П. Арсенян, К. Оберте, К. Рубина, С. Беляков, Э. Лукевиц

РЕАКЦИЯ 1,2,3-СЕЛЕНАДИАЗОЛОВ С ФОСФИНАМИ

Нуклеофильная атака трибутил- и трифенилфосфинов на 4-фенил- и 4-метил-5-этоксикарбонил-1,2,3-селенадиазолы приводит к количественному образованию селенофосфоранов и замещенных ацетиленов. Молекулярная структура 4-фенил-1,2,3-селенадиазола подтверждена методом РСА.

Ключевые слова: селенадиазол, селен, фосфин, кристаллическая структура, нуклеофильная атака.

1,2,3-Селенадиазол и его производные играют существенную роль в решении многих теоретических и практических вопросов органической химии [1], что объясняет большой интерес исследователей к этим соединениям. Соединения, содержащие селенадиазольный цикл, проявляют ароматический характер, кроме того, очень важна их способность к отщеплению молекулы азота и селена с раскрытием цикла и образованием, как продуктов ациклического ряда, так и новых гетероциклов [2, 3], поэтому они являются перспективными объектами для изучения механизмов некоторых реакций и синтеза многочисленных интересных в практическом плане соединений [4].

В литературе описано несколько методов получения селенофосфоранов. Кипячение трифенилфосфина с металлическим селеном в ТГФ приводит к образованию трифенилселенофосфорана с выходом 66% [5], при использовании толуола выход повышается до 88% [6]. При использовании селеновой черни и кипячения в толуоле в течение 6 ч выход повышается до 100% [7]. При стоянии трифенилфосфина с тетрахлорселеновольфрамом (WCl₄Se) в толуоле в течение 2 дней также образуется селенофосфоран [8]. Бензгидрилидентрифенилфосфоран в реакции обмена с металлическим селеном был превращен в селенофосфоран с выходом 71% [9, 10]. При нагревании трифенил(фенил-*p*-толилметилен)- λ^5 -фосфана с селеном в толуоле до 85 °C в течение 4 ч образуется трифенилселенофосфоран [11].

В данной работе представлен метод получения селенофосфоранов из 4-фенил- и 4-метил-5-этоксикарбонил-1,2,3-селенадиазолов.

4-Фенил-1,2,3-селенадиазол (1) реагирует с трибутилфосфином в бензоле при комнатной температуре. На первой стадии в результате нуклеофильной атаки трибутилфосфина происходит разрыв связи Se–N. Далее следует элиминирование молекулы азота. От интермедиата отщепляется молекула фенилацетилена и образуется трибутилселенофосфоран (3). В случае использования трифенилфосфина трифенилселенофосфоран (4) образуется с количественным выходом лишь при кипячении в течение 1 ч, а в случае 4-метил-5-этоксикарбонил-1,2,3-селенадиазола (2) ·получаются селенофосфораны 3 и 4 с выходом 100%. Этиловый эфир бут-2инкарбоновой кислоты (6) выделен из реакционной смеси с выходом 92%.

1, 5 R = Ph, R' = H; 2, 6 R = Me, R' = COOEt; 3 R" = Bu; 4 R" = Ph

При использовании триметил- и триэтилфосфита реакция останавливается на первой стадии с образованием селенофосфатов [12]. Деструкция селенадиазолового цикла с помощью фосфинов служит альтернативным способом получения замещенных ацетиленов в мягких условиях.

Молекулярная структура соединения 1 исследована с помощью РСА (рис.1).

Рис. 1. Молекулярная структура 4-фенил-1,2,3-селенадиазола (1)

Таблица 1

	1	1	
Связь	l, Å	Связь	l, Å
Se(1)–C(5)	1.814(3)	Se(1)–N(2)	1.878(3)
C(6)–C(7)	1.405(4)	C(6)–C(11)	1.391(4)
C(6)–C(4)	1.472(5)	C(5)–C(4)	1.355(4)
C(7)–C(8)	1.371(4)	C(11)–C(10)	1.389(4)
N(3)–C(4)	1.387(4)	N(3)–N(2)	1.265(4)
C(8)–C(9)	1.391(5)	C(9)–C(10)	1.367(5)
C(5)–H(5)	1.07(3)	C(7)–H(7)	0.990(3)
C(11)–H(11)	0.96(3)	C(8)–H(8)	1.04(4)
C(9)–H(9)	1.03(4)	C(10)–H(10)	1.10(3)
Контакт	<i>l</i> контакта, Å	Контакт	<i>l</i> контакта, Å
Se(1)Se(1)	3.8062(8)	Se(1)N(2)	3.379(3)
Se(1)Se(1)	3.6294(8)	N(2)H(5)	2.59(3)

Длины связей и межмолекулярных контактов (1) соединения 1

В кристаллическом состоянии молекула селенадиазола 1 практически планарна, торсионный угол C(5)–C(4)–C(6)–C(7) составляет 178.6°. Длина связи C(5)–Se(1) (1.814 Å) меньше длины связи N(2)–Se(1) (1.878 Å), угол C(5)–Se(1)–N(2) равен 86.41° (табл. 1, 2). В элементарной ячейке находятся 8 независимых молекул (рис. 2). В кристалле селенадиазола 1 существуют межмолекулярные контакты между атомами селена соседних молекул в пределах 3.63 - 3.81 Å, что меньше суммы ван-дер-ваальсовых радиусов [13]. Наряду с Se(1)^{...}Se(1) взаимодействиями были найдены Se(1)^{...}N(2) и N(2)^{...}H(5) контакты, 3.38 Å и 2.59(3) Å соответственно.

