В. И. Теренин, Е. А. Сумцова, Е. В. Кабанова, А. П. Плешкова^а, Н. В. Зык

ДИПИРРОЛО[1,2-а;2',1'-с]ПИРАЗИНЫ

8*. ЭЛЕКТРОФИЛЬНОЕ ЗАМЕЩЕНИЕ В РЯДУ ДИПИРРОЛО[1,2-*a*;2',1'-*c*]-ПИРАЗИНОВ И 5,6-ДИГИДРОДИПИРРОЛО[1,2-*a*;2',1'-*c*]ПИРАЗИНОВ. АЦИЛИРОВАНИЕ ДИПИРРОЛО[1,2-*a*,2',1'-*c*]ПИРАЗИНОВ

Ацилированием дипирроло[1,2-*a*;2',1'-*c*]пиразинов и 5,6-дигидродипирроло[1,2-*a*;2',1'-*c*]пиразинов хлорангидридом трихлоруксусной кислоты, *p*-тозилизоцианатом и дихлорангид-ридом изоцианатофосфорной кислоты (изоцианат Кирсанова) синтезированы эфиры, нитрилы, амиды ряда дипирроло[1,2-*a*,2',1'-*c*]пиразинов.

Ключевые слова: дипирроло[1,2-*a*,2',1'-*c*]пиразины, 5,6-дигидродипирроло[1,2-*a*,2',1'-*c*]пиразины, ацилирование.

Дипирроло[1,2-*a*,2',1'-*c*]пиразины легко вступают в реакции электрофильного замещения, такие как ацилирование, нитрование, аминометилирование, формилирование [2]. В продолжение этих исследований была изучена реакционная способность дипирролопиразинов **1a**,**b** и их 5,6-дигидроаналогов **1c**,**d** в условиях реакции трихлорацетилирования хлорангидридом трихлоруксусной кислоты.

Местом первоначальной атаки трихлорацетил-катиона является свободное α-положение пиррольного кольца. В реакции 2,8-диметилдипирроло[1,2-*a*;2',1'-*c*]пиразина (**1b**) и его дигидроаналога **1d** с эквимолярным количеством хлорангидрида трихлоруксусной кислоты с высокими выходами получаются продукты монозамещения **2b**,d.

1, **2**, **4 b** X–X = –CH=CH–; **d** X–X = –CH₂–CH₂–

^{*} Сообщение 7 см. [1].

В случае 2-метилдипирролопиразинов 1a,c, имеющих два свободных α -положения пиррольных колец, могут образовываться продукты ацилирования как по одному, так и по двум пиррольным кольцам молекулы, причем результат реакции зависит от соотношения субстрат : реагент.

Согласно квантово-химическим расчетам, в дипирролопиразине **1a** π -орбитальные плотности на B3MO положений 3 и 8 практически одинаковы, но термодинамически более стабильны катионы, образующиеся при электрофильной атаке по положению 3. Однако образование 8-замещенных производных менее стерически затруднено. При трихлорацетилировании пирролопиразина **1a** эквимолярным количеством реагента кроме продукта дизамещения **3a** был выделен 2-метил-8-трихлорацетилдипирроло[1,2-*a*;2',1'-*c*]пиразин (**2a**), в соотношении 2:1, соответственно, и лишь в следовых количествах 2-метил-3-трихлорацетилдипирроло[1,2-*a*;2',1'-*c*]пиразин (на основании анализа спектра ЯМР ¹H реакционной смеси), что можно объяснить доминированием пространственного фактора. При трихлорацетилировании дипирролопиразинов **1a,с** двукратным избытком реагента были получены продукты дизамещения: соответственно, 2-метил-3,8-дитрихлорацетилдипирроло[1,2-*a*;2',1'-*c*]пиразин (**3a**) и 2-метил-3,8-дитрихлорацетил-5,6-дигидродипирроло[1,2-*a*;2',1'-*c*]пиразин (**3c**).

