М. В. Вовк, А. В. Больбут, В. И. Бойко, В. В. Пироженко, А. Н. Чернега, А. А. Толмачев

СИНТЕЗ 2-ТРИГАЛОГЕНМЕТИЛ-3,4-ДИГИДРОТИЕНО[2,3-*d*]-ПИРИМИДИН-4-ОНОВ

N-(1-Хлор-2,2,2-тригалогенэтилиден)-О-метилуретаны при комнатной температуре реагируют с 2-аминотиофенами с образованием N-(2-тиенил)-N'-(метоксикарбонил)тригалогенацетамидинов, которые при нагревании в кипящем толуоле циклизуются в 2-тригалогенметил-3,4-дигидротиено[2,3-*d*]пиримидин-4-оны.

Ключевые слова: 2-аминотиофены, N-(2-тиенил)-N'-метоксикарбониламидины, 2-тригалогенметил-3,4-дигидротиено[2,3-*d*]пиримидин-4-оны, N-(1-хлор-2,2,2-тригалогенэтилиден)-О-метилуретаны, внутримолекулярная циклизация.

Среди производных тиено [2,3-d] пиримидинов обнаружены вещества, обладающие антивирусной, фунгицидной и инсектицидной активностью [1], антибактериальными и антипаразитическими свойствами [2], антигипертензивным [3], противоопухолевым [4] и антигистаминным действием [5]. Для синтеза указанной конденсированной гетероциклической системы наиболее часто используют два метода. Первый включает аннелирование 6-хлор-5-формил(циано)пиримидинов 2-меркаптоацетатами [6, 7]. Второй основан на конденсации 2-амино-3-алкоксикарбонилтиофенов с амидами [8] и гуанидинами [9] и оказывается эффективным для получения 3,4-дигидро[2,3-*d*]пиримидин-4-онов, которые, в свою очередь, являются базовыми соединениями для функционализации положения 4 разнообразными нуклеофильными группировками [10, 11]. 3,4-Дигидротиено [2,3-d] пиримидин-4-оны с тригалогенметильными заместителями в положении 2 до настоящего времени в литературе не описаны, хотя следует ожидать, что введение трифторметильной группы в пиримидиновое ядро должно повышать липофильные свойства молекулы [12].

Нами предложен новый удобный подход к синтезу такого типа соединений, основанный на взаимодействии N-(1-хлор-2,2,2-тригалогенэтилиден)-О-метилуретанов **1а,b** [13] с 2-аминотиофенами **2а,b**. Детальное исследование найденной реакции позволило установить, что, несмотря на бифильный характер реагентов, она является региоселективной и при комнатной температуре протекает по схеме N-иминоалкилирования аминотиофенов с образованием N-(2-тиенил)-N'-(метоксикарбонил)тригалогенацетамидинов **3а–d** (табл. 1). Строение последних согласуется с результатами измерений спектров ЯМР ¹Н (табл. 2), в которых для соединений **3а,b** в диапазонах 7.03–7.15 и 7.68–7.70 м. д. имеются дублеты С₍₃₎Н и С₍₄₎Н протонов, а для соединений **3с,d** в области 6.91–7.04 — синглеты 455 $C_{(3)}$ Н протона тиофенового цикла. ИК спектры характеризуются полосами поглощения связей N–H (3230–3300), C=O (1690–1750), а для соединений **3b,d** также C=N (1650 см⁻¹).

Соединения **3а–d** при нагревании в кипящем толуоле (3 ч) подвергаются внутримолекулярной циклизации в тиено[2,3-*d*]пиримидин-4-оны **4а–d** (см. табл. 1) за счет электрофильной атаки карбонильной группы по π -электронообогащенному атому C₍₃₎ тиофенового кольца. Фактором, определяющим процесс циклизации, по-видимому, является повышенная электрофильность карбонильной группы, обусловленная в значительной степени влиянием тригалогенамидинового фрагмента. В случае же аминаля **3е** с менее электрофильной группой C=O, полученного из N-этилиденуретана **1с** [14] и аминотиофена **2b**, ни при указанной на схеме, ни при более высокой (140 °C) температуре образование соединения **4e** не наблюдалось.

