Л. В. Дядюченко, В. Д. Стрелков, С. Н. Михайличенко, В. Н. Заплишный^а

СИНТЕЗ НЕКОТОРЫХ ГАЛОГЕН- И НИТРОЗАМЕЩЕННЫХ НИКОТИНОВЫХ КИСЛОТ И ИХ ФРАГМЕНТАЦИЯ ПОД ЭЛЕКТРОННЫМ УДАРОМ

Исследованы особенности электро- и нуклеофильного замещения в условиях реакций хлорирования и нитрования 6-гидрокси- и 6-метилзамещенных 4-метил-3-циано-2(1H)пиридонов. Полученные полихлор- и нитрозамещенные 4-метил-3-цианопиридины использованы в качестве синтонов в синтезе некоторых полигалоген- и нитрозамещенных никотиновых кислот и их амидов. Изучены пути фрагментации синтезированных соединений под электронным ударом.

Ключевые слова: галоген- и нитропроизводные, кислоты никотиновые, фрагментация электронным ударом.

Замещенные никотиновые кислоты и их функциональные производные привлекают внимание исследователей как потенциальные физиологически активные вещества, относящиеся к группе, в которой известны соединения, обладающие широким спектром фармакологической [1–3], а также пестицидной [4, 5] активности. Однако в литературе отсутствуют сведения о никотиновых кислотах, содержащих в пиридиновом цикле одновременно 3–4 одинаковых или разных заместителя.

В настоящей работе описан синтез новых полизамещенных производных никотиновых кислот исходя из 4-метил-3-циано-2(1Н)-пиридонов 1а, b, содержащих в положении 6 цикла метильную или гидроксильную группы, путем превращений, представленных на схеме. Электрофильное замещение атома водорода в положении 5 цикла соединений **1a,b**, а также нуклеофильное замещение групп 2-ОН и 6-ОН енольной формы пиридонов 1 на атом хлора и нитрогруппу зависит от заместителя в положении 6, а также типа хлорирующего или нитрующего агента. Так, 6-метилпиридон 1a при хлорировании избытком SO₂Cl₂ в CCl₄ с выходом 94% образует продукт электрофильного замещения – 5-хлорпроизводное 2а. Селективно по тому же положению протекает и нитрование азотной кислотой, приводящее к 5-нитропроизводному 2b. Обработка избытком POCl₃ при ~105 °C ведет к замещению на атом хлора группы 2-OH енольной формы пиридона 1а с ароматизацией цикла и образованием 4,6-диметил-2-хлор-3-цианопиридина (**3a**). Аналогично реагируют с POCl₃ 5-хлори 5-нитропроизводные 2а, b, что приводит к 2,5-дихлор- и 5-нитро-2-хлорзамещенным продуктам 3с, d соответственно (в случае нитросоединения 2b реакцию хлорирования проводят при 180 С). Из 6-гидрокси-4-метил-3циано-2(1Н)-пиридона (1b) с POCl₃ (1b:POCl₃ 1: 2) за 6 ч при 120 °С образуется 3-циано-2,6-дихлорпиридин (3b).

1 a $R = CH_3$, b R = OH; **2** a $R^1 = Cl$, b $R^1 = NO_2$; **3**, **6**, **7** a $R^1 = H$, $R^2 = Me$; b $R^1 = H$, $R^2 = Cl$; c $R^1 = Cl$, $R^2 = CH_3$; d $R^1 = NO_2$, $R^2 = Me$; e $R^1 = Cl$, $R^2 = Cl$; f $R^1 = NO_2$, $R^2 = Cl$

Поведение пиридона **1b**, в котором в положении 6 вместо обладающей выраженным +I-эффектом метильной группы находится обладающая +M-эффектом группа OH, заметно отличается в описанных выше реакциях. Так, его хлорирование сульфурилхлоридом или прямое воздействие хлором не приводит к желаемому 5-хлор-6-гидроксипиридону **4**, а завершается образованием смеси изомерных дихлоридов **5a** и **5b** (варьирование условий реакции влияет лишь на соотношение изомеров), что согласуется с данными работы [6]. Восстановление этой смеси цинковой пылью в среде протонного растворителя протекает гладко с образованием лишь 6-гидрокси-4-метил-5-хлор-3-циано-2-(1H)-пиридона (**4**). При обработке последнего избытком POCl₃ образуется трихлорзамещенное производное пиридина **3e**.