1, 3, 4 a $X-X = -CH=CH-; c X-X = -CH_2-CH_2-$

В большинстве случаев тригалогенацетилпирролы под воздействием гидроксид-иона, вступают в галоформную реакцию с образованием пирролкарбоновых кислот и тригалогенометана: трифторацетилпиррол не реагирует со спиртами, однако его трихлораналог в условиях щелочного катализа был преобразован в сложный эфир с выходом более 80% [3]. Трихлорацетилдипирролопиразины при обработке спиртовым раствором щелочи легко вступают в галоформную реакцию и превращаются в соответствующие сложноэфирные производные дипирролопиразинов **4а–d**.

Арилсульфонилизоцианаты используются для С-ацилирования электро-

нообогащенных азотистых гетероциклов. Однако литературные данные о таких реакциях весьма противоречивы. Так, согласно данным [4] пиррол реаги-рует с *р*-тозилизоцианатом по положению 3 – β -положению пиррольного кольца. В более поздних работах [5, 6] на основании данных спектров ЯМР ¹Н было доказано, что пиррол и N-метилпиррол реагируют с *о*-хлор-бензолсульфонилизоцианатом по α -положению.

В качестве реагента нами был выбран *р*-тозилизоцианат как один из наиболее активных изоцианатов в реакциях электрофильного замещения [6]. Дипирролопиразины вступают в реакцию ацилирования, давая продукты замещения по α-положению пиррольных колец. Для 2-метилдипирроло[1,2-*a*;2',1'-*c*]пиразина (1а) и 5,6-дигидроаналога 1с при соотношении реагентов 1:2 с выходами порядка 90% были получены продукты дизамещения 5а,с. При эквимолярном соотношении реагентов получалась сложная смесь моно- и дизамещенных продуктов и исходного дипирролопиразина. В реакции соединения 1b и 2,8-диметил-5,6-дигидродипирроло[1,2-*a*;2',1'-*c*]пиразина (1d) с *p*-тозилизоцианатом при эквимолярном соотношении реагентов были получены продукты монозамещения, соответственно N¹-[(2,8-диметилдипирроло[1,2-*a*;2',1'-*c*]пиразин-3-ил)карбонил]-4-бензолсульфонамид (5b) и N¹-[(2,8-диметил-5,6-дигидродипирроло-[1,2-а;2',1'-с]пиразин-3-ил)карбонил]-4-бензолсульфонамид (5d). При использовании избытка р-тозилизоцианата получена смесь дизамещенных продуктов, разделить которую не удалось.

Другим активным С-ацилирующим агентом является дихлорангидрид изоцианатофосфорной кислоты (изоцианат Кирсанова), взаимодействуя с которым, например, N-метилпиррол, индол и 2-метилфуран образуют дихлорангидриды N-гетариламидофосфорных кислот [7].

Взаимодействием соединения **1d** с изоцианатом Кирсанова был получен дихлорангидрид N-(2,8-диметил-5,6-дигидродипирроло[1,2-*a*;2',1'-*c*]-532 пиразин-3-карбокси)амидофосфорной кислоты (**6d**). В спектре ЯМР ³¹Р в CDCl₃ этого соединения зафиксирован сигнал атома фосфора при 7.503 м. д.

Полученный дихлорангидрид **6d** является крайне неустойчивым соединением, которое в растворе хлористого метилена при комнатной температуре превращается в 2,8-диметил-5,6-дигидродипирроло[1,2-*a*;2',1'-*c*]пиразин-3-карбонитрил (**7d**). В реакциях дипирролопиразинов **1а**–**c** с изоцианатом Кирсанова промежуточные дихлорангидриды **6а–c** не выделяли.

В реакциях изоцианата Кирсанова с дипирролопиразинами **1**а,**b**, были выделены продукты монозамещения по положению 3 – нитрилы **7**а,**b**. Кроме этого, по данным TCX и хроматомасс-спектрометрии, в реакции 2-метилдипирроло[1,2-a;2',1'-c]пиразина (**1**а), имеющего два свободных α -положения пиррольных колец, с изоцианатом Кирсанова в следовых количествах образуется динитрил.

