А. Б. Деянов, М. Е. Коньшин

СИНТЕЗ И АНТИМИКРОБНАЯ АКТИВНОСТЬ ЗАМЕЩЕННЫХ 6-ОКСО-2-СТИРИЛ-5-ЦИАНОНИКОТИНОВОЙ КИСЛОТ

При реакции анилида или этилового эфира 2-метил-6-оксо-5-цианоникотиновой кислоты с ароматическими альдегидами образуются, соответственно, производные анилида или этилового эфира 6-оксо-2-стирил-5-цианоникотиновой кислоты. Последние при взаи-модействии с гидразингидратом превращаются в гидразиды производных 6-оксо-2-стирил-5-цианоникотиновой кислоты.

Ключевые слова: анилиды, гидразиды, 6-оксо-2-(замещенный стирил)-5-цианоникотиновые кислоты, эфиры, антимикробная активность, синтез.

Амиды и гидразиды 2-стирилникотиновых кислот представляют интерес как интермедиаты синтеза 1,6-нафтиридинов [1], а также как потенциально биологически активные вещества.

Настоящая работа предпринята с целью выяснения возможности синтеза производных 6-оксо-2-стирил-5-цианоникотиновой кислоты на основе реакции этилового эфира и анилида 2-метил-6-оксо-5-цианоникотиновой кислоты с ароматическими альдегидами и изучения их антимикробной активности.

Исследования показали, что этиловый эфир и анилид 2-метил-6-оксо-5цианоникотиновой кислоты **1а,b** вступают в реакцию с ароматическими альдегидами при кипячении (3 ч) раствора исходных веществ в ксилоле в присутствии пиперидина в качестве катализатора или при кипячении (8 ч) в уксусном ангидриде.

¹ a R = EtO, b R = PhNH; 2 a–e R = EtO, f–j R = PhNH; a R' = 4-MeO, b R' = 4-Me₂N, c R' = 4-Br, d R' = 3-Br, e R'= 2-F, f R'= 4-MeO, g R' = 4-Me₂N, h R' = 4-Br, i R' = 3-Br, j R' = 2-F; 3 a R = 4-MeO, b R = 4-Me₂N, c R = 4-Br, d R = 3-Br

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %				Т. пл.,	Вы- ход,
		С	Н	Ν	Hal	C	%
2a	$C_{18}H_{16}N_{2}O_{4} \\$	<u>66.66</u> 66.42	<u>4.97</u> 4.92	<u>8.64</u> 8.89		262–263	53
2b	$C_{19}H_{19}N_3O_3$	<u>67.64</u> 67.78	<u>5.68</u> 5.96	<u>12.45</u> 12.32		296–297	62
2c	$C_{17}H_{13}BrN_2O_3$	$\frac{54.71}{55.03}$	$\frac{3.51}{3.40}$	<u>7.51</u> 7.52	$\frac{21.41}{21.30}$	309–311	40
2d	$C_{17}H_{13}BrN_2O_3$	<u>54.71</u> 54.95	<u>3.51</u> 3.36	<u>7.51</u> 7.40	<u>21.41</u> 21.67	292–294	67
2e	$C_{17}H_{13}FN_2O_3$	<u>65.38</u> 65.50	$\frac{4.20}{4.01}$	<u>8.97</u> 8.94	<u>6.08</u> 6.32	260–262	48
2f	$C_{22}H_{17}N_3O_3$	<u>71.15</u> 71.20	<u>4.61</u> 4.44	<u>11.31</u> 11.45		277–279	56
2g	$C_{23}H_{20}N_4O_2\\$	<u>71.86</u> 72.13	<u>5.24</u> 5.37	<u>14.57</u> 14.46		210-212	72
2h	$C_{21}H_{14}BrN_3O_2$	<u>60.02</u> 59.81	<u>3.36</u> 3.69	<u>10.00</u> 10.28	<u>19.01</u> 19.30	274–276	71
2i	$C_{21}H_{14}BrN_3O_2$	<u>60.02</u> 60.31	<u>3.36</u> 3.23	<u>10.00</u> 9.73	<u>19.01</u> 19.28	291–293	66
2 j	$C_{21}H_{14}FN_{3}O_{2}$	<u>70.19</u> 69.97	<u>3.93</u> 4.18	<u>11.69</u> 12.00	<u>5.29</u> 5.00	244–247	41
3a	$C_{16}H_{14}N_4O_3$	<u>61.93</u> 62.10	<u>4.55</u> 4.82	<u>18.05</u> 18.27		183–185	89
3b	$C_{17}H_{17}N_5O_2$	<u>63.15</u> 63.29	<u>5.30</u> 5.28	<u>22.57</u> 22.41		233–236	86
3c	$C_{15}H_{11}BrN_4O_2$	<u>50.16</u> 49.92	<u>3.09</u> 2.90	<u>15.60</u> 15.66	<u>22.24</u> 22.53	322-325	90
3d	$C_{15}H_{11}BrN_4O_2$	<u>50.16</u> 50.48	<u>3.09</u> 2.87	<u>15.60</u> 15.85	$\frac{22.24}{22.30}$	240–243	92

Характеристики синтезированных соединений

В обоих случаях образуются этиловые эфиры или анилиды замещенных 6-оксо-2-стирил-5-цианоникотиновой кислот **2а-j** (см. таблицу), но в первом случае конечные продукты реакции получаются с большими выходами.