Попытки нитрования пиридона **1b**, несмотря на широкое варьирование условий (HNO₃ различной концентрации, ее смеси с AcOH, Ac₂O и H₂SO₄, а также HNO₂ и изоамилнитратом [7]), не увенчались успехом. Даже при пониженной температуре (-9 ± 1 °C) реакция сопровождается осмолением, разрушением цикла 2-пиридона и образованием сложной смеси смолообразных окрашенных продуктов, идентифицировать которые не удалось.

Таблица 1

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %				Т. пл.,	Масс-спектр,	Вы-
не- ние	формула	С	Н	Cl	Ν	°C*	$m/z (I_{\text{OTH}})$	ход, %
2a	C ₈ H ₇ ClN ₂ O	<u>52.84</u> 52.61	<u>3.69</u> 3.87	<u>19.53</u> 19.41	<u>15.40</u> 15.34	260–261	[M] ⁺ 182 (100); 154 (39); 119 (29); 92 (8)	94
2b	C ₈ H ₇ N ₃ O ₃	<u>50.01</u> 49.74	<u>3.72</u> 3.66		<u>21.94</u> 21.76	265–266	[M] ⁺ 193 (68); 176 (100); 148 (21); 119 (53); 92 (28)	54
3a	C ₈ H ₇ ClN ₂	<u>57.94</u> 57.66	<u>4.32</u> 4.24	<u>21.58</u> 21.28	<u>17.01</u> 16.82	95–96	[M] ⁺ 166 (100); 130 (21); 131 104 (13); 132 77 (7)	95
3b	$C_7H_4Cl_2N_2$	<u>44.78</u> 44.95	<u>2.04</u> 2.16	<u>37.72</u> 37.91	<u>14.75</u> 14.98	107–108	[M] ⁺ 186 (60); 151 (100); 125 (41); 105 (32)	98
3с	$C_8H_6Cl_2N_2$	<u>47.68</u> 47.96	<u>3.18</u> 3.01	$\frac{35.44}{35.26}$	<u>13.60</u> 13.96	67–68	[M] ⁺ 200 (100); 164 (15); 129 (21); 102 (11)	76
3d	C ₈ H ₆ ClN ₃ O ₂	<u>45.12</u> 45.40	<u>2.77</u> 2.86	<u>16.61</u> 16.75	<u>19.50</u> 19.86	90–91	[M] ⁺ 21 (59); 194 (100); 165 (32); 139 (69); 130 (45); 102 (23)	61
3e	$C_7H_3Cl_3N_2$	<u>38.14</u> 37.96	<u>1.24</u> 1.37	<u>47.94</u> 48.02	<u>12.49</u> 12.65	110–111	[M] ⁺ 184 (89); 168 (100); 140 (33); 104 (13); 78 (30)	69
6a	C ₈ H ₉ ClN ₂ O	<u>51.95</u> 52.04	<u>5.04</u> 4.92	<u>19.28</u> 19.20	<u>15.01</u> 15.18	154–155	[M] ⁺ 184 (89); 140 (33); 104 (13); 78 (30)	89
6b	C7H6Cl2N2O	<u>40.79</u> 41.00	<u>2.84</u> 2.96	<u>34.65</u> 34.58	<u>13.49</u> 13.66	170–171	[M] ⁺ 204 (74); 188 (100); 160 (23); 124 (24); 99 (14)	93
6c	C ₈ H ₈ Cl ₂ N ₂ O	<u>43.61</u> 43.86	<u>3.64</u> 3.69	<u>32.51</u> 32.36	<u>12.87</u> 12.79	146–147	[M] ⁺ 218 (86); 202 (100); 183 (12); 174 (38); 147 (26); 133 (9)	91
6d	C ₈ H ₈ ClN ₃ O ₃	<u>42.00</u> 41.84	<u>3.46</u> 3.52	<u>15.68</u> 15.44	<u>18.26</u> 18.30	188–189	[M] ⁺ 229 (29); 213 (21); 196 (16); 168 (24); 140 (100)	47
6e	C7H5Cl3N2O	<u>35.31</u> 35.10	<u>2.13</u> 2.11	<u>44.67</u> 44.41	<u>11.73</u> 11.70	167–168	[M] ⁺ 238 (41); 222 (100); 194 (14); 187 (18); 159 (28); 133 (9)	69

Характеристики соединений 2а,b, 3а-е, 6а-е

* Растворители для кристаллизации: ацетон (соединение 2а), EtOH (соединения 2b, 6а-е), циклогексан (соединения 3a,b,d), гексан (соединение 3c).

