Т. Г. Николаева, Ю. М. Щекотихин^а

СТЕРЕОНАПРАВЛЕННЫЙ КАТАЛИТИЧЕСКИЙ СИНТЕЗ ПЕРГИДРОАКРИДИНОВ И ИХ ИЗОЛОГОВ НА ОСНОВЕ ДЕКАГИДРОАКРИДИН-1,8-ДИОНОВ

Изучено каталитическое восстановление декагидроакридин-1,8-дионов под давлением водорода в присутствии Ni Peнeя и водородом в момент образования при выщелачивании никель-алюминиевого сплава. Разработаны условия стереонаправленного синтеза 8-гидрокси-*цис*-додекагидроакридин-1-онов и пергидроакридинов *цис-син-цис-* и *цис-анти-цис*-конфигурации. Структура гидроакридинов установлена методами спектроскопии ЯМР ¹H, ¹³С и ИК спектрами, хромато-масс-спектрометрии.

Ключевые слова: 8-гидроксидодекагидроакридин-1-оны, декагидроакридин-1,8-дионы, пергидроакридины, каталитическое гидрирование, стереохимия.

Наличие нескольких реакционных центров в декагидроакридин-1,8дионах открывает широкие синтетические возможности. Ранее нами были исследованы химические превращения декагидроакридин-1,8-дионов в реакциях фенилгидразинирования, оксимирования и показано, что, в зависимости от строения субстрата и условий, эти процессы могут протекать либо избирательно по карбонильной группе, либо с участием последней и других реакционных центров [1, 2].

Настоящее сообщение посвящено изучению химического поведения 1,8-диоксодекагидроакридинов в реакциях каталитического гидрирования. Известно, что декагидроакридин-1,8-дионы устойчивы к действию комплексных гидридов металлов [3], в присутствии натриевой соли тиогликолевой кислоты происходит лишь восстановление кетогрупп до гидроксильных [4]. Гидрогенизации в условиях гетерогенного катализа декагидроакридин-1,8-дионы ранее не подвергались.

Каталитическое гидрирование декагидроакридин-1,8-дионов осуществлялось в различных условиях – под давлением водорода в присутствии Ni Peнея и водородом в момент выделения (*in situ*), образующимся при выщелачивании никель-алюминиевого сплава. Последний метод ранее успешно применялся для восстановления пиридинов, хинолинов и других родственных соединений [5, 6].

В качестве субстратов были выбраны 1,8-диоксодекагидроакридины, различающиеся степенью замещения и природой заместителей в положениях 3, 6, 9 и 10, что позволяло проследить влияние структуры исходных соединений на направление изучаемых процессов.

Восстановление акридинов **1** водородом *in situ* (добавление никельалюминиевого сплава в щелочной водно-метанольный раствор последних) протекает при температуре 60 °C в течение 10–12 ч. В этих условиях направление превращений определяется структурой субстрата.

1а-е R = H, a R¹ = H, b R¹ = Me, c R¹ = Ph, d R¹ = PhCH₂, e R¹ = PhNH, f R = 2-C₄H₃O (2-фурил), R¹ = Me, g R = R¹ = Me, h R = Ph, R¹ = H, i R = Ph, R¹ = PhCH₂, j R = 4-MeOC₆H₄, R¹ = Ph, k R = 4-MeOC₆H₄, R¹ = H; 2a-c R = H, a R¹ = H, b R¹ = Me, c R¹ = Ph, d R = 2-C₄H₃O (2-фурил), R¹ = Me

Незамещенные в положении 9 декагидроакридиндионы **1а**-е претерпевают селективное восстановление одного из оксовинильных фрагментов, превращаясь в 8-гидрокси-*цис*-додекагидроакридин-1-оны **2а**-с с выходом 74–89%, причем гидрирование N-бензил- и N-фениламинодекагидроакридиндионов (**1d**,e) сопровождается гидрогенолизом связей N–CH₂ и N–NH и приводит к образованию соединения **2а** (выход 72–79%).

