акридиндионов **1i,j** сопровождается образованием NH-декагидроакридиндионов **1h,l**; соединение **1g** в указанных условиях не восстанавливается.

8-Гидрокси-9-фенил-1,2,3,4,5,6,7,8,8а,9,10,10а- μ *uc*-додекагидроакридин-1-он (2e). В стальной вращающийся автоклав емкостью 150 мл помещают 2.97 г (10 ммоль) акридиндиона **11**, 50 мл этанола и ~0.5 г Ni Penes. Начальное давление водорода 10 МПа, температура 100 °C. Реакция заканчивается через 8 ч по поглощении рассчитанного количества водорода (20 ммоль). После удаления катализатора и растворителя соединение **2e** кристаллизуется.

Таким образом синтезируют соединения 2а-с из акридиндионов 1а-с.

Пергидроакридины 3а-с (табл. 1, 6) получают гидрогенизацией декагидроакридинов **1b,c** и *цис-*додекагидроакридинонов **2b,c** по описанной выше методике.

3,3,6,6-Тетраметил-10-циклогексил-*цис-анти-цис*-пергидроакридин (3b). Изомериза-ция 3,3,6,6-тетраметил-10-циклогексил-*цис-син-цис*-пергидроакридина 3a. В стальной вра-щающийся автоклав емкостью 150 мл помещают 3.31 г (10 ммоль) соединения 3a, 50 мл этанола и ~0.5 г Ni Ренея. Начальное давление водорода 10 МПа, температура 100 °C. Через 24 ч соединение 3a полностью изомеризуется в 3b (контроль по ТСХ). Катализат фильтруют, после удаления растворителя соединение 3b кристаллизуется.

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. Г. Николаева, Ю. М. Щекотихин, А. С. Пономарев, А. П. Кривенько, *XГС*, 475 (2000).
- Ю. М. Щекотихин, Ю. А. Гетманенко, Т. Г. Николаева, А. П. Кривенько, XГС, 1344 (2001).
- 3. Э. И. Станкевич, Г. Я. Ванаг, *Изв. АН ЛатвССР. Сер. хим.*, 223 (1961).
- 4. H. Antaki, J. Chem. Soc., 2263 (1965).
- 5. И. Н. Грачева, А. И. Точилкин, *XГС*, 77 (1988).
- 6. L. K. Keefer, G. Lunn, Chem. Rev., 89, 459 (1989).
- 7. J. Baldas, Q. N. Porter, Tetrahedron Lett., 1351 (1968).
- 8. C. Dagher, R. Hanna, P. B. Terentiev, Y. G. Boundel, N. Kost, B. I. Maksimov, J. Heterocycl. Chem., 19, 645 (1982).
- 9. P. Cupka, J. Bella, A. Martvon, Coll. Czech. Chem. Commun., 52, 742 (1987).
- 10. C. A. Grob, H. R. Kiefer, Helv. Chim. Acta, 48, 799 (1965).
- 11. В. И. Алексеев, В. А. Каминский, М. Н. Тиличенко, ХГС, 235 (1975).
- 12. А. П. Кривенько, Т. Г. Николаева, Л. М. Юдович, Н. Т. Комягин, А. И. Яновский, Ю. Т. Стручков, В. Г. Харченко, *ХГС*, 1645 (1987).
- 13. Т. Г. Николаева, Л. М. Юдович, А. А. Пастухова, А. П. Кривенько, ХГС, 200 (1992).
- 14. Т. Г. Николаева, П. В. Решетов, А. П. Кривенько, *XГС*, 867 (1997).
- В. Г. Харченко, Л. М. Юдович, Н. С. Смирнова, Г. И. Рыбина, Л. И. Маркова, ЖОрХ, 23, 576 (1987).
- 16. Г. Леви, Г. Нельсон, *Руководство по ядерному магнитному резонансу углерода-13*, Мир, Москва, 1975.
- 17. D. K. Dalling, D. M. Grant, J. Am. Chem. Soc., 94, 5318 (1972).

Саратовский государственный университет им. Н. Г. Чернышевского, Саратов 410026, Россия Поступило в редацию 31.10.2001

^a3AO "Нита-Фарм", Саратов 410005, Россия

e-mail: nita-farm@overta.ru