Таблица 1

Физико-химические характеристики синтезированных соединений

Соеди-	Брутто-	<u>Найдено, %</u> * Вычислено, %			T _{nn} , °C	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} ,%)	Выход, %	
нение	формула	СН		Ν	-			
2a	$C_{13}H_9Cl_3N_2O$					M ⁺ 314 (21), 280 (12), 253 (12), 251 (19), 217 (7), 198 (26), 197 (100), 170 (15), 169 (77), 168 (14)	11	
2b	$C_{14}H_{11}Cl_3N_2O$	M ⁺ <u>327.993710</u> 327.993693			142 (с разл.)	M ⁺ 328 (24), 294 (5), 265 (12), 212 (15), 211 (100), 183 (41), 115 (2), 106 (6), 92 (4), 91 (7)	69	
2d	$C_{14}H_{13}Cl_{3}N_{2}O$	$\begin{array}{c c} \underline{50.91} \\ \hline 50.70 \\ \end{array} \qquad \begin{array}{c} \underline{3.62} \\ \overline{3.95} \\ \end{array} \qquad \begin{array}{c} \underline{8.25} \\ \overline{8.45} \\ \end{array}$		172	M ⁺ 330 (8), 296 (9), 267 (14), 233 (12), 214 (15), 213 (77), 186 (12), 185 (60), 183 (13)	88		
3 a	$C_{15}H_8Cl_6N_2O_2$	$\frac{M^{+}}{457.872440}$			159–160	M ⁺ 458 (3), 397 (6), 345 (17), 343 (45), 341 (46), 309 (19), 307 (31), 250 (15), 196 (36), 168 (10), 115 (12), 112 (44)	72	
3c	$C_{15}H_{10}Cl_6N_2O_2$	$\frac{M^{+}}{459.888670}}{459.887344}$			196	M ⁺ 460 (2), 399 (8), 345 (40), 343 (41), 311 (15), 309 (24), 252 (10), 198 (18), 170 (9), 142 (19), 115 (20), 113 (46)	64	
4 a	$C_{15}H_{14}N_2O_4$	<u>62.31</u> 62.93	<u>5.06</u> 4.93	<u>9.65</u> 9.78	188	M ⁺ 286 (100), 225 (41), 228 (45), 227 (41), 168 (18), 142 (10), 140 (11), 112 (29), 63 (15)	47	
4b	$C_{14}H_{14}N_2O_2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		150	M ⁺ 242 (100), 241 (43), 211 (15), 184 (44), 183 (52), 182 (13), 181 (11), 121 (11), 91 (21), 57 (11)	59		
4c	$C_{15}H_{16}N_2O_4$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		186	M ⁺ 288 (100), 258 (9), 257 (23), 230 (20), 229 (19), 214 (3), 197 (2), 169 (7), 144 (8), 142 (4), 116 (3), 115 (6), 89 (4), 59 (4)	52		
4d	$C_{15}H_{16}N_2O_4$	$\begin{array}{c c} \underline{68.83} \\ \hline 68.83 \\ \hline 6.60 \\ \hline 11.47 \\ \hline \end{array}$			154	M ⁺ 244 (100), 243 (25), 228 (4), 213 (14), 186 (28), 185 (34), 169 (6), 122 (8), 92 (9), 71 (10), 57 (17), 43 (28)	68	

