А. Н. Васильев, А. Н. Лыщиков, О. Е. Насакин, Я. С. Каюков

ВЗАИМОДЕЙСТВИЕ МЕТИЛ-5,6-ДИАЛКИЛ-2-АМИНО-3-ЦИАНОПИРИДИН-4-КАРБОКСИЛАТОВ С ПЕРВИЧНЫМИ АМИНАМИ

Найдено необычное направление взаимодействия алкил-5,6-диалкил-2-амино-3-цианопиридин-4-карбоксилатов с первичными аминами, приводящее к образованию 2,6,7-триалкил-4-амино-2,3-дигидро-1Н-пирроло[3,4-*c*]пиридин-1,3-дионов.

Ключевые слова: амид, амины, аминопиримидины, 1,3-дионы, енамины, карбоксамиды, нуклеофилы, пиридины.

Синтезированные ранее алкил-5,6-диалкил-2-амино-3-цианопиридин-4карбоксилаты 1а-с, являющиеся структурными аналогами изоникотиновой кислоты, представляют особый интерес для их дальнейшей модификации [1]. Наличие различных по своей природе функциональных групп – сложноэфирной и цианогруппы обусловливает возможность изучения взаимодействия пиридинов 1а-с с различными нуклеофилами. Ранее было отмечено, что взаимодействие соединений 1 с амидами и органическими кислотами, выступающими как О-нуклеофилы, приводит к образованию соответствующих 6,7-диалкил-4-амино-2,3-дигидро-1Н-пирроло[3,4-*с*]пиридин-1,3-дионов **4ј**–**l** [1]. Необычное протекание реакции с О-нуклеофилами предполагает необходимость изучения взаимодействия таких пиридинов с N-нуклеофилами. Так, было обнаружено, что взаимодействие пиридинов 1а-с со спиртовым раствором аммиака приводит к образованию пирроло[3,4-*c*]пиридин-1,3-дионов 4j–l, как и в случае взаимодействия с О-нуклеофилами, но в более мягких условиях. Доказательством этого факта является абсолютная идентичность ИК (табл. 1), масс- и ЯМР Н¹ спектров. Взаимодействие пиридинов **1а-с** с первичными алифатическими аминами в запаянной ампуле в абсолютной среде при нагревании приводит к образованию соответствующих 2-алкилзамещенных аналогов 4а-і, представляющих собой желтые кристаллические вещества, с ярко выраженной желто-зеленой флуоресценцией в растворе. В ИК спектрах полученных пирроло[3,4-с]пиридин-1,3-дионов 4а-і (табл. 1) наблюдаются интенсивные полосы поглощения в области 3280-3450 асимметрических и симметрических валентных колебаний аминогруппы, а полосы средней интенсивности в области 1675-1740 и 1630-1645 см⁻¹ отвечают валентным колебаниям карбонильной группы и деформационным колебаниям аминогруппы соответственно. Молекулярные массы пирроло[3.4-с]пиридин-1,3-дионов 4. найденные с помощью масс-спектров высокого разрешения, соответствуют рассчитанным. Кроме того, было обнаружено, что проведение реакции пиридина 1а с бензиламином в

более короткие промежутки времени позволяет получить в индивидуаль-555 ном состоянии N-бензил-2-амино-3-циано-5,6,7,8-тетрагидрохинолин-4карбоксамид (2) и $N_{(3)},N_{(4)}$ -дибензил-2-амино-5,6,7,8-тетрагидрохинолин-3,4-дикарбоксамид (3). В ИК спектре 3-цианотетрагидрохинолинамида 2, как и в спектре исходных соединений 1, присутствует интенсивная полоса поглощения сопряженной цианогруппы при 2215, а интенсивные полосы в области 3425–3285 и 1615 см⁻¹ свидетельствуют о наличии валентных и деформационных колебаний аминогруппы. Полосы поглощения в области 1640 и 1570 см⁻¹, представляющие собой полосы амид I и амид II, свидетельствуют об ассоциированной форме соединения 2. Основные характеристические полосы поглощения в ИК спектре дикарбоксамида 3 аналогичны таковым для моноамида 2, за исключением отсутствия полосы поглощения цианогруппы. Попытки выделить аналогичные соединения при взаимодействии с другими аминами не дали положительного результата. Мы установили, что дальнейшее нагревание карбоксамида 2 и дикарбоксамида 3 в бензиламине приводит к их превращению в конечное