Восстановление in situ 9- и 9,10-замещенных декагидроакридинов-1,8дионов 1f-i протекает неоднозначно и зависит от строения замещающей группы. Так, 9-(2-фурил)-10-метилдекагидроакридин-1,8-дион (1f) превращается, подобно соединениям 1а-с, в соответствующий цис-додекагидроакридинон 2d с выходом 78%. При введении в реакцию 9-арил- или 9-алкил-1,8-диоксоакридинов 1g-j ни гетероцикл, ни оксогруппы не восстанавливаются даже при значительном увеличении времени реакции (24-30 ч). В случае 9-арил-10-бензилдекагидроакридин-1,8-дионов 1i, ј наблюдается только гидрогенолиз связи N-CH₂ и образуются 9-арил-10H-1.8-диоксодекагидроакридины **1h**,**k**. Отмеченная для 9-арил- и 9-алкилдекагидроакридиндионов 1g-j, в отличие от 9-фурилзамещенного, устойчивость к каталитическому гидрированию обусловлена, очевидно, пространственным расположением арильных или алкильных заместителей в положении 9 относительно 1,4-дигидропиридинового цикла, в результате чего либо затрудняется адсорбция субстрата на поверхности катализатора, либо создаются стерические препятствия для подхода восстановителя.

Более глубоким каталитическим превращениям 1,8-диоксодекагидроакридины подвергаются при проведении гидрогенизации на Ni Ренея в жестких условиях – под давлением водорода 10 МПа и температуре 100–120 °С (реакция проводилась в автоклавах периодического действия в спиртовом растворе). При этом, в зависимости от продолжительности контакта и температуры процесса, удается осуществить направленный переход как к *цис*-додекагидроакридинам, так и к замещенным пергидроакридинам *цис,цис*-строения.

Если гидрогенизацию 1,8-диоксодекагидроакридинов **1а–с,1** проводить при 100 °С (при более низких температурах реакция не протекает) в течение 8 ч, то образуются, независимо от строения субстрата, $9-R^1-10-R^2-8$ -гидрокси-*цис*-додекагидроакридиноны **2а–с,е** (выход 57–72%). При повышении температуры до 120 °С или увеличении продолжительности контакта с катализатором до 24 ч при 100 °С наряду с гидрогенизацией гетероцикла происходит восстановление карбонильных групп до метиле-

новых, а в случае соединения **1a** и фенильного заместителя – до циклогексильного. В результате продуктами реакции являются пергидроакридины *цис,цис*-типа **3a**–**c**: *цис-син-цис*-изомер **3a** был выделен при гидрировании на Ni Peneя при 120 °C в течение 8 ч, *цис-анти-цис*-изомеры **3b**,**c** – при 100 °C в течение 24 ч. При этом, как показали специальные опыты по изомеризации соединения **3a** в изомер **3b**, первоначально возникают пергидроакридины *цис-син-цис*-конфигурации, которые далее превращаются в термодинамически более стабильные *цис-анти-цис*-формы.

1, 2 а-с R = Me, R¹ = H, а R² = H, b R² = Me, с R² = Ph; 1l, 2e R = R² = H, R¹ = Ph; 3b R² = C₆H₁₁ (циклогексил), с R² = Me

Таким образом, варьируя условия каталитической гидрогенизации 1,8-диоксодекагидроакридинов, можно осуществлять стереонаправленный синтез пергидроакридинов заданного строения: *цис-син-цис-* (Ni Penes, 100 °C, 24 ч) или *цис-анти-цис-* (Ni Penes, 120 °C, 8 ч). Установлено, что

Таблица 1

Исходное соединение	Катализатор	Среда	Температура, °С	Давление, МПа	Время реакции, ч	Продукт реакции	Выход, %
1 a	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10-12	2a	89
	Ni Ренея	EtOH	100	10	8	2a	70
1b	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10-12	2b	74
	Ni Ренея	EtOH	100	10	8	2b	67
	Ni Ренея	EtOH	100	10	24	3c	67
1c	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10-12	2c	75
	Ni Ренея	EtOH	100	10	8	2c	57
	Ni Ренея	EtOH	120	10	8	3 a	56
	Ni Ренея	EtOH	100	10	24	3b	63
1d	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10-12	2a	72
1e	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10-12	2a	79
1f	Ni/Al	1 M KOH + MeOH	60	Атмосферное	10-12	2d	78
11	Ni Ренея	EtOH	100	10	8	2e	72
2b	Ni Ренея	EtOH	100	10	24	3c	74
2c	Ni Ренея	EtOH	100	10	24	3b	78

Каталитическое гидрирование соединений 1a-f,l, 2b,с на никелевых катализаторах

во всех случаях промежуточными соединениями являются *цис*-додекагидроакридиноны. Так, при гидрировании соединений **2b**,**c** на Ni Ренея при 100 °C в течение 24 ч были выделены *цис-анти-цис*-пергидроакридины **3b**,**c** с выходом 74–78%.