Кислотный гидролиз галогензамещенных цианопиридинов 3a-e водным раствором 80% серной кислоты гладко и с максимальными выходами приводит к соответствующим амидам никотиновых кислот 6a-e. Последующее диазотирование этих трудногидролизуемых амидов 6a-e азотистой кислотой по известному методу Буво [8] привело к целевым замещенным кислотам 7a-e. Нитрогалогензамещенную кислоту 7f удалось получить лишь нитрованием нитрила 3b смесью конц. HNO₃ и H₂SO₄ при ~100 °C. При этом оказалось, что одновременно с введением нитрогруппы происходит гидролиз цианогруппы до карбоксильной.

Все синтезированные соединения представляют собой аморфные или мелкокристаллические порошки белого цвета. Ароматические нитрилы 3a-e (т. пл. 67–110 °C) хорошо растворимы в обычных органических растворителях. Амиды 6a-e и кислоты 7a-e – вещества высокоплавкие, трудно-или вообще не растворимые в обычных органических растворителях, растворимые в некоторых сильнополярных растворителях, за исключением ДМФА и ДМСО. Характеристики синтезированных соединений представлены в табл. 1, 2.

Константы диссоциации р K_{α} замещенных никотиновых кислот **7а–f** в пределах 2.55–2.79 (табл. 2), что позволяет отнести их к сильным кислотам, на два порядка превосходящим по силе никотиновую кислоту.

В ИК спектрах синтезированных кислот имеются уширенные полосы поглощения карбоксильной группы ОН в области 3200–3600 с максимумами при 3448–3430 см⁻¹ (см. табл. 2). Средние и сильные узкие полосы поглощения связей С=С и С=N сопряженного пиридинового цикла находятся в области 1603–1539, а при 1734–1715 см⁻¹ – полосы поглощения группы С=О, что характерно для сильных кислот, существующих в виде димеров [9]. В спектрах кислот, содержащих нитрогруппу в интервалах 1545–1540 и 1348–1339 см⁻¹, также имеются интенсивные полосы, которые можно интерпретировать как характерные для NO₂.

Таблица 2

Соеди- нение	Брутто- формула	Найдено, % Вычислено, %				Т. пл., °C*	p <i>K</i> _a	Выход, %
		C	Н	CI	N			
7a	C ₈ H ₈ ClNO ₂	<u>51.55</u> 51.77	$\frac{4.50}{4.34}$	<u>19.2</u> 19.1	<u>7.42</u> 7.54	139–140	2.79	60
7b	C ₇ H ₅ Cl ₂ NO ₂	<u>40.66</u> 40.81	<u>2.31</u> 2.45	<u>34.3</u> 34.4	<u>6.83</u> 6.79	119–120	2.64	88
7c	$C_8H_7Cl_2NO_2$	<u>47.21</u> 47.07	<u>2.43</u> 2.31	$\frac{32.4}{32.5}$	<u>6.35</u> 6.42	159–160	2.72	96
7d	C ₈ H ₇ ClN ₂ O ₄	<u>41.79</u> 41.67	<u>3.21</u> 3.06	<u>15.3</u> 15.4	$\frac{12.28}{2.15}$	170–171	2.57	76
7e	C ₇ H ₄ Cl ₃ NO ₂	<u>34.78</u> 34.95	<u>1.52</u> 1.68	<u>44.3</u> 44.2	<u>5.73</u> 5.82	150–151	2.64	75
7f	C7H4Cl2N2O4	<u>33.35</u> 33.49	<u>1.52</u> 1.61	<u>28.2</u> 28.3	<u>11.25</u> 11.16	168–169	2.55	60

Характеристика синтезированных соединений 7а-f

* Растворители для кристаллизации: EtOAc (соединения **7а,b,e**) и EtOH (соединения **7c,d,f**).