1 a $R^{1} + R^{2} = (CH_{2})_{4}$, b $R^{1} = R^{2} = Me$, c $R^{2} = Me$, $R^{1} = H$; **2**, **3** $R^{1} + R^{2} = (CH_{2})_{4}$, $R^{3} = CH_{2}Ph$; **4** a $R^{1} + R^{2} = (CH_{2})_{4}$, $R^{3} = Me$, b $R^{1} = R^{2} = R^{3} = Me$, c $R^{1} = H$, $R^{2} = R^{3} = Me$, d $R^{1} + R^{2} = (CH_{2})_{4}$, $R^{3} = C_{5}H_{11}$, e $R^{1} = R^{2} = Me$, $R^{3} = C_{5}H_{11}$, f $R^{1} = H$, $R^{2} = Me$, $R^{3} = C_{5}H_{11}$, g $R^{1} + R^{2} = (CH_{2})_{4}$, $R^{3} = CH_{2}Ph$, h $R^{1} = R^{2} = Me$, $R^{3} = CH_{2}Ph$, i $R^{1} = H$, $R^{2} = Me$, $R^{3} = CH_{2}Ph$, j $R^{1} + R^{2} = (CH_{2})_{4}$, $R^{3} = H$, k $R^{1} = R^{2} = Me$, $R^{3} = H$, l $R^{1} = R^{3} = H$, $R^{2} = Me$

Таблица 1

Соеди- нение	ИК спектр, см ⁻¹						
	$v_{\rm NH}$	$\delta_{\rm NH}$	V _{C=O}	$v_{\rm CN}$	Амид I, II (ассоциированная форма)		
2	3400, 3425, 3285	1615	-	2215	1640, 1570		
3	3430, 3300, 3255	1620, 1640	-	-	1645, 1575		
4a	3450, 3300	1630	1737, 1680	-	-		
4b	3445, 3300	1645	1700, 1738	_	_		
4c	3400, 3280	1650	1715, 1675	-	-		
4d	3450, 3285	1625	1730, 1675	_	-		
4e	3450, 3300	1635	1740,1680	_	-		
4f	3400, 3280	1635	1710, 1675	_	-		
4g	3455, 3285	1635	1740, 1700	_	-		
4h	3445, 3285	1645	1745, 1695	_	-		
4i	3410, 3285	1630	1740, 1710	_	-		
4j	3307, 3185	1686	1705, 1726	-	-		
4k	3310, 3180	1685	1705, 1727	-	-		
41	3315, 3190	1686	1702, 1720	-	-		

ИК спектры соединений 2, 3, 4а-1

соединение 4g. К такому же результату приводит длительное выдерживание или нагревание раствора дикарбоксамида 3. Эти дополнительные данные позволили нам предположить следующую схему протекания реакции исследуемых пиридинов 1 с первичными алифатическими аминами и аммиаком.

Вероятно, первоначально происходит образование соответствующих N-алкил-5,6-диалкил-2-амино-3-цианоизоникотинамидов 2, которые затем присоединяют по нитрильной группе вторую молекулу амина с образованием соответствующего интермедиата А. Последний в условиях реакции легко гидролизуется в 5,6-дизамещенные N₍₃₎,N₍₄₎-диалкил-2аминопиридин-3,4-дикарбоксамиды 3. Их дальнейшее нагревание приводит к внутримолекулярной циклизации вицинальных карбоксамидных групп в имидный фрагмент соединений 4. Необходимо отметить, что для образования соединений 3 требуется участие в реакции воды. Так как эти реакции проводились в абсолютной среде, вероятно, что в условиях проведения процессов происходит алкилирование амина выделяющимся метиловым спиртом с выделением воды, которая и участвует в гидролизе. В этом случае в качестве побочных веществ в реакционной смеси должны образовываться метилалкиламин и диметилалкиламин, которые были нами идентифицированы методом ГЖХ в случае реакции с бензиламином. Ароматические (анилин) и вторичные амины (диэтиламин) в эту реакцию не вступают, что, по-видимому, связано с их низкой нуклеофильностью и стерическими затруднениями.

