Chemistry of Heterocyclic Compounds 2024, 60(3/4), 183-189

A method for the synthesis of spiro-1,3,4-thiadiazolines

Alexander V. Komkov¹, Leonid G. Menchikov¹, Andrey S. Dmitrenok¹, Natalya G. Kolotyrkina¹, Igor V. Zavarzin¹*

¹ N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninskii Ave., Moscow 119991, Russia; e-mail: zavi@ioc.ac.ru

SUPPLEMENTARY INFORMATION

Table of contents

1. Experimental Section	S2
2. NMR spectra	S3
3. IR spectra	S79
4. Mass spectra	S87

1. Experimental Section

¹H, ¹³C, ¹⁹F NMR, 1D NOESY NMR, 2D NMR HSQC, HMBC and ROESY experiments were recorded on Bruker AV-600 (600, 565 and 151 MHz, for ¹H, ¹⁹F and ¹³C respectively), Bruker AV-400 (400 and 100.6 MHz, respectively) and Bruker AM-300 (300, 282 and 75 MHz, for ¹H, ¹⁹F and ¹³C respectively). The chemical shifts (δ) were expressed in ppm and referenced to DMSO-*d*₆ (39.5 ppm) for ¹H and ¹³C NMR, respectively. The coupling constants (*J*) are in Hertz. The assignment of the signals in the NMR spectra was based on the 2D NMR data. IR spectra were recorded on a Bruker Alpha spectrometer as KBr pellets, significant band (v) reported in cm⁻¹. High-resolution mass spectra were obtained on a Bruker MicroTOF mass spectrometer by electrospray ionization (ESI) using Q-TOF detection. The melting points were determined on a Kofler hot stage apparatus and are uncorrected. TLC was performed using Silicagel 60 F254 plates. The chromatograms were visualized with an UV lamp (254 and 365 nm) and [Ce(SO₄)₂/H₂SO₄] developing solution. Column chromatography was carried out on silica gel 60 (0.063–0.200 mm, Merck). Commercial reagents were used without further purification.

2. NMR spectra (Bruker AV-600)

¹H NMR spectrum of **3b** (DMSO- d_6).

¹³C NMR spectrum of **3b** (DMSO- d_6).

2D ¹H-¹³C HMBC NMR spectrum of **3b** (DMSO- d_6).

2D 1 H- 13 C HSQC NMR spectrum of **3b** (DMSO- d_6).

¹H NMR spectrum of **3c** (DMSO- d_6).

¹³C NMR spectrum of **3c** (DMSO- d_6).

2D ¹H-¹³C HMBC NMR spectrum of 3c (DMSO- d_6).

2D 1 H- 13 C HSQC NMR spectrum of **3c** (DMSO- d_6).

¹H NMR spectrum of **3f** (CDCl₃).

 13 C NMR spectrum of **3f** (CDCl₃).

 $2D ^{1}H^{-13}C$ HSQC NMR spectrum of **3f** (CDCl₃).

¹H NMR spectrum of 3g (DMSO- d_6).

¹³C NMR spectrum of 3g (DMSO- d_6).

2D ¹H-¹³C HMBC NMR spectrum of 3g (DMSO- d_6).

2D 1 H- 13 C HSQC NMR spectrum of **3g** (DMSO- d_6).

¹H NMR spectrum of **3h** (DMSO- d_6).

¹³C NMR spectrum of **3h** (DMSO- d_6).

 $2D^{1}H^{-13}C$ HMBC NMR spectrum of **3h** (DMSO-*d*₆).

2D 1 H- 13 C HSQC NMR spectrum of **3h** (DMSO- d_6).

¹⁹F NMR spectrum of **3h** (DMSO- d_6).

¹H NMR spectrum of **3i** (DMSO- d_6).

2D 1 H- 13 C HMBC NMR spectrum of **3i** (DMSO-*d*₆).

¹H NMR spectrum of **5** (CDCl₃).

¹³C NMR spectrum of **5** (CDCl₃).

 $2D ^{1}H^{-13}C$ HMBC NMR spectrum of **5** (CDCl₃).

 $²D ^{1}H^{-13}C$ HSQC NMR spectrum of **5** (CDCl₃).

1D 1 H NOESY (3.25 ppm) NMR spectrum of **5** (CDCl₃).

1D ¹H NOESY (2.04 ppm) NMR spectrum of 5 (CDCl₃).

¹H NMR spectrum of **6** (CDCl₃).

¹³C NMR spectrum of **6** (CDCl₃).

 $2D ^{1}H^{-13}C$ HSQC NMR spectrum of 6 (CDCl₃).