1 a Hlg = F, b Hlg = Cl; 2 a R = H, R' = Me; b R = Me, R' = Et; 3, 4 a Hlg = F, R = H, R' = Me; b Hlg = Cl, R = H, R' = Me; c Hlg = F, R = Me, R' = Et; d Hlg = Cl, R = Me, R' = Et

Соеди-	Бругто-	<u>Найдено, %</u> Вычислено, %		Т. пл., ⁰С	Выход, %
nenne	φοριάζεια	Ν	Hlg		
3a	$C_{10}H_9F_3N_2O_4S$	<u>9.29</u> 9.03	$\frac{17.84}{18.37}$	110–111	78
3b	$C_{10}H_9Cl_3N_2O_4S$	<u>7.60</u> 7.79	<u>29.23</u> 29.58	107-108	73
3c	$C_{12}H_{13}F_3N_2O_4S$	<u>8.45</u> 8.28	$\frac{17.07}{16.85}$	118–119	84
3d	$C_{12}H_{13}Cl_3N_2O_4S$	<u>7.58</u> 7.23	<u>27.89</u> 27.44	97–98	80
4a	$C_9H_5F_3N_2O_3S$	<u>9.72</u> 10.07	<u>20.63</u> 20.49	227–228	76
4b	$C_9H_5Cl_3N_2O_3S$	<u>8.85</u> 8.55	<u>32.74</u> 32.47	238–239	79
4 c	$C_{11}H_9F_3N_2O_3S$	<u>8.86</u> 9.15	<u>18.97</u> 18.61	159–160	74
4d	$C_{11}H_9Cl_3N_2O_3S$	<u>8.17</u> 7.88	<u>30.27</u> 29.91	220-221	77

Характеристики синтезированных соединений За-d, 4а-d

Таблица 2

Спектральные характеристики соединений За-d, 4а-d

Соеди-	ИК спектр, v, см ⁻¹		Спектры ЯМР ¹ Н, б, м. д., КССВ (<i>J</i> , Гц)	Спектры ЯМР ¹⁹ F,
нение	NH	CO		δ, м. д.
3a	3285	1690 1730	3.76 (3H, c, OCH ₃); 3.90 (3H, c, OCH ₃); 7.03 (1H, д, <i>J</i> = 3.8, CH); 7.18 (1H, c, NH); 7.70 (1H, д, <i>J</i> = 3.8, CH)	72.3
3b	3230	1650* 1700 1735	3.73 (3H, c, OCH ₃); 3.89 (3H, c, OCH ₃); 7.19 (2H, м, CH + NH); 7.68 (1H, д, <i>J</i> = 3.9, CH)	
3c	3250	1700 1750	1.37 (3H, т, <i>J</i> = 7.1, CH ₃); 2.51 (3H, с, CH ₃); 3.78 (3H, с, OCH ₃); 4.32 (2H, кв, <i>J</i> = 7.1, OCH ₂); 6.91 (1H, с, C ₍₃ H); 7.08 (1H, с, NH)	71.8
3d	3300	1650* 1700 1730	1.36 (3H, т, <i>J</i> = 7.2, CH ₃); 2.51 (3H, с, CH ₃); 3.74 (3H, с, OCH ₃); 4.32 (2H, кв, <i>J</i> = 7.2, OCH ₂); 7.04 (1H, с, C ₍₃₎ H); 7.08 (1H, с, NH)	
4 a	3110	1700 1735	3.90 (3H, c, OCH ₃); 8.04 (1H, c, C ₍₅₎ H); 14.5 (1H, уш. c, NH)	69.0
4b	3200	1700 1740	3.90 (3H, c, OCH ₃); 8.05 (1H, c, C ₍₅₎ H); 14.0 (1H, уш. c, NH)	
4c	3200	1675 1720	1.33 (3H, т, <i>J</i> = 7.1, CH ₃); 2.83 (3H, с, CH ₃); 4.35 (2H, кв, <i>J</i> = 7.1, OCH ₂); 13.8 (1H, уш. с, NH)	68.9
4d	3200	1720 1735	1.37 (3H, т, <i>J</i> = 7.1, CH ₃); 2.86 (3H, с, CH ₃); 4.33 (2H, кв, <i>J</i> = 7.1, OCH ₂); 13.3 (1H, уш. с, NH)	

* v_{C=N}.

Данные ИК, ЯМР ¹H, ¹⁹F (табл. 2) и ¹³C (табл. 3) спектров подтверждают циклическую структуру синтезированых соединений, однако не дают однозначного ответа о местоположении протона в амидиновой системе связей, на которое может существенно влиять сильно акцепторная тригалогенметильная группа. По этой причине нами было проведено рентгеноструктурное исследование соединения **4d** и установлено, что в кристалле протон находится у атома азота в положении 3, т. е. целевые соединения имеют структуру 3,4-дигидротиено[2,3-*d*]пиримидин-4-онов.