Торсионные углы (τ) соединения 1

1		а	6	Л	И	Ц	а	2
---	--	---	---	---	---	---	---	---

Угол	τ, град.	Угол	τ, град.
C(5)–Se(1)–N(2)	86.41(12)	C(7)–C(6)–C(11)	118.4(3)
C(7)–C(6)–C(4)	120.6(2)	C(11)-C(6)-C(4)	121.0(3)
Se(1)-C(5)-C(4)	111.0(2)	C(6)–C(7)–C(8)	120.1(3)
C(6)-C(11)-C(10)	120.8(3)	C(4)–N(3)–N(2)	117.3(3)
C(7)–C(8)–C(9)	120.9(3)	C(8)–C(9)–C(10)	119.7(3)
C(11)–C(10)–C(9)	120.2(3)	C(6)–C(4)–C(5)	126.4(3)
C(6)–C(4)–N(3)	119.3(2)	C(5)-C(4)-N(3)	114.3(3)
Se(1)-N(2)-N(3)	110.9(2))	Se(1)-C(5)-H(5)	122.(2)
C(4)–C(5)–H(5)	126.(2))	C(6)–C(7)–H(7)	115.(2)
C(8)–C(7)–H(7)	125.(2)	C(6)–C(11)–H(11)	121.(2)
C(10)–C(11)–H(11)	119.(2)	C(7)–C(8)–H(8)	121.(2)
C(9)–C(8)–H(8)	118.(2)	C(8)-C(9)-H(9)	115.(2)
C(10)-C(9)-H(9)	125.(2)	С(11)-С(10)-Н(10)	116.0(14)
C(9)-C(10)-H(10)	123.7(13)		

b

а

Рис. 2. Кристаллическая упаковка соединения **1**: проекции Y(a) и Z(b)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для рентгеноструктурного анализа 1961 дифракционного рефлекса измерены на дифрактометре Nonius KappaCCD с использованием молибденового излучения Мо K_{α} (0.71073 Å). Монокристаллы 1 (т. пл. 76–77 °C) выращены из смеси ацетон–вода (60:40) и принадлежат моноклинной сингонии, параметры кристаллической решетки: a = 36.833(2), b = 5.7406(2), c = 7.3839(4) Å, $\beta = 92.975(2)^{\circ}$, V = 1559.44(13) Å³, $D_x = 1.781$ г· см⁻³, $\mu = 4.74$ см⁻¹; коэффициент абсорбции 4.74 мм⁻¹, пространственная группа $P2_{1/a}$, Z = 8. В расчетах использовались 1114 независимых отражения с $|F| > 2\sigma_F$ при 124 уточняемых параметрах. Окончательное значение фактора расходимости 0.057. Расчеты выполнены с помощью комплекса программ [14–16].

Селенофосфораны 3, 4 (общая методика). Смесь эквимолярных количеств 1,2,3-селенадиазола и фосфина растворяют в бензоле и перемешивают в течение 1 ч (для трифенилфосфина необходимо кипячение). Далее реакционную смесь упаривают, селенофосфораны отделяют от замещенных ацетиленов кристаллизацией из гексана. Выходы количественные. Структура продуктов подтверждена масс- и ЯМР спектрами [6, 8].

Авторы выражают искреннюю благодарность Латвийскому совету по науке (грант № 189) за финансовую поддержку.

СПИСОК ЛИТЕРАТУРЫ

- 1. П. Арсенян, К. Оберте, О. Пудова, Э. Лукевиц, ХГС, 1627 (2002).
- D. H. Reid, in: Comprehensive Heterocyclic Chemistry II: A Review of the Literature 1982–1995, R. C. Storr (Ed.), 4 Pergamon, Oxford, 1996, 743–777.
- 3. M. Regitz, S. Krill, Phosphorus, Sulfur, Silicon Relat. Elem., 99, 15 (1996).
- 4. G. Mugesh, W.-W. du Mont, H. Sies, Chem. Rev., 101, 2125 (2001).
- 5. S. R. Foley, D. S. Richeson, Chem. Commun., 1391 (2000).
- 6. R. K. Bhardwaj, R. S. Davidson, *Tetrahedron*, 43, 4473 (1987).
- 7. J. A. Malito, C. Almer, Phosphorus, Sulfur, Silicon Relat. Elem., 54, 95 (1990).
- 8. M. G. B. Drew, E. M. Page, D. A. Rice, J. Chem. Soc., Dalton Trans., 61 (1983).
- 9. K. Okuma, J. Sakata, Y. Tachibana, T. Honda, O. Takumi, *Tetrahedron Lett.*, 28, 6649 (1987).
- 10. K. Okuma, I. Kaneko, H. Ohta, Y. Yokomori, Heterocycles, 31, 2107 (1990).
- 11. R. Hock, S. Hillenbrand, G. Erker, C. Krueger, S. Werner, Chem. Ber, 126, 1895 (1993).
- 12. W. Ando, Y. Kumamoto, H. Ishizuka, N. Tokitoh, Tetrahedron Lett. 28, 4707 (1987).
- 13. J. D. Dunitz, X-Ray Analysis and the Structure of Organic Molecules, Basel (Switzerland), 1995, 339.
- 14. S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, maXus Computer Program for the Solution and Refinement of Crystal Structures, Bruker Nonius, The Netherlands, MacScience, Japan&The Univ. of Glasgow, 1999.
- C. K. Johnson, ORTEP-II. A FORTRAN Thermal-Ellipsoid Plot Program. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 1976.
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A Guagliardi, A. G. G. Moliterni, R. Spagna, *J. Appl. Cryst.*, **32**, 115 (1999).

Латвийский институт органического синтеза, Pura LV-1006 e-mail: pavel.arsenyan@lycos.com Поступило в редакцию 07.10.2003