5a	$C_{27}H_{24}N_4O_6S_2$	<u>57.37</u> 57.43	$\frac{4.09}{4.28}$	<u>9.66</u> 9.92	246–247	[M ⁺ -197] 367 (4), 197 (28), 170 (55), 169 (44), 155 (53), 92 (12), 91 (100), 89 (10), 65 (27), 63 (13), 40 (20)	91
5b	$C_{20}H_{19}N_3O_3S$	<u>62.44</u> 62.97	<u>4.97</u> 5.02	<u>10.75</u> 11.02	198–200	M ⁺ 381 (26), 211 (21), 197 (26), 184 (77), 183 (100), 155 (48), 92 (13), 91 (96), 65 (20), 63 (10), 39 (11)	79
5c	$C_{27}H_{26}N_4O_6S_2$	<u>57.31</u> 57.23	$\frac{4.70}{4.62}$	<u>9.73</u> 9.89	202	[M ⁺ -197] 369 (3), 197 (16), 172 (38), 171 (27), 155 (38), 92 (11), 91 (100), 65 (24), 63 (10), 39 (11)	82
5d	$C_{20}H_{19}N_3O_3S$		M ⁺ <u>383.130364</u> 383.132200	<u>1</u>)	192–194	M ⁺ 383 (7), 197 (18), 187 (13), 186 (100), 185 (75), 144 (32), 93 (12), 92 (16), 91 (44), 65 (9)	98
6 d	$C_{13}H_{14}Cl_{2}N_{3}O_{2}P$				123 (с разл.)		87
7a	$C_{12}H_9N_3$	<u>73.97</u> 73.83	<u>4.81</u> 4.65	<u>21.51</u> 21.52	132	M ⁺ 195 (100), 194 (61), 193 (11), 169 (7), 140 (7), 115 (4), 97 (15), 63 (12)	42
7b	$C_{13}H_{11}N_3$	<u>74.59</u> 74.62	$\frac{5.34}{5.30}$	$\frac{19.94}{20.08}$	161	M ⁺ 209 (86), 208 (100), 207 (10), 193 (6), 127 (3), 103 (13), 77 (5), 63 (5)	67
7c	$C_{12}H_{11}N_3$	<u>73.26</u> 73.07	<u>5.92</u> 5.62	<u>21.54</u> 21.30	126	M ⁺ 197 (100), 196 (29), 194 (4), 181 (7), 169 (6), 142 (5), 115 (4), 98 (10), 97 (4)	34 (14)
7d	$C_{13}H_{11}N_3$	<u>73.71</u> 73.91	<u>5.99</u> 6.20	<u>19.64</u> 19.89	162–163	M ⁺ 211 (100), 210 (70), 195 (5), 186 (5), 185 (5), 105 (7), 104 (11)	63
8c	$C_{13}H_{10}N_4$						6

* Для соединений 2b, 3a,c и 5d приведен масс-спектр высокого разрешения.

Co-	Химические сдвиги, б, м. д. (КССВ, Ј, Гц)											
еди- нение		Протоны и	заместители пирр	Протоны пира	Другие протоны							
	H (1)	R (2)	H(R) (8)	H (9)	H(R) (10)	H (5)	H (6)					
1	2	3	4	5	6	7	8	9				
2a	6.68	2.31		7.88	6.61	7.34	8.74	7.07				
	(1Н, уш. с)	(3Н, уш. с)		(1Н, д, <i>J</i> _{9,10} =4.8)	(1Н, д, J _{10,9} =4.8)	(1Н, д, <i>J</i> _{5,6} =6.3)	(1Н, д, J _{6,5} = 6.1)	(1Н, уш. с, Н-3)				
2b	6.47	2.73	2.45	6.43	6.94	8.59	7.13					
	(1Н, уш. с.)	(3Н, уш. с)	(3Н, уш. с)	(1Н, д. д, <i>J</i> _{9,10} = 3.8; <i>J</i> _{H,CH3} = 0.8)	(1Н, д, J _{10,9} =3.8)	(1Н, д, J _{5,6} =6.3)	(1Н, д, J _{6,5} = 6.4)					
2d	6.20	2.56	2.29	5.98	6.41	4.63	4.09					
	(1Н, д, J _{H,CH3} = 0.7)	(3Н, уш. с)	(3Н, уш. с)	(1Н, д. д, <i>J</i> _{9,10} = 3.7; <i>J</i> _{H,CH3} = 0.7)	(1Н, д, J _{10,9} =3.7)	(2Н, м)	(2Н, м)					
3a	6.79	2.78		7.95	6.87	8.75	8.90					
	(1H, c)	(3Н, уш. с)		(1Н, д, <i>J</i> _{9,10} = 4.8)	(1Н, д. д, J _{10,9} = 4.8 J _{10,6} = 0.5)	(1Н, д, J _{5,6} = 6.4)	(1Н, д, J _{6,5} = 6.4)					
3c	6.46 (1Н, д, J _{H,CH3} =0.8)	2.57 (3Н, уш. с)		7.58 (1Н, д, <i>J</i> _{9,10} =4.8)	6.55 (1Н, д, J _{10,9} =4.8)	4.63 (2Н, м)	4.86 (2Н, м)					
4a	6.55	2.50	_*	7.33	6.63	8.58	8.68	3.90				
	(1Н, уш. с)	(3Н, уш. с)		1Н, д, (J _{9,10} =4.5)	(1Н, д. д, J _{10,9} = 4.2; J _{10,6} = 0.6)	(1Н, д, J _{5,6} =6.6)	(1Н, д, J _{6,5} = 6.6)	(3H, c, OCH ₃ -8); 3.93 (3H, c, OCH ₃ -3)				