На основании полученных данных можно заключить, что восстановление 1,8-диоксодекагидроакридинов в присутствии никелевых катализаторов протекает стереонаправленно – с характерным для каталитических процессов *цис*-присоединением водорода, причем исчерпывающему насыщению кратных связей способствуют более жесткие условия гидрогенизации (табл. 1).

Строение соединений **2а–е** и **3а–с** было установлено на основании данных спектроскопии ЯМР ¹H, ¹³C, ИК спектра и хромато-масс-спектрометрии. Для ИК спектров додекагидроакридинонов **2а–е** характерно наличие интенсивной полосы поглощения в области 3300–3500 см⁻¹, подтверждающей присутствие гидроксильных групп, и двух полос поглощения при 1600 и 1640 см⁻¹, соответствующих валентным колебаниям сопряженной системы связей C=C–C=O; в спектрах соединений **3а–с** поглощение в этих областях отсутствует. Енаминная группа NH в спектрах соединений **2а,е** характеризуется поглощением в области 3250–3300 см⁻¹, фенильные заместители (соединения **2с,е**) – поглощением при 3080–3100 см⁻¹

Хромато-масс-спектры гидроакридинов **2а–е**, **3а–с** свидетельствуют об их индивидуальности и, следовательно, существовании в виде одного из возможных изомеров. На это указывает присутствие на хроматограмме единственного пика, причем время удерживания соединений **2а–с**, полученных различными путями, совпадает (25.79 мин – для **2а**, 27.51 мин – для **2b** и 28.99 мин – для **2c**). Пики молекулярных ионов соединений **2а–е**, **3а–с** (табл. 2) соответствуют их молекулярным массам.

В масс-спектрах соединений **2а–с**, не содержащих заместителя в положении 9, присутствует интенсивный пик иона A₁, возникающий вследствие потери молекулы C₄H₈ по ретро-реакции Дильса–Альдера, характерной для производных 5,5-диметилциклогекс-2-енона [7–9]. Образование катионов A₂ и A₃ является результатом отщепления радикалов C₅H₁₁O[•] и C₅H₁₁[•] от ионов M⁺ и A₁ (табл. 2).

Таблица 2

Соеди- нение	<i>m/z</i> (<i>I</i> _{отн} , %)
2a	277 [M] ⁺ (15), 262 (9), 221 (23), 190 (100), 150 (11.5), 87 (38)
2b	291 [M] ⁺ (21), 276 (8.5), 235 (29), 204 (100), 164 (14), 87 (34)
2c	353 [M] ⁺ (16.5), 338 (7.5), 297 (34), 266 (100), 226 (9), 87 (31)
2d	357 [M] ⁺ (9), 329 (13), 301 (39), 270 (100), 230 (19), 87 (35)
2e	297 [M] ⁺ (12.5), 295 (5.5), 238 (100), 217 (62), 77 (21)
3a	332 (7), 331 [M] ⁺ (28), 260 (100), 71 (25)
3b	332 (5), 331 [M] ⁺ (19), 260 (100), 71 (28)
3c	264 (7), 263 [M] ⁺ (34), 192 (100), 71 (19)