Со- еди-	Масс-спектр: молекулярные и	ИК спектр, ν_{max} , см ⁻¹				Вы-
не- ние	характеристические ионы, m/z ($I_{\text{отн}}$, % к максимальному)	OH	C=O	C=C, C=N	NO ₂	ход, %
7a		3600, 3300 (3443)	1725	1603	-	60
7b	$ \begin{array}{l} \mbox{[M]}^+ \ 205(100); \ \mbox{[M-OH]}^+ \ 188 \ (68); \ \mbox{[M-H}_2O]^+ \\ 187 \ (44); \ \mbox{[M-HCl]}^+ \ 168 \ (41); \ \ \mbox{[M-CO}_2]^+ \ 161 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	3600, 3000 (3430)	1717	1570 1539	-	88
7c	[M] ⁺ 219 (100); [M–HOH] ⁺ 201 (32); [M–HCI] ⁺ 183 (75); [M–COOH] ⁺ 174 (18); [183–CI] ⁺ 148 (81); [183–COOH] ⁺ 138 (15); [148–CO] ⁺ 120 (22)	3600, 3300 (3431)	1734	1576	_	96
7d	$\begin{split} & [M]^+ 230(64); \ [M-OH]^+ \ 213 \ (52); \ [M-OH, \\ & -H_2O]^+ \ 195 \ (11); \ [M-NO_2]^+ \ 184 \ (13); \ [213-Cl, \\ & -CN]^+ \ 142 \ (27); \ [184-CO_2]^+ \ 140 \ (33); \\ & [140-Cl]^+ \ 105 \ (44) \end{split}$	3600, 3200 (3430)	1726	1589	1540 1348	76
7e	$\begin{split} & [M]^+ \ 239 \ (100); \ [M-OH]^+ \ 222 \ (28); \ [M-H_2O]^+ \\ & 221 \ (35); \ [M-HCl]^+ \ 203 \ (20); \ \ [M-CO_2]^+ \ 192 \\ & (10); \ [M-COOH]^+ \ 194 \ (12); \ [203-Cl]^+ \ 168 \ (55); \\ & [203-COOH]^+ \ 158 \ (16); \ [168-CO_2]^+ \ 124 \ (19) \end{split}$	3600 2200 (3448)	1718	1545	_	75
7f	$ \begin{array}{l} [M]^+ 250 \ (54); \ [M-\ OH]^+ 233 \ \ (49); \ [M-\ OH, \\ -H_2O]^+ \ 205 \ (100); \ [M-\ NO_2, \ -Cl]^+ \ 169 \ (45); \\ [M-\ CO_2, \ -NO_2]^+ \ 160 \ (68); \ [169 \ -CO]^+ \ 141 \ (28); \\ [169 \ -Cl]^+ \ 134 \ (28); \ [141 \ -OH]^+ \ 124 \ (28) \end{array} $	3600 3200 (3430)	1715	1576	1545 1389	60

Спектральные характеристики соединений 7а-f

Спектры ЯМР ¹Н синтезированных соединений из-за их малой информативности приводить и обсуждать нецелесообразно.

Изучение поведения синтезированных кислот под действием электронного удара показало, что для их молекулярных ионов $[M]^+$ характерны повышенная стабильность и относительная интенсивность (54–100%), причем направления их первичной фрагментации достаточно разнообразны. Известно [10], что следствием первичной фрагментации M^+ никотиновой кислоты под действием электронного удара является потеря группой СООН гидроксила или молекулы H₂O. Это оказалось характерным и для замещенных никотиновых кислот **7а**–е, в масс-спектрах которых обнаружены пики ионов $[M – H_2O]^+$ с относительной интенсивностью ($I_{\text{отн}}$) 10–46%. Имеет место также элиминирование группы СООН и образование высокостабильных ионов $[M-COOH]^+$ ($I_{\text{отн}}$ 18–100%). Наряду с этим в масс-спектрах кислот **7а–е** наблюдается выброс молекулы CO₂, о чем свидетельствует наличие пиков ионов $[M – CO₂]^+$ ($I_{\text{отн}}$ 21–31%).

Отметим, что 5-нитрозамещенная кислота **7f** в начальной стадии распада теряет группу NO₂, а элиминирование CO₂ характерно лишь для вторичных процессов фрагментации. Образование фрагментов $[M - HCl]^+$ ($I_{\text{отн}}$ 20–100%) характерно для первичных процессов фрагментации молекулярных ионов всех галогензамещенных никотиновых кислот, за исключением содержащих 5-нитрогруппу соединений **7d,f**. Последние, повидимому, отщепляют атом хлора на более поздних стадиях фрагментации.