Спектры ЯМР ¹Н соединений 2–8

Таблица 2

536

4b	6.39	2.49	2.45	6.35	6.59	8.60	7.19	3.91 (3H, c, OCH ₃ -3)
	(1Н, уш.)	(3Н, уш. с)	(3Н, уш. с)	(1H, \exists . \exists , $J_{5,10} = 3.5;$ $J_{H,CH3} = 0.6)$	(1H, \exists . \exists , $J_{10,9} = 3.7;$ $J_{10,6} = 0.4)$	(1Н, д, J _{5,6} =6.3)	$(1H, д, J_{6,5} = 6.2; J_{6,10} = 0.4)$	
4c	6.26	2.34	_*	6.97	6.35	4.73		3.83 (3H, c, OCH ₃ -8);
	(1Н, уш. с)	(3Н, уш. с)		(1Н, д, <i>J</i> _{5,10} = 4.1)	(1Н, д, <i>J</i> _{10,9} = 4.1)	(4 H	I, c)	3.86 (3H, c, OCH ₃ -3)**
4d	6.09	2.33	2.26	5.93	6.29	4.72	4.04	3.83 (3H, c, OCH ₃ -3)
	(1Н, уш. с)	(3Н, уш. с)	(3Н, д, J _{CH3,H} =0.7)	$(1H, д. д, J_{9,10} = 3.6; J_{H,CH3} = 0.6)$	(1Н, д, J _{10,9} =3.5)	(2Н, м)	(2Н, м)	
5a	6.88	_*	_*	7.81	6.96	8.49	8.09	2.35, 2.38, 2.46 (9H, 3c, CH ₃ -
	(1Н, уш. с)			(1Н, д, <i>J</i> _{5,10} = 4.7)	(1Н, д, J _{10,9} =4.5)	(1Н, д, J _{5,6} =6.2)	(1Н, д, J _{6,5} =6.0)	2, 2CH ₃ -Tos)**; 7.52 (4H, м, <i>m</i> -Tos); 7.95–8.00 (4H, м, <i>o</i> -Tos)
5b	6.36	_*	2.42	6.37	6.60	8.51	7.03	2.44, 2.58 (6H, 2c, CH ₃ -2,
	(1Н, уш. с)		(3H, c)	(1Н, д, J _{5,10} =3.7)	(1Н, д, <i>J</i> _{10,9} = 3.9)	(1Н, д, J _{5,6} =6.3)	(1Н, д, J _{6,5} =6.2)	СН ₃ -Tos)**; 7.36 (2Н, д, <i>J</i> = 8.2, <i>m</i> -Tos); 8.06 (2Н, д, <i>J</i> = 8.2, <i>o</i> -Tos)
5c	(1Н, уш. с)	_*	_*	6.91 (1Н, д, J _{5,10} = 4.4)	6.31 (1Н, д, J _{5,10} = 4.5)	4.50 (2Н, м)	4.56 (2Н, м)	2.41, 2.43, 2.44 (9H, 3c, CH ₃ -2, 2CH ₃ - Tos)**; 7.34 (4H, м, <i>m</i> -Tos); 7.98–8.01 (4H, м, <i>o</i> -Tos)
5d	6.07 (1Н, уш.)	_*	2.24 (3H, c)	5.93 (1Н, д, J _{5,10} = 3.6)	6.31 (1Н, д, J _{10,9} =3.5)	4.63 (2Н, м)	3.96 (2Н, м)	2.43, 2.44 (6H, 2c, CH ₃ -2, CH ₃ -Tos)**; 7.35 (2H, д, <i>J</i> = 8.2, <i>m</i> -Tos); 8.02 (2H, д, <i>J</i> = 8.2, <i>o</i> -Tos)

Окончание таблицы 2.