Масс-спектры соединений 2а-е, 3а-с

Таблица З

Сооти		Химические сдвиги, б, м. д. (КССВ, Ј, Гц)												
нение	С ₍₂₎ Н, 2Н	C ₍₄₎ H, 2H	C ₍₅₎ H, 2H	C ₍₇₎ H, 2H	С ₍₈₎ Н, 1Н, м	С _(8а) Н, 1Н, м	С ₍₉₎ Н, м	С _(10а) Н, 1Н, м	Другие сигналы					
2a	2.3 (c)	2.1 (c)	1.3 (μ . μ , $J_1 = 5.0$, $J_2 = 12.0$, H _a); 1.7 (μ . μ , $J_1 = 5.0$, $J_2 = 12.0$, H _e)	1.8 (π . π , $J_1 = 5.0$, $J_2 = 12.0$, H _a); 2.2 (π . π , $J_1 = 5.0$, $J_2 = 12.0$, H _e)	4.0	1.9	2.0 (2H)	3.4	0.8–1.0 (12H, c, 4CH ₃); 4.5 (1H, уш. с, OH); 6.7 (1H, с, NH)					
2b	2.3 (c)	2.1 (c)	1.3 (д. д, $J_1 = 5.5, J_2 = 11.5, H_a$); 1.7 (д. д, $J_1 = 5.5, J_2 = 11.5, H_2 = 11.5, H_e$)	1.8 (д. д., $J_1 = 5.0, J_2 = 12.0,$ H _a); 2.4 (д. д, $J_1 = 5.0,$ $J_2 = 12.0, H_e)$	4.0	1.9	2.0 (2H)	3.4	0.8–1.0 (12H, c, 4 CH ₃); 4.6 (1H, уш. с, OH); 3.0 (3H, с, NCH ₃)					
2c	2.4 (c)	2.1 (c)	1.3 (д. д, $J_1 = 5.0, J_2 = 11.0,$ H_a); 1.7 (д. д, $J_1 = 5.0,$ $J_2 = 11.0, H_e$)	1.8 (д. д, J_1 = 5.0, J_2 = 12.0, H _a); 2.3 (д. д, J_1 = 5.0, J_2 = 12.0, H _e)	4.2	1.9	2.0 (2H)	3.6	0.7–0.9 (12H, c, 4 CH ₃); 4.8 (1H, c, OH); 7.1 (3H, м, C ₆ H ₅); 7.3 (2H, м, C ₆ H ₅)					
2d	2.4 (c)	2.2 (c)	1.3 (д. д., $J_1 = 6.0, J_2 = 11.5,$ H _a); 1.7 (д. д., $J_1 = 6.0,$ $J_2 = 11.5,$ H _e)	1.8 (д. д, $J_1 = 5.5, J_2 = 12.0,$ H _a); 2.3 (д. д, $J_1 = 5.5,$ $J_2 = 12.0,$ H _e)	4.3	1.9	3.0 (1H)	3.5	0.9–1.0 (12H, c, 4 CH ₃); 3.1 (3H, c, NCH ₃); 4.7 (1H, уш. c, OH); 6.1 (1H, д, <i>J</i> = 3.6, Fur); 6.3 (1H, т, Fur); 7.2 (1H, д, <i>J</i> = 3.6, Fur)					
2e	2.3 (м)	2.0 (м)	1.1 (м)	1.3 (м)	4.4	1.9	2.9 (1H)	3.5	7.3 (1H, c, NH); 7.2 (5H, м, C ₆ H ₅); 4.9 (1H, c, OH); 0.9–1.4 (4H, c, C ₍₃₎ H и C ₍₆₎ H)					

Спектры ЯМР¹Н 8-гидроксидодекагидроакридин-1-онов 2а-е

Таблица 4

	Химические сдвиги, б м. д.																
Со- еди-														I	ર		
не- ние	C ₍₁₎	C ₍₂₎	C ₍₃₎	C ₍₄₎	C _(4a)	C ₍₅₎	C ₍₆₎	C ₍₇₎	C ₍₈₎	C _(8a)	C ₍₉₎	C _{(9a})	C(10a)	Ме (при С ₍₃₎)	Ме (при С ₍₆₎)	R^1	R ²
2a	190.79	50.05	32.29	45.75	159.92	41.82	31.17	45.75	68.11	41.33	21.89	102.17	47.16	28.92 _e ; 28.21 _a	34.40 _e ; 28.30 _a	_	-
2b	191.40	49.21	31.49	40.89	156.84	36.49	30.33	39.57	66.31	37.31	14.01	101.69	57.79	29.17 _e ; 25.76 _a	32.97 _e ; 27.77 _a	-	37.10
2c	192.88	49.57	32.04	45.31	156.59	42.12	31.08	44.78	68.46	41.25	21.92	105.41	54.50	28.53 _e ; 7.75 _a	34.19 _e ; 27.91 _a	_	142.18; 129.74*; 129.39*; 127.78
2d	191.91	49.48	31.70	41.63	157.02	36.55	29.84	41.05	68.66	40.67	25.51	103.38	58.82	29.62 _e ; 27.61 _a	32.60 _e ; 28.11 _a	158.01; 139.15; 111.11; 107.38	37.90
2e	190.41	36.67	21.48	28.51	159.30	29.17	20.49	29.17	69.95	42.58	34.37	106.56	51.95	_	_	145.48*; 126.72*; 125.20*	_

Спектры ЯМР¹³С 8-гидрокси-*цис*-додекагидроакридин-1-онов 2а-е

* Сигнал соответствует двум атомам углерода.