1D ¹H NOESY (3.25 ppm) NMR spectrum of 6 (CDCl₃).

1D ¹H NOESY (2.28 ppm) NMR spectrum of 6 (CDCl₃).

1D ¹H NOESY (2.41 ppm) NMR spectrum of 6 (CDCl₃).
2. NMR spectra (Bruker AV-400)

¹H NMR spectrum of **3a** (DMSO- d_6).

¹³C NMR spectrum of **3a** (DMSO- d_6).

¹⁹F NMR spectrum of **3a** (DMSO- d_6).

2D ¹H-¹³C HMBC NMR spectrum of **3a** (DMSO- d_6).

2D 1 H- 13 C HSQC NMR spectrum of **3a** (DMSO- d_6).

¹H NMR spectrum of **3e** (DMSO- d_6).

¹³C NMR spectrum of **3e** (DMSO- d_6).

2D ¹H-¹³C HMBC NMR spectrum of **3e** (DMSO- d_6).

2D ¹H-¹³C HSQC NMR spectrum of **3e** (DMSO- d_6).

¹H NMR spectrum of **3i** (DMSO- d_6).

¹³C NMR spectrum of **3i** (DMSO- d_6).

¹⁹F NMR spectrum of **3i** (DMSO- d_6).

2D 1 H- 13 C HMBC NMR spectrum of **3i** (DMSO-*d*₆).

²D 1 H- 13 C HSQC NMR spectrum of **3i** (DMSO-*d*₆).

¹H NMR spectrum of **3i/4i** (CDCl₃).

¹³C NMR spectrum of **3i/4i** (CDCl₃).

2D ¹H-¹³C HMBC NMR spectrum of **3i/4i** (CDCl₃).

2D ¹H-¹³C HSQC NMR spectrum of **3i/4i** (CDCl₃).

¹H NMR spectrum of **3j** (DMSO- d_6).

¹³C NMR spectrum of 3j (DMSO- d_6).

¹⁹F NMR spectrum of **3j** (DMSO- d_6).

2D 1 H- 13 C HSQC NMR spectrum of **3j** (DMSO- d_6).

¹H NMR spectrum of **3d** (DMSO- d_6).

¹³C NMR spectrum of **3d** (DMSO- d_6).

 $2D^{1}H^{-13}C$ HMBC NMR spectrum of **3d** (DMSO-*d*₆).

2D 1 H- 13 C HSQC NMR spectrum of **3d** (DMSO- d_6).

¹³C NMR spectrum of **3e** (DMSO- d_6).

2D 1 H- 13 C HMBC NMR spectrum of **3e** (DMSO- d_6).

2D 1 H- 13 C HSQC NMR spectrum of **3e** (DMSO- d_6).

¹H NMR spectrum of **3e** (CDCl₃).

¹³C NMR spectrum of **3e** (CDCl₃).

2D 1 H- 13 C HSQC NMR spectrum of **3e** (CDCl₃).

1D ¹H NOESY (6.51 ppm) NMR spectrum of 3e (CDCl₃).

1D ¹H NOESY (6.51 ppm) NMR spectrum of 3e (CDCl₃).

1D ¹H NOESY (3.63 ppm) NMR spectrum of 3e (CDCl₃).

1D ¹H NOESY (3.63 ppm) NMR spectrum of 3e (CDCl₃).

1D ¹H NOESY (6.31 ppm) NMR spectrum of **3e** (CDCl₃).

2. NMR spectra (Bruker AM-300)

¹H NMR spectrum of **3b** (CDCl₃)

¹⁹F NMR spectrum of **3i** (CDCl₃).

¹H NMR spectrum of **3j** (CDCl₃).

¹⁹F NMR spectrum of **3i** (CDCl₃).

¹H NMR spectrum of mixture **5** and **6**.

3. IR spectra

4. Mass spectra

Display Report

Analysis Info

Method

tune_50-1600.m

Comment

Instrument / Ser# micrOTOF

10248

Mass-spectra of 3a.