1	2	3	4	5	6	7	8	9
6d	6.06	2.27	2.23	5.94	6.29	4.22	4.11	4.40
	(1H, c)	(3H, c)	(3H, c)	(1Н, д, J _{9,10} = 3.2)	1Н, д, J _{10,9} = 3.5	(2Н, м)	(2Н, м)	(1Н, уш. с, NН)
7a	6.32	2.35	7.08	6.59-	-6.60	7.20	7.17	
	(1Н, уш. с)	(3Н, д, J _{CH3,H} = 0.7)	(1Н, д. д, <i>J</i> _{8,9} =2.5; <i>J</i> _{8,10} =1.6)	(2H	, м)	(1Н, д, <i>J</i> _{5,6} = 6.1)	(1Н, д, <i>J</i> _{6,5} = 6.1)	
7b	6.33	2.44	2.38	6.35	6.56	7.14	7.27	
	(1Н, уш. с)	(3Н, д, J _{CH3,H} = 0.8)	(3Н, уш. с)	(1Н, д. д, <i>J</i> _{9,10} =3.9; <i>J</i> _{Н,СН3} = 0.8)	(1Н, д, J _{10,9} = 3.9)	(1Н, д, J _{5,6} =6.0)	(1Н, д, J _{6,5} = 6.0)	
7c***	6.11	2.24	6.68	6.21	6.37	4.	25	
	(1Н, д, J _{H,CH3} = 0.5)	(3Н, уш. с)	(1Н, д. д, <i>J</i> _{8,9} =2.3; <i>J</i> _{8,10} =1.2)	(1H, $\exists d, d, d, J_{9,10} = 3.9; J_{9,8} = 2.3$)	(1Н, д. д, J _{10,9} =3.9; J _{10,8} =1.3)	(4H	I, c)	
7d	6.06	2.27	2.23	5.94	6.29	4.22	4.10	
	(1H, c)	(3Н, уш. с)	(3Н, уш. с)	$(1H, \mu, \mu, \mu, J_{9,10} = 3.6; J_{H,CH3} = 0.7)$	(1Н, д, J _{10,9} =3.6)	(2Н, м)	(2Н, м)	
8c	6.27	2.26		6.85	6.37	4.25-	-4.38	
	(1Н, д, <i>J</i> _{Н,СН3} = 0.4)	(3Н, уш. с)		(1Н, д, <i>J</i> _{9,10} =4.1)	(1Н, д, <i>J</i> _{10,9} = 4.1)	(4H	[, м)	

* Химические сдвиги приведены в графе "Другие протоны".
** Возможно обратное отнесение протонов.
*** Спектр ЯМР ¹³С, б, м. д.: 11.77 (CH₃); 42.91, 43.81 (CH₂-5,6); 104.18, 105.15, 109.44, 120.81 (CH-1,8,9,10); 100.61, 114.17, 123.19, 130.28, 132.95 (C-2,3,11,12); 114.17 (CN).