В спектрах ЯМР ¹Н соединений **2**, в отличие от спектров соединений **1**, (см. экспериментальную часть) исчезает сигнал протонов метильной группы и появляется мультиплет ароматических протонов (в случае соединений **2f-j** увеличивается интегральная интенсивность этого мультиплета) и сигналы двух протонов этиленового фрагмента в области 7.28–7.60 м. д.

В масс-спектре соединения **2g** наблюдается пик молекулярного иона* с массой 384. Распад молекулярного иона связан с отщеплением водорода и превращением в ион 382, который, по-видимому, получается при циклизации

^{*} Здесь и далее для пиков даны значения *m/z*.

за счет *орто*-положения диметиламиностирильного остатка и гетероциклического атома азота иона 384 и имеет структуру бензо[1,2-*b*]-хинолизина. Ион 382 при отщеплении молекулы изоционата дает ион 263 или выделяет анилин, претерпевая перегруппировку Мак-Лафферти [2] и образуя ион 289. Последний в дальнейшем либо отщепляет молекулу СО, либо фрагмент диметиламина с образованием ионов 261 и 245 соответственно.

В результате проведенной работы было показано, что синтез гидразидов 2-стирил-6-оксо-5-цианоникотиновых кислот **3а-d** может быть успешно проведен при кипячении этиловых эфиров **2а-d** с гидразингидратом в течение 5–6 ч в этаноле. При этом вступает в реакцию лишь сложноэфирная группа, а нитрильная не изменяется.

В ИК спектре этих соединений наблюдаются четыре полосы валентных колебаний связи N–H при 3250–3290, 3285–3315, 3310–3355, 3405–3420 см⁻¹. В спектре ЯМР ¹Н соединений **3а–d** по сравнению с исходными эфирами **2а–d** наблюдаются исчезновение сигналов этильного радикала и появление уширенного сигнала при 4.42–5.48 (1H, NH) и сигнала при 8.18–8.24 м. д. (2H, NH₂).

Наличие антимикробной активности у гидразидов 2-метил-6-фенилникотиновой кислоты [3] послужило основанием для определения таковой у соединений **2f**–**j** и **3a**–**d***. Исследования проводились по отношению к эталонным штаммам кишечной палочки и золотистого стафилококка по методу серийных разведений [4].

Все изученные вещества проявляют антимикробную активность в отношении кишечной палочки и золотистого стафилококка в концентрации 500–1000 мкг/мл, а гидразид **3b** подавляет рост первой культуры в разведении 250 мкг/мл, что в два раза выше активности этакридина лактата. Однако на культуру золотистого стафилококка он действует в два раза слабее эталона сравнения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе UR-20 для соединения **3а** в CCl₄ (c = 0.05 моль/л), для **3b**, с в CHCl₃ (c = 0.05 моль/л), для остальных в вазелиновом масле. Спектры ЯМР ¹Н получены на спектрометре PC-60 (60 МГц) соединений **2b**, d в CDCl₃, остальных в ДМСО-d₆, внутренний стандарт ГМДС. Масс-спектры получены на приборе MX-1303 с прямым вводом образца в источник ионов при ионизирующем напряжении 70 эВ, эталон сравнения ²⁰⁰Hg.

2-Метил-6-оксо-5-цианоникотиновая кислота. Кипятят 20.6 г (0.1 моль) соединения **1** в 15% растворе NaOH в этаноле в течение 4 ч. Выливают в 200 мл воды, подкисляют уксусной кислотой до слабокислой реакции среды. Осадок отфильтровывают, кристаллизуют из водного ДМФА. Т. пл. 273–274 °C. Выход 15.1 г (85%). Спектр ЯМР ¹H, δ, м. д.: 10.62 (1H, с, COOH), 8.38 (1H, с, =C(4)–H), 8.20 (1H, с, NH), 2.58 (3H, с, Me). ИК спектр, v, см⁻¹: 3520 (O–H), 3445 (N–H), 2240 (C=N), 1675 (C₍₃₎–C=O), 1625 (C₍₆₎=O). Найдено, %: С 53.94; H 3.39; N 15.72. C₈H₆N₂O₃. Вычислено, %: С 54.13; H 3.26; N 16.01.

^{*} Испытания проведены Г. Н. Новоселовой.