Analysis Info

Method

tune_50-1600.m

Comment C21H23N3O2S mH 382.1583 calibrant added, CH3OH

Acquisition Parameter Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve 1.0 Bar 200 °C 4.0 l/min ESI Not active 50 m/z 1600 m/z Ion Polarity Positive Source Type Focus Scan Begin Scan End Set Capillary Set End Plate Offset 4500 V -500 V Waste +MS, 0.2-0.9min #(9-55) Intens. 382.1582 x105 404.1397 2.0 1.5 1.0-0.5 420.1139 392.9358 413.2653 0.0 C21H23N3O2S, M+nH ,382.16 382 1584 2000 CONH OMe N 1500-ΗŃ 1000-3b 500 Ρh 0 C21H23N3O2S, M+nNa ,404.14 404.1403 2000-1500-1000 500-0 C21H23N3O2S, M+nK ,420.11 420.1143 2000-1500-1000 500 0-380 385 390 395 400 405 410 415 420 m/z

Instrument / Ser# micrOTOF 10248

			Display	y Report				
Analysis Info								
Method	tune_50-1600.r	Ē	×.		Instru	mont / Cor#	mimOTOE	8701
Comment	C17H22N404S	3 mH 379.1434 calibrant a	ded		n neill		5.	2432
Acquisition Pa	rameter							
Source Type	ESI Not active	Ion Pol	larity	Positive		Set Dry Heater	1.0 Bar 200 °C	
Scan Begin Scan End	50 m/z 1600 m/z	Set Ca Set En	ipillary d Plate Offset	4500 V -500 V		Set Dry Gas Set Divert Valve	4.0 l/mi	c
Intens.		976	401.1248				W+	S, 0.1-0.9min #(6-54)
2		010 360 3227			0000 000		1001	
0	300	330.3412 0000	400	436.9081	400.3330	500	550	Z/W
Intens. x105	379,1427			401.12	48		W+	S, 0.1-0.9min #(6-54)
<u>8</u> , 9	5		393.2186 396.171		1 2		413,2652 417.0	381
2000	379.1435						G17H22N	404S, M+nH ,379.14
1000								
					2.7		ATU0001210	046 Michie 401 12
2000				401.12	54			043, MHR4 ,401.13
1000								
2000					-		CI7489N	604S, M+nK ,417.10
1000								-
0		385 390	395	400	405	410	415	420 m/z

Mass-spectra of 3c.

Analysis Info

Method tune_50-1600.m

Comment

2_20 1000

C19H26N4O4S mH 407.1757 clb added CH3OH

Instrument / Ser# micrOTOF 10248

Mass-spectra of 3d.

Analysis Info

Method

tune_50-1600.m

Instrument / Ser# micrOTOF 10248

Mass-spectra of 3e.

Analysis Info

Method

tune_50-1600.m

Instrument / Ser# micrOTOF 10248

320

325

330

m/z

m/z

. Comment C14H15N3O2S mH 290.0957 calibrant added Acquisition Parameter Positive 1.0 Bar 200 ℃ 4.0 l/min Ion Polarity Set Nebulizer Source Type ESI Set Dry Heater Set Dry Gas Set Divert Valve Focus Scan Begin Scan End Not active 4500 V -500 V 50 m/z 1600 m/z Set Capillary Set End Plate Offset Waste Intens. +MS, 0.1-0.9min #(5-54) x105 290.0955 3-312.0772 2 1 355.3671 389.1992 430.2004 141.1131 183.0630 472.1500 521.1545 0-150 400 50 100 200 250 350 450 500 300 Intens. x10⁵ +MS, 0.1-0.9min #(5-54) 290.0955 3 312.0772 2 328.0515 18 307.1221 322.0481 300.0738 0 C14H15N3O2S, M+nH ,290.10 290.0958 2000 1500 1000 500 0 C14H15N3O2S, M+nNa ,312.08 312.0777 2000 1500 1000 500 0 C14H15N3O2S, M+nK .328.05 328.0517 2000 1500

Mass-spectra of 3f.

290

295

300

305

310

315

1000 500 0

Analysis Info

Mass-spectra of 3g.

Analysis Info

Mass-spectra of 3h.

Analysis Info

Method tune_50-1600.m

			000 0000	de d	Instrument / Ser# micrOTOF	10248
Commer	t C14H1	14F3N3OS mH	330.0882 calibrant ad	ded		
Acquisii Source Ty Focus Scan Beg Scan End	pe ESI Not in 50	l active m/z 00 m/z	Ion Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer 1.0 Set Dry Heater 200 Set Dry Gas 4.0 Set Divert Valve Was	Bar ℃ /min ite
Intens.1					+MS, 0.2-	0.9min #(14-51
3-		330.0880				
2				352.0698		
1	322.0477	11.	338.3410		368.0437	
0	022.0417				C14H14F3N3OS	M+nH ,330.0
2000		330.0882				
1500						
1000						
500						
0					C14H14F3N3OS.	M+nNa .352.0
2000				352.0702		
1500						
1000						
500						
0					C14U14E2N2OC	MK. 200.0
2000-					368.0441	, MHR, 366.0
1500						
1000						
500						
0						

Mass-spectra of 3i.

Analysis Info

Mass-spectra of 3j-4j.

Analysis Info