Таблица 2

Характеристики соединений 2, 3, 4а-1

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл.,	Выход,
нение		С	Н	Ν	°C	%
2	$C_{18}H_{18}N_4O$	<u>70.22</u> 70.57	<u>7.73</u> 5.92	$\frac{17.90}{18.29}$	254	98
3	$C_{25}H_{26}N_4O_2$	<u>72.42</u> 72.44	<u>6.30</u> 6.32	<u>13.54</u> 13.52	236	76
4 a	$C_{12}H_{13}N_3O_2$	<u>62.31</u> 62.33	<u>5.65</u> 5.67	<u>18.16</u> 18.17	224	94
4b	$C_{10}H_{11}N_3O_2$	<u>58.55</u> 58.53	<u>5.39</u> 5.40	$\frac{20.47}{20.48}$	186	87
4c	$C_9H_9N_3O_2$	<u>56.52</u> 56.54	<u>4.78</u> 4.74	<u>21.97</u> 21.98	192	91
4d	$C_{16}H_{21}N_3O_2$	<u>66.85</u> 66.88	<u>7.35</u> 7.37	<u>14.60</u> 14.62	125	78
4 e	$C_{14}H_{19}N_3O_2$	<u>64.33</u> 64.35	<u>7.31</u> 7.33	<u>16.10</u> 16.08	112	84
4f	$C_{13}H_{17}N_3O_2$	<u>63.12</u> 63.14	<u>6.95</u> 6.93	<u>16.97</u> 16.99	185	76
4 g	$C_{18}H_{17}N_3O_2$	<u>70.37</u> 70.34	<u>5.55</u> 5.57	<u>13.65</u> 13.67	172	85
4h	$C_{16}H_{15}N_3O_2$	<u>68.29</u> 68.31	<u>5.38</u> 5.37	<u>14.96</u> 14.94	187	92
4i	$C_{15}H_{13}N_3O_2$	<u>67.42</u> 67.41	$\frac{4.92}{4.90}$	<u>15.70</u> 15.72	201	87
4j	$C_{11}H_{11}N_3O_2$	$\frac{60.85}{60.83}$	<u>5.05</u> 5.07	<u>19.36</u> 19.35	223	99
4k	$C_9H_9N_3O_2$	<u>56.53</u> 56.54	$\frac{4.72}{4.71}$	$\frac{22.01}{21.99}$	269	96
41	$C_8H_7N_3O_2$	<u>54.25</u> 54.23	<u>3.93</u> 3.92	<u>23.72</u> 23.71	235	98

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных веществ осуществляли методом ТСХ на пластинках типа Silufol UV-254, проявитель УФ облучение (365 нм) и пары иода. ИК спектры получены в тонком слое (суспензия в вазелиновом масле) на приборе UR-20. Спектры ЯМР регистрировали на приборах Bruker WM-250 (250 МГц) и AM-300 (300 МГц). Растворитель ДМСО-d₆, внутренний стандарт ГМДС (8 0.05 м. д.). Масс-спектры высокого и низкого разрешения получены на приборе Varian MAT-212 при энергии ионизации 70 эВ. Хроматографические исследования выполнены на хроматографе ЛХМ-8МД, детектор по теплопроводности, колонка (3000 × 3 мм) заполнена хроматоном N-AW-DMCS, зернение 0.250–0.315, жидкая фаза SP-2100, 5%; температура колонки 115 °С, газ-носитель гелий, 40 мл/мин, ток детектора 140 мкА, чувствительность 10, объем пробы 0.5 мкл, скорость ленты 240 мм/ч. Использованные в работе реактивы и растворители очищали стандартными методами [2].

