В. А. Чебанов, В. Е. Сараев, К. М. Кобзарь, С. М. Десенко, В. Д. Орлов^а, Е. А. Гура

СИНТЕЗ И РОТАМЕРИЯ 9,10-ДИАРИЛЗАМЕЩЕННЫХ 1,2,3,4,5,6,7,8,9,10-ДЕКАГИДРОАКРИДИН-1,8-ДИОНОВ

Конденсацией ароматических альдегидов с 5,5-диметилциклогексан-1,3-дионом и первичными ариламинами получены 9,10-диарил-3,3,6,6-тетраметил-1,2,3,4,5,6,7,8,9,10-декагидроакридин-1,8-дионы. Обсуждены некоторые стереохимические особенности синтезированных соединений. Методом динамического ЯМР определены барьеры инверсии образующихся ротамеров.

Ключевые слова: диарилзамещенные декагидроакридиндионы, гетероциклизация, ротамерия.

9,10-Дизамещенные декагидроакридин-1,8-дионы получают, как правило, используя синтез Ганча с широким варьированием условий проведения реакций [1–5]. Синтез целевых продуктов включает две стадии: взаимодействие циклических 1,3-дикетонов с альдегидами; выделение аддуктов Михаэля и их последующую гетероциклизацию с первичными аминами. При этом аддукты Михаэля достаточно легко циклизуются в октагидроксантоны, из-за чего вторая стадия практически всегда сопровождается образованием достаточно больших количеств кислородсодержащих гетероциклов.

Одной из задач данной работы была разработка одностадийного метода получения целевых 9,10-дизамещенных декагидроакридин-1,8-дионов. На основании обобщенных и систематизированных данных [1–8], а также некоторых экспериментальных данных, нами предложен одностадийный метод синтеза диарилзамещенных декагидроакридиндионов, более удобный в проведении и дающий более высокую чистоту конечных продуктов, чем двухстадийный.

Метод заключается во взаимодействии 5,5-диметилциклогексан-1,3-диона (1, димедона) с альдегидами 2а-і и первичными аминами 3а-і. Наиболее сложным оказался подбор условий реакции, в частности растворителя и катализатора. Реакции в спиртах и низкокипящих растворителях, независимо от типа катализатора, приводили к образованию трудноразделимых смесей продуктов реакции и исходных соединений. Оптимальным оказалось использование в качестве растворителя высококипящего полярного ДМФА. Было показано, что предлагаемый в литературе основный катализ (триэтиламин, N-метилморфолин, пиперидин) малоэффективен: продуктами реакции являются, главным образом, аддукты Михаэля 4. В то же время большое содержание в реакционной среде кислого катализатора (уксусная, трифторуксусная, соляная кислоты) приводит к сильному загрязнению целевых соединений **5а–о** ксантонами **6**. В предложенном нами методе используется небольшое количество концентрированной соляной кислоты.

2, 4, 6 a Ar = Ph; **b** Ar = 3-FC₆H₄; **c** Ar = 4-MeC₆H₄; **d** Ar = 4-BrC₆H₄; **e** Ar = 4-ClC₆H₄; **f** Ar = 4-O₂NC₆H₄; **g** Ar = 2-MeO-5-BrC₆H₃; **h** Ar = 4-FC₆H₄; **i** Ar = 4-MeOOCC₆H₄; **3 a-c,h**, **i** R¹ = H, **a** R² = H, **b** R² = 4-OEt, **c** R² = 2-F, **h** R² = 3-CO₂H, **i** R² = 3-F; **d** R¹ = 6-F, R² = 2-F; **e** R¹ = 3-Cl, R² = 2-Cl; **f** R¹ = 4-Cl, R² = 2-Cl; **g** R¹ = 4-OMe, R² = 2-OMe; **5 a-g,n**, **o** R¹ = H; **a** Ar = Ph, R² = H, **b** Ar = 3-FC₆H₄, R² = 4-OEt, **c-g** R² = 2-F, **c** Ar = Ph, **d**, **l** Ar = 4-MeC₆H₄, **e** Ar = 4-BrC₆H₄, **f**, **i**, **k**, **m** Ar = 4-ClC₆H₄, **g** Ar = 4-O₂NC₆H₄, **n** Ar = 4-FC₆H₄, R² = 3-CO₂H, **o** Ar = 4-MeOOCC₆H₄, R² = 3-F; **h** Ar = 2-MeO-5-BrC₆H₃, R¹ = 6-F, R² = 2-F; **i**-I R² = 2-Cl, **i**, **j** R¹ = 3-Cl, **j** Ar = 2-MeO-5-BrC₆H₃, **k**, **l** R¹ = 4-Cl, **m** R¹ = 4-OMe, R² = 2-OMe