Для спектра 9-фенил-8-гидроксидодекагидроакридинона (**2e**) характерно наличие интенсивных пиков $A_3 - m/z$ 238 и $A_4 - m/z$ 217 (последний возникает в результате отщепления фенильного радикала от иона [M]⁺). Причем отсутствие геминальных метильных заместителей в алицикле соединения **2e**, по-видимому, исключает распад по ретро-реакции Дильса– Альдера.

Масс-спектры пергидроакридинов **3а–с** в общем малоинформативны и содержат помимо пика $[M]^+$, интенсивный пик $[M^+-C_5H_{11}^{\bullet}] - m/z$ 260 (для соединений **3а,b**) и 192 (для соединения **3с**).

Спектры ЯМР ¹Н додекагидроакридинонов **2а**–е (табл. 3) и пергидроакридинов **3а–с** полностью отвечают их структуре. Для соединений **2а–е** наиболее характерны сигналы протонов гидроксигруппы, которые проявляются в виде уширенного синглета в области 4.5–4.9 м. д., а химический сдвиг атома водорода в положении 8 – при 4.0–4.4 м. д., что свидетельствует об экваториальном расположении гидроксильных функций [10]. Присутствие фенильных заместителей в соединениях **2с**,е подтверждается наличием мультиплетов при 7.1–7.3 м. д., химический сдвиг протонов группы N–Me в соединениях **2b**,d находится в области 3.0–3.1 м. д. Сигналы ангулярных протонов при C_(8a) и C_(10a) (мультиплеты) находятся в области 1.8–1.9 и 3.4–3.6 м. д., соответственно, что позволяет сделать вывод об однотипном пространственном строении додекагидроакридинонов **2a–е** независимо от степени и характера замещения последних. Расположение сигнала протона у атома C_(10a) при 3.4–3.6 м. д. в соединениях **2a–e**, по данным работы [11], соответствует *цис*-сочленению карбо- и гетероциклов, а в случае N-фенилзамещенного соединения **2c** это приводит к расщеплению сигнала протонов фенильного заместителя при атоме азота.

Спектры ЯМР ¹Н пергидроакридинов **3а-с** свидетельствуют об отсутствии в структуре этих соединений ароматических заместителей или гидроксильных функций. Они содержат сигналы метильных, метиленовых групп и метиновых протонов в области 0.9–3.7 м. д., из которых наиболее характерными являются химические сдвиги геминальных метильных заместителей (0.9–1.1 м. д.) и группы N–Ме в соединении **3с** (2.2 м. д.).

При анализе спектров ЯМР¹³С додекагидроакридинонов **2а**–е и пергидроакридинов **3а–с** для отнесения сигналов использовались спектры внерезонансной развязки и литературные данные спектров ЯМР¹³С изомерных пергидроакридинов [12–14] и 3,3-диметилгидроксантенов [15].

Использование спектров off-резонанса для соединений 2а-е позволило выделить третичные атомы C₍₈₎, C_(8a) и C_(10a). Наиболее слабопольными являются сигналы атома C₍₈₎, расположенные в области 66.31-69.95 м. д. (табл. 4). Резонансные сигналы узловых атомов C_(8a) и C_(10a), положение которых находится в прямой зависимости от характера сочленения колец, проявляются при 37.31-42.58 и 47.16-58.82 м. д. соответственно. Химические сдвиги сигналов C_(8a) и C_(10a) в соединениях 2b-е хорошо коррелируют с данными для соответствующих 10- и 9,10-замещенных пергидроакридинов цис-типа [12, 13]. Смещение сигнала атома С(10a) в соединении 2а в сильное поле (47.16 м. д.), по-видимому, можно объяснить уменьшением дезэкранирующего влияния атома азота из-за отсутствия при нем электронодонорных заместителей. Наличие в спектрах соединений 2а-е сильнопольного сигнала в области 14.01-21.92 м. д. свидетельствует, что указанные додекагидроакридиноны являются иисизомерами [12-15]. Появление этого сигнала объясняется гош-взаимодействием гетероатома с атомом углерода, находящимся в у-положении. В 3,3,6,6-тетраметил-8-гидроксидодекагидроакридин-1-онах этот эффект возможен только при участии атома С(9). В связи с этим сигналы в области 14.01-21.29 м. д. были приписаны указанному атому (табл. 4). Наибольшее сильнопольное смещение испытывает атом С(9) в додекагидроакридине 2b, что связано с усилением экранирующего влияния гетероатома благодаря введению к нему метильной группы. Аналогичный эффект можно наблюдать уже на примере пиперидина и N-метилпиперидина [16].