N-Бензил-2-амино-3-циано-5,6,7,8-тетрагидрохинолин-4-карбоксамид (2). Суспендируют 0.231 г (1 ммоль) пиридина **1а** в 3 мл (27 ммоль) бензиламина при комнатной температуре. Полученную суспензию помещают в ампулу и запаивают. Нагревают при 130 °С в течение 12 ч. Окончание реакции определяют методом TCX (R_f 0.35, элюент этилацетат, фиолетовая флуоресценция при УФ облучении). После охлаждения ампулу осторожно вскрывают. Содержимое разбавляют 5 мл 1,4-диоксана, осадок белого цвета отфильтровывают, промывают 10 мл 1,4-диоксана, перекристаллизовывают из 2-пропанола, сушат в вакуум-эксикаторе над P₂O₅. Получают 0.306 г (98%) вещества. Спектр ЯМР ¹H, δ , м. д: 1.65 (2H, м, CH₂CH₂); 1.72 (2H, м, CH₂CH₂); 2.43 (2H, т, <u>CH₂CH₂); 2.62 (2H, т, CH₂CH₂); 4.00 (2H, с, <u>CH₂</u>–NHC(O)); 5.97 (2H, с, NH₂); 7.45 (5H, м, C₆H₅); 8.39 (1H, с, <u>NH</u>–CH₂).</u>

N₍₃₎,**N**₍₄₎-Дибензил-2-амино-5,6,7,8-тетрагидрохинолин-3,4-дикарбоксамид (3) (табл. 2) синтезируют аналогично нагреванием 0.231 г (1 ммоль) пиридина **1a** в 3 мл (27 ммоль) бензиламина в течение 18 ч. Спектр ЯМР ¹Н, δ, м. д: 1.67 (2H, м, CH₂CH₂); 1.76 (2H, м, CH₂CH₂); 2.43 (2H, т, <u>CH</u>₂CH₂); 2.62 (2H, т, <u>CH</u>₂CH₂); 4.20 (2H, д, <u>CH</u>₂-NHC(O)); 4.28 (2H, д, <u>CH</u>₂-NHC(O)); 5.85 (2H, с, NH₂); 7.25 (5H, м, Ph); 7.30 (5H, м, Ph); 7.81 (1H, с, <u>NH</u>-CH₂); 8.74 (1H, с, <u>NH</u>-CH₂).

6,7-Диалкил-4-амино-2-метил-2,3-дигидро-1Н-пирроло[3,4-с]пиридин-1,3-дионы (4а-с) (табл. 2). Суспензию 1 ммоль пиридина **1а-с** в 5 мл насыщенного раствора метиламина в диоксане нагревают при 130 °C в запаянной ампуле 48 ч. Окончание реакции определяют методом ТСХ (элюент этилацетат, флуоресцирует желто-зеленым цветом при УФ облучении). После охлаждения до -10 °C ампулу осторожно вскрывают. Содержимое разбавляют 5 мл 1,4-диоксана, осадок желтого цвета отфильтровывают, промывают 10 мл 1,4-диоксана и очищают возгонкой в вакууме или перекристаллизацией из ДМФА. Сушат в вакуум-эксикаторе над P₂O₅. Спектр ЯМР ¹H, δ , м. д: **4a** – 1.78 (2H, м, CH₂<u>CH</u>₂CH₂); 1.85 (2H, м, CH₂<u>CH</u>₂CH₂); 2.75 (2H, т, <u>CH</u>₂CH₂); 2.93 (2H, т, <u>CH</u>₂CH₂); 2.97 (3H, с, CH₃); 6.50 (2H, с, NH₂); **4b** – 2.48 (3H, с, CH₃); 2.49 (3H, с, CH₃); 2.95 (3H, с, CH₃); 6.50 (2H, с, NH₂).