Обнаружено, что в кристалле соединения 4d имеются две симметрически независимые молекулы (А и В), обладающие весьма схожими геометрическими параметрами. Общий вид этих молекул показан на рис.1, основные длины связей и валентные углы приведены в табл. 4. Центральная бициклическая система в молекулах А и В фактически планарна: отклонения атомов от среднеквадратичной плоскости не превышают 0.039 и 0.023 А соответственно, двугранный угол между 6- и 5-членным циклами составляет лишь 2.4° и 1.2°. Геометрические параметры бициклической системы свидетельствуют о существенной делокализации электронной плотности [15, 16]. Экзоциклическая система связей С-С(=О)-О (C₍₁₎-C₍₉₎(=O₍₂₎)-O₍₃₎ в молекуле А и C₍₁₂₎-C₍₂₀₎(=O₍₅₎)-O₍₆₎ в молекуле В) лежит в плоскости бицикла: соответствующие двугранные углы составляют 3.1° и 8.2°. В кристалле соединения 4d посредством относительно прочной [17] водородной связи N-H···O молекулы объединены в центросимметричные димеры АА' и ВВ' (рис. 2). Основные геометрические параметры этих связей Н следующие: N₍₂₎…O₍₁₎ 2.759(7), H₍₂₎…O₍₁₎ 1.86(6), $N_{(2)}-H_{(2)} 0.91(6)$ Å, $N_{(2)}H_{(2)}O_{(1)} 169(4)^{\circ}$; $N_{(4)}\cdots O_{(4)} 2.816(6)$, $H_{(4)}\cdots O_{(4)} 2.02(5)$, $N_{(4)}-H_{(4)} 0.82(5)$ Å, $N_{(4)}H_{(4)}O_{(4)} 163(4)^{\circ}$.

Таблица З

Соеди- нение	R	OR'	CHlg ₃	C _(4a)	C ₍₅₎
4 a	-	52.88	118.02 (кв, ¹ J _{C-F} = 276.1)	124.47	126.89
4b	-	52.88	92.98	122.76	126.92
4c	14.52	61.36 (OCH ₂) 13.92 (CH ₃)	117.87 (кв, ¹ <i>J</i> _{C-F} =276.3)	123.75	142.21
4d	14.61	61.39 (OCH ₂) 14.00 (CH ₃)	92.46	124.76	142.24
Соеди- нение	C ₍₆₎	C ₍₂₎	C (7a)	C=O	C (4)
4 a	131.53	147.13 (кв, ² J _{C-F} = 37.8)	159.86	161.14	165.36
4b	131.42	155.92	160.36	161.20	165.22
4c	124.66	146.41 (кв, ² J _{C-F} = 37.6)	160.11	161.35	163.69
4d	122.31	154.88	160.49	161.49	163.46

Спектры ЯМР ¹³С, б, м. д., КССВ (Ј, Гц) соединений 4а-d

Рис. 1. Общий вид двух симметрически независимых молекул **A** и **B** соединения **4d** (из атомов водорода показаны лишь атомы H₍₂₎ и H₍₄₎)

Рис. 2. Фрагмент кристаллической упаковки соединения **4d**. Пунктиром обозначены межмолекулярные водородные связи N–H…O