В случае додекагидроакридинона **2e**, не содержащего в положениях 3 и 6 *гем*-диметильных заместителей, наибольший χ -*гош*-эффект испытывают атомы C₍₃₎ и C₍₆₎, резонансные сигналы которых проявляются в области 21.48 и 20.49 м. д., соответственно, а химический сдвиг атома C₍₉₎, содержащего фенильный радикал, в этом случае находится при 34.37 м. д.

В спектрах соединений **2а–е** (табл. 4) сигналы атомов $C_{(1)}-C_{(4)}$, $C_{(4a)}$, $C_{(6)}$ и $C_{(9a)}$ и геминальных метильных групп хорошо коррелируют со спектрами соответствующих *цис*-додекагидроксантенонов. Отнесение других резонансных сигналов было уточнено при сравнении со спектрами 3,3-диметилпергидроксантенов и изомерных пергидроакридинов.

Таким образом, додекагидроакридин-1-оны $2\mathbf{a}-\mathbf{e}$ в условиях каталитического синтеза получаются в виде *цис*-изомеров. Критерием *цис*-сочленения циклогексанового и гидропиридинового колец, как и в случае пергидроакридинов [12–14] и гидроксантенов [15], является наличие сильнопольного сигнала, который, в зависимости от наличия или отсутствия замещающих групп в положениях 3 и 6, может принадлежать либо атому С₍₉₎ (соединения **2а–d**), либо атомам С₍₃₎ и С₍₆₎ (соединение **2е**).

В спектрах изомеров 3a-c (табл. 5) пергидроакридиновому скелету принадлежат 7 резонансных сигналов, один из которых является сильнопольным и расположен в области 25.34–25.87 м. д., что, как уже отмечалось выше, является критерием *цис*-сочленения гетеро- и карбоциклов – *цис-син-цис* или *цис-анти-цис* [12–14]. В первом случае уменьшение числа сигналов связано с симметричностью строения молекулы, а во втором – с легкостью инверсии возможных конформеров, легко переходящих друг в друга уже при комнатной температуре, что приводит к уменьшению числа сигналов в спектрах ЯМР ¹³С и их уширению, кроме сигналов атомов C₍₉₎ и атомов углерода заместителей [14]. Подобная картина наблюдается в спектрах соединений **3b,c**, в отличие от спектра изомера **3a**, где резонансные сигналы атомов углерода не уширены. Различный характер спектров пергидроакридинов **3a–c** послужил основанием для отнесения соединения **3a** к изомерам с *цис-син-цис*-конфигурацией, а соединений **3b,c** – к изомерам с *цис-анти-цис*-строением.

Особенностью *цис-син-цис*-пергидроакридина является возможность существования в виде двух различных по энергии конформеров A (аксиальные связи С–С находятся в β -положении к гетероатому) и B (аксиальные связи С–С находятся в α -положении к атому азота). Как известно [12–14], конформационной меткой в этом случае служат положение и интенсивность атома $C_{(9)}$: для конформера A этот сигнал проявляется в более слабом поле (~35 м. д. и выше), тогда как для конформера B наблюдается смещение химического сдвига атома $C_{(9)}$ на ~11 м. д. в сильное поле. В спектре соединения **3а** резонансный сигнал атома $C_{(9)}$ проявляется при 23.22 м. д., что свидетельствует в пользу B-конформации *цис-син-цис*-пергидроакридина **3а**. Хорошая корреляция между резонансными сигналами ангулярных атомов $C_{(4a)}$ – $C_{(10a)}$, $C_{(8a)}$ – $C_{(9a)}$ в соединениях **3а**–**с** и соответствующих N-R-пергидроакридинах [14] является дополнительным аргументом в пользу выводов о пространственном строении изомеров **3а–с**.

Таблица 5

Спектры ЯМР ¹³С пергидроакридинов За-с

Соеди-	Химические сдвиги, б, м. д.										
nemie	C ₍₁₎ , C ₍₈₎	C ₍₂₎ , C ₍₇₎	C ₍₃₎ , C ₍₆₎	C ₍₄₎ , C ₍₅₎	C _(4a) , C _(10a)	C _(8a) , C _(9a)	C ₍₉₎	Me _a	Me _e	R	
3a	39.45	31.37	31.94	34.33	56.89	37.67	23.22	25.36	33.79	50.67 (C _(α)); 28.23 (С _(β) и С _{(β'}); 26.10 (С _(δ)); 25.73 (С _(χ) и С _{(χ'}))	
3b	33.80	31.06	31.36	32.64	58.62	37.62	25.34	30.85	31.46	56.89 (С _(а)); 27.13 (С _(β) и С _(β')); 26.83 (С _(δ)); 26.42 (С _(χ) и С _(χ'))	
3c	34.29	30.67	31.69	33.30	57.07	37.53	25.87	29.82	32.51	40.44	