6,7-Диалкил-4-амино-2-пентил-2,3-дигидро-1Н-пирроло[3,4-с]пиридин-1,3-дионы (4d–f) синтезируют аналогично нагреванием 1 ммоль пиридинов 1а–с в 0.5 мл пентиламина при 130 °С в течение 36 ч. Спектр ЯМР ¹Н, δ, м. д: 4e – 0.79 (3H, т, <u>CH</u>₃CH₂); 1.25 (2H, м, CH₂<u>CH</u>₂CH₃); 1.34 (2H, м, CH₂<u>CH</u>₂CH₂); 1.58 (2H, м, CH₂<u>CH</u>₂CH₂); 2.42 (3H, с, CH₃); 2.43 (3H, с, CH₃); 3.50 (2H, т, <u>CH</u>₂CH₂); 6.50 (2H, с, NH₂). Масс-спектр, *m/z* (*I*_{отн}, %): 4d – 287 (100), 269 (10), 258 (7), 230 (67), 216 (28), 202 (14), 174 (6), 145 (20), 84 (5), 41 (14) (приведены молекулярный ион и 9 интенсивных пиков осколочных ионов); 4f – 247 (77), 230 (14), 218 (100), 190 (46), 177 (46), 160 (58), 92 (21), 66 (17), 42 (25) (приведены молекулярный ион и 8 интенсивных пиков осколочных ионов).

6,7-Диалкил-4-амино-2-бензил-2,3-дигидро-1Н-пирроло[3,4-с]пиридин-1,3-дионы (**4g-i**) синтезируют аналогично нагреванием 1 ммоль пиридинов **1а-с** в 0.6 мл (5.7 ммоль) бензиламина при 160 °C в течение 36 ч. Спектр ЯМР ¹Н, δ, м. д.: **4g** – 1.78 (2H, м, CH₂CH₂CH₂); 1.85 (2H, м, CH₂CH₂CH₂); 2.78 (2H, т, <u>CH</u>₂CH₂); 2.95 (2H, т, <u>CH</u>₂CH₂); 4.69 (2H, с, CH₂); 6.55 (2H, с, NH₂); 7.28 (5H, м, Ph); **4h** – 2.43 (3H, с, CH₃); 2.44 (3H, с, CH₃); 4.69 (2H, с, CH₂); 6.57 (2H, с, NH₂); 7.30 (5H, м, Ph); **4i** – 2.48 (3H, с, CH₃); 6.87 (1H, с, CH); 4.70 (2H, с, CH₂); 4.88 (2H, с, NH₂); 7.31 (5H, м, Ph).

Соединение 4g в аналогичных условиях получают нагреванием 0.306 г (1 ммоль) амида 2 или 0.400 г (1 ммоль) амида 3 с 0.6 мл (5.7 ммоль) бензиламина при 160 °С в течение 36 ч. Для доказательства образования в реакции метилбензиламина и диметилбензиламина из фильтрата отгоняют фракцию с температурой кипения 75–85 °С (12 мм рт. ст.). Наличие в этой смеси аминов доказывают методом ГЖХ.

6,7-Диалкил-4-амино-2,3-дигидро-1Н-пирроло[3,4-*с*]**пиридин-1,3-дионы (4j–l)** получают аналогично нагреванием 1 ммоль пиридина **1а–с** с 10 мл насыщенного при комнатной температуре раствора аммиака в абсолютном 2-пропаноле при 50 °C в течение 12 ч.

СПИСОК ЛИТЕРАТУРЫ

- А. Н. Васильев, Я. С. Каюков, О. Е. Насакин, А. Н. Лыщиков, В. Н. Нестеров, О. В. Каюкова, О. В. Пульхеровская, *XГС*, 338 (2001).
- 2. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, 434.

Чувашский государственный университет им. И. Н. Ульянова, кафедра органической химии, Чебоксары 428015, Россия e-mail: caesar7@mail.ru Поступило в редакцию: 06.01.2002 После доработки 26.08.2002