Состав и строение синтезированных 3,3,6,6-тетраметил-9,10-диарил-1,2,3,4,5,6,7,8,9,10-декагидроакридин-1,8-дионов **5а–о** подтверждены данными элементного анализа (табл. 1) и спектров ЯМР ¹Н (табл. 2). Продукты реакции **4а–і** и **6а–і** из реакционной среды специально не выделялись, а их присутствие обнаружено с помощью ТСХ и ЯМР ¹Н. Образцы соединений **4а–і** и **6а–і** для сравнения были получены по известным методикам [2–5].

Таблица 1

Соеди-	Брутто- формула	<u>Найдено N, %</u> Вычислено % N	Т. пл., °С	Выход, %
5a	C ₂₉ H ₃₁ NO ₂	<u>3.21</u> 3.29	209–210	67
5b	$C_{31}H_{34}FNO_3$	<u>2.82</u> 2.87	219–221	92
5c	$C_{29}H_{30}FNO_2$	<u>3.15</u> 3.16	192–194	78
5d	$C_{30}H_{32}FNO_2 \\$	$\frac{3.10}{3.06}$	178–179	58
5e	$C_{29}H_{29}BrFNO_2$	$\frac{2.62}{2.68}$	212-214	62
5f	C ₂₉ H ₂₉ ClFNO ₂	$\frac{3.01}{2.93}$	275–276	69
5g	$C_{29}H_{29}FN_2O_4$	$\frac{5.72}{5.70}$	273–274	89
5h	$C_{30}H_{30}BrF_2NO_3$	$\frac{2.50}{2.46}$	262–264	75
5i	$C_{29}H_{28}Cl_3NO_2$	$\frac{2.61}{2.65}$	274–275	70
5j	$C_{30}H_{30}BrCl_2NO_3$	$\frac{2.40}{2.32}$	260-262	76
5k	$C_{29}H_{28}Cl_3NO_2$	$\frac{2.71}{2.65}$	280-281	62
51	$C_{30}H_{31}Cl_2NO_2$	$\frac{2.81}{2.75}$	248-250	80
5m	$C_{31}H_{34}CINO_4$	$\frac{2.73}{2.69}$	229–230	68
5n	$C_{30}H_{30}FNO_4$	$\frac{2.91}{2.87}$	305-308	55
50	$C_{31}H_{32}FNO_4$	$\frac{2.83}{2.79}$	268–270	81

Характеристики соединений 5а-о

В спектрах ЯМР ¹Н соединений **5а–о** имеются синглеты в области 0.68 и 0.90 м. д., принадлежащие протонам четырех метильных групп в положениях 3 и 6, мультиплеты протонов групп CH_2 циклогексановых колец в области 1.42–2.40 м. д., синглет метинового протона при 4.93–5.28 м. д., сигналы ароматических протонов в области 6.60–8.10 м. д, а также заместителей в Ar и R¹, R².

При комнатной температуре в спектрах соединений **5с-g,i-m** с одним *орто*-заместителем N–Ar ($R^1 = H$, $2-R^2 \neq H$) наблюдается удвоение практически всех сигналов, в частности, метинового протона и протонов метильных групп. Это позволило предположить наличие двух диастереомеров, различающихся относительной ориентацией заместителей Ar и R^2 по отношению к плоскости акридинового скелета и являющихся, таким образом, ротамерами A и **Б** с достаточно высоким барьером инверсии:

Таблица 2

Соеди- нение*	Химические сдвиги, б, м. д. (КССВ, <i>J</i> , Гц)					
	(CH ₃) ₂ C **	4CH ₂ (8Н, м)	СН (1Н, с/два с)	Н _{аром} , м	R^1, R^2	
5a	0.70; 0.87	1.62-2.36	5.06	6.97-7.72 (10H)	_	
5b	0.72; 0.87	1.8–2.32	5.05	6.75–7.45 (8H)	1.37 (3H, т, <i>J</i> = 7.3, CH ₃) 4.01 (2H, к, <i>J</i> = 7.3, CH ₂)	
5c	0.73; 0.88; 0.89;	1.56-2.35	5.01; 5.04	6.95-7.74 (9H)	_	
5d	0.72; 0.75; 0.89	1.57-2.37	4.97; 5.00	6.92-7.75 (8H)	2.21 (3H, c, CH ₃)	
5e	0.72; 0.75; 0.89	1.59-2.36	4.97; 5.00	7.16–7.76 (8H)	_	
5f	0.71; 0.74; 0.88	1.57-2.35	5.01; 5.02	7.13–7.76 (8H)	_	
5g	0.72; 0.74; 0.90	1.61-2.40	5.14	7.36-8.22 (8H)	_	
5h	0.76; 0.88	1.69-2.29	5.10	6.76-7.86 (6H)	3.77 (3H, c, OCH ₃)	
5i	0.75; 0.88; 0.90	1.46-2.30	5.00; 5.02	7.14–7.98 (7H)	2.15 (3H, c, CH ₃)	
5j	0.73; 0.86	1.42-2.26	4.97; 5.28	6.76–7.97 (6H)	3.80 и 3.84 (3H, два с, OCH ₃)	
5k	0.73; 0.87; 0.89	1.42-2.33	4.98	7.10-8.10 (7H)	_	
51	0.71; 0.73; 0.86; 0.88	1.45-2.28	5.02	6.83-8.00 (7H)	2.75 и 2.78 (3H, два с, CH ₃)	
5m	0.68; 0.73; 0.86	1.53-2.29	4.93; 4.99	6.60-7.50 (7H)	3.85 и 3.90 (3H, два с, OCH ₃)	
5n	0.75; 0.89	1.45-2.35	5.02	6.88–7.78 (H)	_	
50	0.68; 0.87	1.63-2.35	5.06	7.25-8.04 (8H)	3.79 (3H, c, OCH ₃)	

Спектры ЯМР ¹Н соединений 5а–о

* Соединения 5с-g, i-m являются смесью ротамеров.
** Приведены синглетные сигналы, суммарная интенсивность которых соответствует 12 протонам.

Для проверки такого предположения нами была изучена зависимость спектров ЯМР ¹Н синтезированных соединений от температуры и установлено, что при повышении температуры съемки удвоенные сигналы в спектрах акридиндионов **5с–g,i–m** постепенно усредняются, вплоть до полного их слияния. Измерение спектров при температуре –60 °C для акридиндионов **5n,o** (R¹ = H и 3-R² \neq H) приводит к удвоению сигналов, которое не наблюдается при комнатной температуре; в случае соединений **5a,b** повышение (от –60 °C до 160 °C) и понижение температуры на внешнем виде спектра не отражается. В случае соединения **5h** (2-R¹ = 6-R² \neq H) существование ротамеров невозможно, и в указанном выше интервале температур удвоение сигналов не наблюдается.

Зависимость спектров ЯМР ¹Н соединений **5с**–**g** от температуры позволила экспериментально определить для них энергетический барьер инверсии, ΔG_1 , кДж/моль: 82±5 (**5c**,**d**), 82±6 (**5e**), 81±6 (**5f**) и 84±5 (**5g**). Это высокие барьеры инверсии, не типичные для бифенила и его гетероаналогов [9]. Они, в частности, позволили наблюдать удвоение сигналов даже для соединений **5n**,**o**, содержащих заместитель R² в *мета*-положении.