Соеди-	Брутто-		Т. пл., ⁰С		
нение	формула	С	Н	Ν	
2a	$C_{17}H_{27}NO_2$	<u>73.33</u> 73.65	<u>9.97</u> 9.75	$\frac{5.17}{5.05}$	220–222
2b	$C_{18}H_{29}NO_2$	<u>74.57</u> 74.23	<u>10.00</u> 9.97	<u>5.00</u> 4.81	229–231
2c	$C_{23}H_{31}NO_2$	<u>77.83</u> 78.19	<u>9.02</u> 8.78	<u>4.11</u> 3.97	237–238
2d	C ₂₂ H ₃₁ NO ₃	<u>74.17</u> 73.95	<u>8.89</u> 8.68	$\frac{3.92}{3.92}$	230–232
2e	$C_{19}H_{23}NO_2$	<u>77.00</u> 76.77	<u>8.13</u> 7.74	$\frac{4.83}{4.71}$	281–283
3 a	$C_{23}H_{41}N$	<u>83.86</u> 83.38	<u>12.30</u> 12.39	$\frac{4.81}{4.23}$	86–87
3b	$C_{23}H_{41}N$	<u>83.54</u> 83.38	<u>12.55</u> 12.39	$\frac{4.29}{4.23}$	71–73
3c	$C_{18}H_{33}N$	<u>82.07</u> 82.13	<u>12.68</u> 12.55	$\frac{5.49}{5.32}$	64–65

Характеристики синтезированных соединений

Отнесения других атомов углерода (табл. 5) были уточнены при сравнении со спектрами изомерных пергидроакридинов и пергидроксантенов [12–15]. Введение двух метильных групп в положения $C_{(3)}$ и $C_{(6)}$ удовлетворительно описывается α -, β - и χ -инкрементами для диметилзамещенных циклогексанов [17] и 3,3-диметилпергидроксантенов [15].

Таким образом, нами впервые изучено каталитическое гидрирование декагидроакридин-1,8-дионов в различных условиях и найдены условия их восстановления до *цис*-додекагидроакридин-1-онов и пергидроакри-динов *цис-син-цис*- и *цис-анти-цис*-типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Specord M-80 (суспензия в вазелиновом масле и гексахлорбутадиене), спектры ЯМР ¹Н и 13 С – на спектрометре Bruker AC-300 (300 и 75 МГц соответственно) в CDCl₃ и CD₃OD, внутренний стандарт TMC. Хромато-масс-спектры получены на газовом хроматографе Hewlett-Packard HP-5972A с масс-селективным детектором HP-5890, на капиллярной колонке (30 м × 0.25 мм) с 5% метилфенилсиликона, газ-носитель – азот; энергия ионизирующих электронов 70 эВ. Контроль за ходом реакции и индивидуальностью выделяемых соединений осуществлялся методом TCX на пластинках Silufol UV-254, элюент гексан–ацетон–хлороформ, 3:1:1, проявитель пары иода.

Декагидроакридин-1,8-дионы **1а-I** синтезированы по известным методикам [1, 2].

8-Гидрокси-3,3,6,6,10-пентаметил-9-(2-фурил)-1,2,3,4,5,6,7,8,8а,9,10,10а-*цис*-додекагидроакридин-1-он (2d). В трехгорлую колбу объемом 0.5 л, снабженную механической мешалкой, обратным холодильником и термометром, помещают 5.295 г (15 ммоль) акридиндиона 1f, 100 мл метанола и 100 мл 1 М раствора КОН. При перемешивании смесь доводят до кипения (температура 60 °C) и каждые 20–30 мин осторожно добавляют мелкоизмельченный сплав Ni–Al (40% Ni) порциями по 0.5 г. По окончании реакции (10–12 ч) горячую реакционную смесь фильтруют, осадок – Al(OH)₃+Ni промывают горячим метанолом (4 × 20 мл). Фильтрат упаривают, остаток кипятят в 50 мл ацетона в течение 20 мин, затем, не охлаждая, отфильтровывают дополнительную порцию Al(OH)₃. Из фильтрата при упаривании наполовину и охлаждении выпадает кристаллический осадок соединения 2d, его отделяют, перекристаллизовывают из метанола.