Однако для 2-метил-5,6-дигидродипирроло[1,2-a;2',1'-c]пиразина (1c) реакция протекает не столь однозначно. При эквимолярном соотношении субстрат:реагент доминирующим продуктом реакции является 2-метил-5,6-дигидродипирроло[1,2-a;2',1'-c]пиразин-3-карбонитрил (7c) с выходом 34%, при двукратном же избытке реагента были выделены два продукта реакции: наряду с соединением 7c был получен также и 2-метил-5,6-дигидродипирроло[1,2-a;2',1'-c]пиразин-3,8-дикарбонитрил (8c) в соотношении 2:1, причем суммарный выход продукта составил всего 20%.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на спектрометре VXR-400 фирмы Varian (рабочая частота – 400 МГц) в растворе CDCl₃ при температуре 28 °C. В качестве внутреннего стандарта использован ТМС. Спектры ЯМР ³¹Р (рабочая частота – 160 МГц) регистрировались относительно H_3PO_4 как внешнего эталона. Масс-спектры соединений записаны на приборе Kratos MS-90 при энергии ионизации 70эВ. Масс-спектры высокого разрешения получены с использованием перфторокеросина (PFK) в качестве стандарта, методом peak-matching, при разрешении \approx 8000 (на уровне 10%) на приборе VG ZabSpec (VG Analytical, Manchester UK). Контроль за ходом реакции осуществляли методом TCX на пластинах Silufol-254.

Выходы, константы и спектральные характеристики исследованных соединений приведены в таблицах 1, 2.

Трихлорацетилирование дипирролопиразинов (общая методика). К раствору 1 ммоль дипирролопиразина в 5 мл сухого хлористого метилена при перемешивании добавляют 1 ммоль/2 ммоль хлорангидрида трихлоруксусной кислоты. Реакционную смесь нагревают 1ч, выливают в воду, органический слой отделяют, растворитель упаривают. Остаток хроматографируют на колонке с нейтральной Al₂O₃ смывая этилацетатом.

Сложноэфирные производные дипирролопиразинов (общая методика). Обрабатывают 1 ммоль трихлорацетилдипирролопиразина 10 мл 5н NaOH (в 50% MeOH), выдерживают 1 ч при комнатной температуре. Осадок отфильтровывают, промывают водой, сушат. Хроматографируют на колонке с SiO₂, 100/160, смывая этилацетатом.

Ацилирование дипирролопиразинов *n*-толуолсульфонилизоцианатом (общая методика). К раствору 1 ммоль дипирролопиразина в 5 мл сухого бензола при переме-шивании прибавляют 1 ммоль/ 2 ммоль *n*-толуолсульфонилизоцианата. Перемешивают 1 ч, осадок отфильтровывают, промывают гептаном.

Ацилирование дипирролопиразинов изоцианатом Кирсанова, получение нитрилов (общая методика). К 1 ммоль дипирролопиразина в 5 мл сухого гексана при охлаждении и перемешивании добавляют 1 ммоль/2 ммоль дихлорангидрида изоцианатофосфорной кислоты (изоцианата Кирсанова) [8], перемешивают 1 ч, осадок отфильтровывают, промывают гептаном, затем растворяют в сухом хлористом метилене, оставляют на 1 ч при комнатной температуре, растворитель упаривают, сухой остаток экстрагируют горячим гептаном.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. И. Теренин, Е. А. Сумцова, М. А. Ковалкина, С. З. Вацадзе, Е. В. Кабанова, И. Ф. Лещева, А. П. Плешкова, Н. В. Зык, *XTC*, 1688 (2003).
- 2. В. И. Теренин, Е. Л. Ручкина, И. Ф. Лещева, А. П. Плешкова, Ю. Г. Бундель, *XГС*, 52 (1997).
- 3. J. W. Harbuk, H. Rapoport J. Org. Chem. 37, 3618 (1972).
- 4. M. Seefelder, Chem. Ber., 96, 3243 (1963).
- 5. Н. Л. Нам, И. И. Грандберг, В. И. Сорокин, ХГС, 46 (1994).
- 6. Н. Л. Нам, И. И. Грандберг, В. И. Сорокин, *XГС*, 205 (1996).
- A. A. Tolmachev, A. A. Chaikovskaya, R. V. Smaliy, T. N. Kudrya, A. A. Yurchenko, A. M. Pinchuk, *Heteroatom Chem.*, 10, 343 (1999).
- 8. А. В. Кирсанов, *ЖОХ*, **24**, 1033 (1954).

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: vter@org.chem.msu.ru Поступило в редакцию 19.03.2003

^аИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 119991