459

Связь	d, Å	Угол	ω, град.
$S_{(1)}-C_{(1)}$	1.745(6)	$C_{(1)} - S_{(1)} - C_{(4)}$	90.7(3)
S ₍₁₎ -C ₍₄₎	1.690(6)	$C_{(12)}-S_{(2)}-C_{(15)}$	90.2(2)
S ₍₂₎ –C ₍₁₂₎	1.721(5)	C ₍₄₎ -N ₍₁₎ -C ₍₅₎	114.9(5)
$S_{(2)} - C_{(15)}$	1.714(5)	$C_{(5)} - N_{(2)} - C_{(6)}$	123.7(5)
O ₍₁₎ –C ₍₆₎	1.226(7)	C(15)-N(3)-C(17)	113.8(5)
O ₍₄₎ –C ₍₁₆₎	1.235(6)	C(16)-N(4)-C(17)	124.3(5)
N(1)-C(4)	1.384(7)	S ₍₁₎ -C ₍₁₎ -C ₍₂₎	113.4(4)
N ₍₁₎ -C ₍₅₎	1.279(7)	$C_{(1)} - C_{(2)} - C_{(3)}$	110.6(5)
N ₍₂₎ -C ₍₅₎	1.364(7)	$C_{(2)} - C_{(3)} - C_{(4)}$	112.7(5)
N(2)-C(6)	1.385(8)	C(4)-C(3)-C(6)	118.5(5)
N(3)-C(15)	1.356(6)	S ₍₁₎ -C ₍₄₎ -C ₍₃₎	112.7(4)
N(3)-C(17)	1.290(7)	N(1)-C(4)-C(3)	124.9(5)
N ₍₄₎ -C ₍₁₆₎	1.377(6)	N ₍₁₎ -C ₍₅₎ -N ₍₂₎	124.6(5)
N ₍₄₎ -C ₍₁₇₎	1.354(7)	N ₍₂₎ -C ₍₆₎ -C ₍₃₎	113.4(5)
C(1)-C(2)	1.354(8)	S(2)-C(12)-C(13)	114.6(4)
C ₍₂₎ –C ₍₃₎	1.433(8)	$C_{(12)}-C_{(13)}-C_{(14)}$	109.7(4)
C(3)-C(4)	1.383(8)	C(13)-C(14)-C(15)	113.6(5)
C ₍₃₎ –C ₍₆₎	1.430(8)	$C_{(15)}$ - $C_{(14)}$ - $C_{(16)}$	116.8(4)
$C_{(12)} - C_{(13)}$	1.365(8)	S(2)-C(15)-C(14)	112.0(4)
$C_{(13)} - C_{(14)}$	1.423(7)	$N_{(3)}-C_{(15)}-C_{(14)}$	127.4(5)
C ₍₁₄₎ –C ₍₁₅₎	1.379(7)	N ₍₄₎ -C ₍₁₆₎ -C ₍₁₄₎	113.3(5)
C(14)-C(16)	1.437(8)	N(3)-C(17)-N(4)	124.3(5)

Основные длины связей (d) и валентные углы (w) в молекуле соединения 4d

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе UR-20 в таблетках KBr. Спектры ЯМР ¹H, ¹³C и ¹⁹F получены на спектрометре Varian VXR-300 (300, 75.5 и 282 МГц соответственно) в растворах CDCl₃ для соединений **3a–d**, (CD₃)₂SO для соединений **4a–d**, внутренние стандарты TMC (¹H, ¹³C) и CCl₃F (¹⁹F).

Рентгеноструктурное исследование монокристалла соединения 4d с линейными размерами 0.28 × 0.38 × 0.50 мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf–Nonius CAD-4 (Cu K_{α} -излучение, отношение скоростей сканирования $\omega/2\theta = 1.2$, $\theta_{\text{max}} = 70^{\circ}$, сегмент сферы $0 \le h \le 9$, $-13 \le k \le 13$, $-17 \le l \le 17$).

Всего было собрано 5105 отражений, из которых 4782 являются симметрически независимыми (*R*-фактор усреднения 0.051). Кристаллы соединения 4d триклинные, $a = 10.615(2), b = 11.213(3), c = 14.440(2) Å, \alpha = 95.67(2), \beta = 111.39(1), \gamma = 107.23(2)^{\circ},$ V = 1486.5(6) Å³, M = 369.63, Z = 4, $d_{\rm выч} = 1.69$ г/см³, $\mu = 73.02$ см⁻¹, пространственная группа P1 (N 2). Учет поглощения в кристалле был выполнен по методу азимутального сканирования [18]. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [19]. В уточнении использовано 3117 отражений с $I > 3\sigma(I)$ (369 уточняемых параметров, число отражений на параметр 8.4). Все атомы водорода выявлены из разностного синтеза электронной плотности и включены в расчет с фиксированными позиционными и тепловыми параметрами, лишь атомы H₍₂₎ и H₍₄₎ были уточнены изотропно. При уточнении использована весовая схема Чебышева [20] с параметрами 2.75, -0.74, 0.87 и -1.08. Окончательные значения факторов расходимости R = 0.069 и $R_W = 0.073$, GOF = 1.090. Остаточная электронная плотность из разностного ряда Фурье 0.45 и -0.48 e/Å³. Полный набор кристаллографических данных депонирован в Кембриджском банке структурных данных (№ 165118).

