The synthesis of ethyl 2-amino-1-(aryl)-5-(arylcarbamoyl)-6-oxo-1,6-dihydropyridine-3-carboxylates

Anush Kh. Khachatryan^{1,2}*, Katya A. Avagyan¹, Anush A. Sargsyan¹, Anait G. Simonyan¹, Henrik A. Panosyan¹, Armen G. Ayvazyan¹, Alik E. Badasyan¹

 ¹ Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of the Republic of Armenia, 26 Azatutyan Ave., Yerevan 0014, Armenia

 ² State Academy of Crisis Management State Academy, Ministry of Emergency Situations of the Republic of Armenia, I Acharyana St., Yerevan 0040, Armenia; e-mail: <u>khachatryan-ax@mail.ru</u>

SUPPLEMENTARY INFORMATION

Copies of ¹H, ¹³C NMR spectra, HRMS of new compounds, X-ray compound 5d

Copies of ¹H (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) spectra, HRMS of **5a**

Copies of ¹H (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) spectra, HRMS of **5**b

f1 (ppm)

Copies of ¹H (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) spectra, HRMS of **5**c

2.00

Copies of ¹H (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) spectra, HRMS of **5d**

Copies of ¹H (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) spectra, HRMS of **5e**

542 D

Copies of ¹H (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-*d*₆/CCl₄ (1:3)) spectra, HRMS of **5f**

Copies of ¹H (300 MHz, DMSO-d₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-d₆/CCl₄ (1:3)) spectra, HRMS of **5g**

Sec. 1.

Copies of ¹H (300 MHz, DMSO-d₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-d₆/CCl₄ (1:3)) spectra, HRMS of **5h**

Copies of 1 H (300 MHz, DMSO-d₆/CCl₄ (1:3)) and 13 C (300 MHz, DMSO-d₆/CCl₄ (1:3)) spectra, HRMS of **5i**

Copies of ¹H (300 MHz, DMSO-d₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-d₆/CCl₄ (1:3)) spectra, HRMS of **5**j

Copies of ¹H (300 MHz, DMSO-d₆/CCl₄ (1:3)) and ¹³C (300 MHz, DMSO-d₆/CCl₄ (1:3)) spectra, HRMS of **5**k

Copies of 1 H (300 MHz, DMSO-d₆/CCl₄ (1:3)) and 13 C (300 MHz, DMSO-d₆/CCl₄ (1:3)) spectra, HRMS of **51**

380 400 420 0 100 120 140 160 180 200 320 340 360 220 240 260 280 300 400 480 500 570 540 Diffraction measurements of a single crystal of compound **5d** were carried out at room temperature on an Enraf-Nonius CAD-4 autodiffractometer (MoK α radiation, graphite monochromator, $\theta/2\theta$ scanning). The parameters of the triclinic unit cell were determined and refined based on 24 reflections with 11.97< θ <13.86. The absorption of X-rays was taken into account using the "psi-scan" method.¹ The structure was solved using the direct method. The coordinates of hydrogen atoms were determined from difference Fourier syntheses and refined independently. The structure was refined by full-matrix least squares in the anisotropic approximation for non-hydrogen atoms and the isotropic approximation for hydrogen atoms. All structural calculations were carried out using the SHELXTL software package.²

Crystallographic data in CIF format have been deposited at the Cambridge Crystallographic Data Center, deposit number CCDC 2283418.

Main crystallographic and experimental data are shown in Table 1.

Crystallographic characteristics				
Compound	5d			
Brutto formula	C21H17N3O4Cl2			
Molecular weight	446.27			
Singony	Triclinic			
Space group	P-1			
a, b, c [Å]	9.2945(19), 10.567(2), 11.529(2)			
α, β, γ [deg.]	109.94(3), 107.01(3), 90.60(3)			
V [Å ³]	1010.2(4)			
Ζ	2			
Density (calc.) [g/cm ³]	1.467			
$\mu(MoK_{lpha}) \ [\ mm^{-1} \], T_{min}, T_{max}$	0.356, 0.84889, 0.87066			
F(000)	460			
Crystal size [mm]	0.36×0.30×0.24			
Experimental data				
Temperature (K)	288			
Radiation [Å]	0.71073			
$\theta_{\min}, \theta_{\max}$ [deg.]	2.0; 30.0			
Scan area	0≤h≤13; -14≤k≤14; -16≤l≤15			
Number of measured reflections	6207			
Number of observed reflections with $\left[I > 2.0 \right]$	3701			
$\sigma(I)$]				
Calculated data				
Nref, Npar	5869, 328			
R, wR2, S	0.0510, 0.1343, 1.02			

 Table 1. Main crystallographic characteristics and experimental data

The molecular structure of compound **5d** is shown in Figure 1.

Conformational calculations showed that all cyclic fragments are planar, the maximum deviation of atoms does not exceed 0.0295(4)Å.

In the molecule of compound **5d**, intramolecular hydrogen bonds are observed between the N8– H8A···O10, N23–H23···O7, N23–H23···Cl30 atoms (Fig. 1). The geometry of hydrogen bonds is shown in Table 2. In the three-dimensional packing of molecules, intermolecular interactions are mainly due to Van der Waalsian forces

 Table 2. Geometry of hydrogen bonds.

Atoms	D-H(Å)	H·····A(Å)	DA(Å)	D-H····A(deg.)
N8-H8AO10	0.85(3)	1.99(3)	2.661(4)	135(3)
N23-H23-07	0.85(2)	1.94(2)	2.670(2)	143(2)
N23-H23-Cl30	0.85(2)	2.48(3)	2.936(2)	115(2)

Figure 1. The molecular structure of compound **5d** with conditionally accepted numbering of atoms. Ellipsoids of anisotropic thermal vibrations are depicted at the 50% probability level.

1. A. C. T. North, D. C. Phillips and F. S. Mathews, A Acta Cryst. (1968), A24, 351-359.

2. G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8