Для объяснения полученных результатов был проведен квантовохимический анализ процесса конформационного перехода между ротамерами. Расчет равновесных геометрий и геометрии переходного состояния методом AM1 показал, что циклогексаноновые циклы стерически препятствуют вращению арильного заместителя вокруг связи С–N. Высокая стерическая нагруженность соединений **5с–g,i–m** приводит к тому, что в процессе конформационного перехода одновременно с вращением заместителя 10-Ar дигидропиридиновый цикл вынужденно полностью инвертируется, изначально плоскостное расположение связей вокруг атома азота становится пирамидальным, циклогексаноновые циклы сильно искажаются. Непосредственным следствием протекания совокупности энергетически невыгодных процессов является высокий (~82 кДж/моль) барьер инверсии.

575

Спектры ЯМР ¹Н измеряли на спектрометре Varian Mercury VX-200 (200 МГц), растворитель ДМСО-d₆, внутренний стандарт ТМС. Чистоту полученных соединений контролировали с помощью ТСХ на пластинках Silufol UV-254, растворители: хлороформ, этилацетат и их смеси. Температуры плавления измеряли на столике Кофлера. Содержание азота в полученных веществах соответствует вычисленному (табл. 1).

Определение барьеров вращения проводили методом полной формы линии и сравнения ее с реальной линией оцифрованного спектра МНК по методике [10]. Для определения эффективного времени T_2 в растворы добавляли эквимолярное количество соответствующего 3,3,6,6-тетраметил-9-арил-2,3,4,5,6,7,8,9-октагидро-1H-1,8-ксантендиона, для которого T_2 определяли аналогично. Вычисления проводили на сигналах метильных групп. Полученные значения констант скорости вращения использовали для нахождения ΔH^{\neq} и

ΔS^{\neq} как коэффициентов линейной формы уравнения Эйринга.

Квантово-химические вычисления проводили с использованием пакета программ GAMESS [11]. Параметры для различных атомов, использованные для расчета методом AM1, взяты из работ [12, 13].

3,3,6,6-Тетраметил-9,10-дифенил-1,2,3,4,5,6,7,8,9,10-декагидроакридин-1,8-дион (5а). К раствору 0.42 г (3 ммоль) димедона **1**, 0.16 г (1.5 ммоль) бензальдегида **2а** и 0.14 г (3 ммоль) анилина в 1 мл сухого ДМФА добавляют 2 капли концентрированной соляной кислоты и смесь кипятят 3 ч. Выпавший после охлаждения осадок отфильтровывают и кристаллизуют из 80% водного этанола. Получают 0.43 г соединения **5а**.

Соединения 5b-о синтезируют аналогично из димедона 1, альдегидов 2b-i и аминов 3b-i.

СПИСОК ЛИТЕРАТУРЫ

- 1. U. Eisner, J. Kuthan, Chem. Rev., 72, 1 (1972).
- 2. А. Н. Пырко, ХГС, 742 (1996).
- 3. А. А. Бакибаев, В. Д. Филимонов, *ЖОрХ*, 27, 854 (1991).
- 4. Э. И. Станкевич, Г. Я. Ванаг, Изв. АН ЛатвССР, Сер.хим., 223 (1961).
- 5. Т. Г. Николаева, Ю. М. Щекотихин, А. С. Пономарев, А. П. Кривенько, *XГС*, 475 (2000).
- 6. Э. И. Станкевич, Э. Э. Гринштейн, Г. Я. Дубур, ХГС, 228 (1975).
- 7. Ю. М. Щекотихин, Ю. А. Гетманенко, т. Г. Николаева, А. П. Кривенько, *ХГС*, 1344 (2001).
- 8. V. K. Ahluwalia, R. Sahay, U. Das, Indian J. Chem., B, 35, 1211 (1996).
- 9. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, 144.
- 10. J. Sandstroem, Dynamic NMR Spectroscopy, Acad. Press, London etc, 1982, 226.
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comput. Chem.*, 14, 1347 (1993).
- 12. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- 13. M. J. S. Dewar, E. G. Zoebisch, Theorchem., 180, 1 (1988).

НТК "Институт монокристаллов", Харьков 61001, Украина e-mail: chebanov@isc.kharkov.com Поступило в редакцию 23.10.2002 После доработки 29.10.2003

^а Харьковский национальный университет, Харьков 61077, Украина e-mail: orlov@univer.kharkov.ua