N-(2-Тиенил)-N'-(метоксикарбонил)тригалогенацетамидины (3а-d). К раствору 5.0 ммоль N-этилиденуретана **1а,b** в 10 мл бензола прибавляют при перемешивании при комнатной температуре раствор 5.0 ммоль аминотиофена **2а,b** и 0.5 г (5.0 ммоль) триэтиламина в 10 мл бензола. После 2 ч перемешивания реакционную смесь нагревают до кипения и отфильтровывают осадок солянокислого триэтиламина, из фильтрата при охлаждении выпадают целевые продукты.

1-(N-Метоксикарбониламино)-1-(4-метил-5-этоксикарбонил-2-тиениламино)-1фенил-2,2,2-трифторэтан (3е). К раствору 1.15 г (5.0 ммоль) N-этилиденуретана 1с в 10 мл бензола прибавляют 0.93 г (5.0 ммоль) аминотиофена 2b, оставляют при комнатной температуре на 12 ч, а затем кипятят 1 ч. Остаток после упаривания растворителя кристаллизуют из смеси гексан-бензол, 1:3. Выход 72%, т. пл. 150 °C. ИК спектр, v, см⁻¹: 1720–1760 (C=O), 3300, 3340 (NH). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.24 (3H, т, *J* = 7.2, CH₃); 2.29 (3H, с, CH₃); 3.53 (3H, с, CH₃); 4.13 (2H, кв, *J* = 7.2, CH₂O); 6.09 (1H, с, CH); 7.42 (3H, м, H_{аром}); 7.66 (2H, м, H_{аром}); 7.88 (1H, с, NH); 8.59 (1H, с, NH). Спектр ЯМР ¹⁹F, δ , м. д.: -78.1 (с). Найдено, %: С 52.13; Н 4.72; N 6.58. C₁₈H₁₉F₃N₂O₄S. Вычислено, %: C 51.92; H 4.60; N 6.73.

2-Тригалогенметил-3,4-дигидротиено[2,3-*d***]пиримидин-4-оны** (4а–d). Раствор 3.0 ммоль соединения **3а–d** в 10 мл толуола нагревают при температуре кипения в течение 3 ч. Выпавший после охлаждения продукт отфильтровывают и кристаллизуют из этанола.

СПИСОК ЛИТЕРАТУРЫ

- J. M. Cox, J. H. Marsden, R. A. Burrell, N. S. Elmure, Ger. Offen Pat. 2654090; *Chem. Abstr.*, 87, 128906 (1977).
- 2. P. Schmidt, K. Eichenberger, Ger. Offen Pat. 2060968; Chem. Abstr., 75, 88 638 (1971).
- 3. J. B. Press, R. K. Russell, US Pat. 4670560; *Chem. Abstr.*, **107**, 115604 (1987).
- 4. V. D. Patil, D. S. Wise, L. B. B. Townsend, J. Chem. Soc. Perkin Trans. 1, 1853 (1980).
- 5. F. F. Janssens, L. E. J. Kennis, J. F. Hens, J. L. G. Torremans, G. S. M. Diels, US Pat. 4695575; *Chem. Abstr.*, **109**, 37821 (1988).
- 6. H. Kosaku, S. Mitsuomi, S. Shigeo, J. Heterocycl. Chem., 27, 717 (1990).
- 7. J. Clark, M. S. Shanhet, J. Heterocycl. Chem., 30, 1065 (1993).
- 8. В. И. Шведов, В. К. Рыжкова, А. И. Гринев, *XГС*, 459 (1967).
- 9. H. Link, Helv. Chim. Acta, 73, 797 (1990).
- 10. А. И. Гринев, Н. В. Каплина, ХГС, 925 (1985).
- 11. R. Boehm, R. Rech, G. Houbold, E. Hanniy, *Pharmazie*, **41**, 23 (1986).
- 12. H. A. McClinton, Tetrahedron, 48, 6555 (1992).
- 13. Л. И. Самарай, В. И. Бойко, М. Н. Герцюк, ЖОрХ, 26, 745 (1990).
- 14. В. Н. Фетюхин, А. С. Корецкий, В. И. Горбатенко, Л. И. Самарай, *ЖОрХ*, **13**, 271 (1977).
- 15. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2, 1 (1987).
- 17. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- 18. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 19. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS*, Issue 10, Chemical Crystallography Laboratory, Univ. Oxford, 1996.
- 20. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Институт органической химии HAH Украины, Киев 02094 e-mail: hetfos@ukrpack.net e-mail: mvovk@i.com.ua Поступило в редакцию 26.06.2001