Соединения 2а-с получают аналогично на основе акридиндионов 1а-е (см. табл. 1 и 6).

Восстановление акридиндионов **1i**,**j** сопровождается образованием NH-декагидроакридиндионов **1h**,**l**; соединение **1g** в указанных условиях не восстанавливается.

8-Гидрокси-9-фенил-1,2,3,4,5,6,7,8,8а,9,10,10а-*цис*-додекагидроакридин-1-он (2е). В стальной вращающийся автоклав емкостью 150 мл помещают 2.97 г (10 ммоль) акридиндиона 11, 50 мл этанола и ~0.5 г Ni Peneя. Начальное давление водорода 10 МПа, температура 100 °C. Реакция заканчивается через 8 ч по поглощении рассчитанного количества водорода (20 ммоль). После удаления катализатора и растворителя соединение 2е кристаллизуется.

Таким образом синтезируют соединения 2а-с из акридиндионов 1а-с.

Пергидроакридины За–с (табл. 1, 6) получают гидрогенизацией декагидроакридинов **1b,с** и *цис*-додекагидроакридинонов **2b,с** по описанной выше методике.

 3,3,6,6-Тетраметил-10-циклогексил-цис-анти-цис-пергидроакридин
 (3b).

 Изомериза-ция
 3,3,6,6-тетраметил-10-циклогексил-цис-син-цис-пергидроакридина
 3a.

 В стальной вра-щающийся автоклав емкостью
 150 мл помещают
 3.31 г (10 ммоль)

 соединения
 3a, 50 мл этанола и ~0.5 г Ni Peнeя. Начальное давление водорода 10 МПа,

 температура
 100 °C. Через
 24 ч соединение
 3a полностью изомеризуется в 3b (контроль по

 TCX). Катализат фильтруют, после удаления растворителя соединение
 3b кристаллизуется.

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. Г. Николаева, Ю. М. Щекотихин, А. С. Пономарев, А. П. Кривенько, *XГС*, 475 (2000).
- 2. Ю. М. Щекотихин, Ю. А. Гетманенко, Т. Г. Николаева, А. П. Кривенько, *XГС*, 1344 (2001).
- 3. Э. И. Станкевич, Г. Я. Ванаг, Изв. АН ЛатвССР. Сер. хим., 223 (1961).
- 4. H. Antaki, J. Chem. Soc., 2263 (1965).
- 5. И. Н. Грачева, А. И. Точилкин, *ХГС*, 77 (1988).
- 6. L. K. Keefer, G. Lunn, Chem. Rev., 89, 459 (1989).
- 7. J. Baldas, Q. N. Porter, Tetrahedron Lett., 1351 (1968).
- 8. C. Dagher, R. Hanna, P. B. Terentiev, Y. G. Boundel, N. Kost, B. I. Maksimov, *J. Heterocycl. Chem.*, **19**, 645 (1982).
- 9. P. Cupka, J. Bella, A. Martvon, Coll. Czech. Chem. Commun., 52, 742 (1987).
- 10. C. A. Grob, H. R. Kiefer, Helv. Chim. Acta, 48, 799 (1965).
- 11. В. И. Алексеев, В. А. Каминский, М. Н. Тиличенко, ХГС, 235 (1975).
- А. П. Кривенько, Т. Г. Николаева, Л. М. Юдович, Н. Т. Комягин, А. И. Яновский, Ю. Т. Стручков, В. Г. Харченко, XГС, 1645 (1987).
- 13. Т. Г. Николаева, Л. М. Юдович, А. А. Пастухова, А. П. Кривенько, ХГС, 200 (1992).
- 14. Т. Г. Николаева, П. В. Решетов, А. П. Кривенько, ХГС, 867 (1997).
- В. Г. Харченко, Л. М. Юдович, Н. С. Смирнова, Г. И. Рыбина, Л. И. Маркова, *ЖОрХ*, 23, 576 (1987).
- 16. Г. Леви, Г. Нельсон, *Руководство по ядерному магнитному резонансу углерода-13*, Мир, Москва, 1975.
- 17. D. K. Dalling, D. M. Grant, J. Am. Chem. Soc., 94, 5318 (1972).

Саратовский государственный университет им. Н. Г. Чернышевского, Саратов 410026, Россия Поступило в редацию 31.10.2001

^aЗАО "Нита-Фарм", Саратов 410005, Россия e-mail: nita-farm@overta.ru