Анилид 2-метил-6-оксо-5-цианоникотиновой кислоты (1b). К раствору 17.8 г (0.1 моль) 2-метил-6-оксо-5-цианоникотиновой кислоты в 50 мл безводного диоксана прибавляют 9.3 г (0.1 моль) анилина и 10 мл (16.7 г, 0.11 моль) хлороксида фосфора, нагревают 30 мин, охлаждают, выливают в 200 мл воды, нейтрализуют раствором аммиака, осадок отфильтровывают и кристаллизуют из водного ДМФА. Т. пл. 216–218 °C. Выход 14.7 г (58%). Спектр ЯМР ¹H, δ , м. д.: 10.58 (1H, c, CONH); 8.68 (1H, c, =C(4)–H); 7.78 (1H, c, NH); 7.45 (5H, м, Ph); 2.65 (3H, c, Me). ИК спектр, v, см⁻¹: 3270 (CON–H), 3390 (N–H), 2240 (C=N), 1645 (C₍₃₎–C=O), 1620 (C₍₆₎=O). Найдено, %: С 66.40; H 4.38; N 16.59. C₁₄H₁₁N₃O₂. Вычислено, %: С 66.27; H 4.22; N 16.46.

Этиловые эфиры и анилиды 2-стирил-6-оксо-5-цианоникотиновой кислоты (2а-j). А. Раствор 0.01 моль соединения 1а или 1b и 0.015 моль замещенного бензальдегида в смеси 10 мл ксилола и 1 мл пиперидина кипятят 3 ч. Затем растворитель и избыток бензальдегида отгоняют с водяным паром, остаток кристаллизуют из водного ДМФА (соединения 2a-g,i) или смеси ДМФА-диоксан-вода, 5:2:1 (соединения 2h,j). Спектр ЯМР ¹H, δ, м. д.: соединений 2a-e - 8.42-8.52 (1H, с, =C₍₄₎-H), 7.78-7.91 (1H, с, NH), 7.42-7.60 (6H, м. Ph, -CH=CH-), 4.22-4.30 (2H, к, CH₂ в COOEt), 1.28-1.32 (3H, т, Me в COOEt); соединений 2f-j - 10.32-10.40 (1H, с, CONH), 8.32-8.48 (1H, с, =C₍₄₎-H), 7.65-7.86 (1H, с, NH), 7.28-7.57 (11H, м. Ph, -CH=CH-). ИК спектр, v, см⁻¹: соединений 2a-e - 3310-3340 (N-H), 2235-2240 (C=N), 1700-1715 (C₍₃₎-C=O), 1650-1660 (C₍₆₎=O); соединений 2f-j -3290-3310 (N-H), 3260-3275 (PhNH), 2230-2240 (C=N), 1620-1630 (C₍₃₎-C=O), 1645-1660 (C₍₆₎=O). Масс-спектр соединения 2g, *m/z* (*I*_{отн}, %): 384 [M⁺] (97), 382 (100), 289 (99), 273 (17), 263 (68), 261 (49), 245 (20), 234 (45), 207 (36), 191 (45), 146 (33).

Б. Раствор 0.01 моль соединения **1a** или **1b** и 1.3 мл (2.06 г, 0.011 моль) 3-бромбензальдегида в 5 мл уксусного ангидрида кипятят в течение 8 ч. Выливают в 100 мл воды, нейтра-лизуют и выпавший осадок кристаллизуют последовательно из уксусной кислоты и вод-ного ДМФА. Получают, соответственно, соединения **2d** (выход 0.37 г, 10%) и **2i** (выход 1.97 г, 44%).

Гидразиды 2-стирил-6-оксо-5-цианоникотиновой кислоты (3а–d). К раствору 0.01 моль соответствующего соединения 2а–d в 20 мл этанола прибавляют 7.5 мл (0.1 моль) гидразингидрата и кипятят в течение 6 ч. Выливают в 150 мл воды, выпавший осадок отфильтровывают и кристаллизуют из ДМФА. Спектр ЯМР ¹H, δ , м. д.: 8.32–8.39 (1H, c, =C₍₄₎–H), 8.18–8.24 (2H, c, NH₂), 7.40–7.64 (1H, c, NH), 6.95–7.58 (6H, м, Ph, –CH=CH–). ИК спектр, v, см⁻¹: 3405–3420, 3310–3355, 3250–3290 (NHNH₂), 3285–3315 (N–H), 2230–2240 (C=N), 1600–1620 (C₍₃₎–C=O), 1630–1635 (C₍₆₎=O).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. И. Сигова, М. Е. Коньшин, *ЖОХ*, **34**, 2083 (1984).
- П. В. Терентьев, А. П. Станкявичус, *Масс-спектрометрический анализ биологически* активных азотистых оснований, Мокслас, Вильнюс, 1987.
- 3. В. И. Сигова, В. С. Залесов, Н. В. Семякина, М. Е. Коньшин, А. В. Атавина, Деп. ЦБНТИ Медпрома, № 195-МП-84 Деп.
- 4. Г. Н. Першин, *Методы экспериментальной химиотерании*, Медицина, Москва, 1959, 109–111, 456–460.

Пермская государственная фармацевтическая академия, Пермь 614990, Россия e-mail: pfa@degacom.ru Поступило в редакцию 22.06.2001