В осколочных ионах большинства обсуждаемых 2-Cl-никотиновых кислот под действием электронного удара, вероятно, происходит миграция гидроксильной группы к месту локализации положительного заряда – второму атому углерода, что соответствует путям фрагментации *о*-нитробензойной кислоты [11] с последующим элиминированием СО.

На более поздних стадиях фрагментации возможно и элиминирование гидроксильной группы или еще одного фрагмента СО с образованием более стабильных пятичленных гетероциклических ионов с относительной интенсивностью 17–33%.

Таким образом, изучены особенности электрофильного и нуклеофильного замещения в 6-окси- и 6-метилзамещенных 4-метил-3-циано-2(1H)пиридонах и разработаны доступные пути синтеза полизамещенных никотиновых кислот – потенциальных биологически активных веществ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрометре Bruker IFS-45 с анализирующим ПК Aspekt-1000 для соединений в таблетках КВг. Масс-спектры регистрировали на хромато-массспектрометре LKB-2091 с непосредственным вводом образца в источник ионов (энергия ионизирующего излучения 70 эВ). Элементный анализ синтезированных соединений выполнен на анализаторе Carlo-Erba модели 1106. Константы диссоциации кислот **7а–f** определены на иономере марки И130.2М.1. Индивидуальность синтезированных соединений подтверждена TCX на пластинках Silufol UV-vis, элюент гексан–ацетон, 1:1, проявитель пары иода. Используемые растворители очищали и высушивали согласно известным методикам [14].

Исходные 6-метил- и 4-метил-6-окси-3-циано-2(1H)-пиридоны **1а,b** получены и очищены как описано ранее [12, 13]. Синтез смеси изомерных нитрилов **5а** и **5b** и их восстановление до 6-окси-4-метил-5-хлор-3-циано-2(1H)-пиридона **4** проводили аналогично работе [6]. Их физико-химические характеристики приведены в цитируемой работе.

4,6-Диметил-5-хлор-3-циано-2(1Н)-пиридон (2а). Смесь 5 г (33.7 ммоль) цианопиридона **1а** и 18.25 г (135.2 ммоль) хлористого сульфурила в 50 мл сухого CCl₄ кипятят с обратным холодильником 6 ч. Выпавший после охлаждения осадок отфильтровывают, промывают CCl₄ и высушивают. Получают 5.8 г продукта **2а** в виде белого мелкокристаллического порошка.

4,6-Диметил-5-нитро-3-циано-2(1Н)-пиридон (2b). К суспензии 3.48 г (18 ммоль) цианопиридона **1a** в 12 мл Ac₂O при перемешивании и температуре 0 ± 1 °C медленно прибавляют раствор 2.1 мл HNO₃ (d = 1.51 г/см³) в 1.8 мл Ac₂O. Реакционную смесь выдерживают 0.5 ч при 5 °C, далее 0.5 ч при 20 °C и выливают на лед. Выпавший осадок отфильтровывают, промывают ледяной водой (3 × 50 мл) и высушивают в вакууме. Получают 2.5 г продукта **2b** в виде белого порошка.

Нитрил 4,6-диметил-2-хлорникотиновой кислоты (3а). Смесь 5.0 г (33.7 ммоль) цианопиридона 1а и 5.17 г (33.7 ммоль) РОСІ₃ нагревают в запаянной ампуле 5.5–6.0 ч при 120 °С. Ампулу вскрывают и выливают содержимое на 30 г дробленого льда. Образовавшийся осадок отфильтровывают, промывают ледяной водой (3 × 50 мл) и высушивают при пониженном давлении. Получают 5.35 г нитрила 3а в виде белого мелкокристаллического порошка.

Аналогично из соединений 1b, 2a,b, 4 получают нитрилы 3b-е соответственно.

Амид 4-метил-2,6-дихлорникотиновой кислоты (6b). Смесь 1 г (5.35 ммоль) нитрила 3b и 15 мл 80% H₂SO₄ перемешивают при 98±2 °C в течение 6 ч. Охлажденную реакционную смесь выливают на 30 г колотого льда и добавляют водный раствор аммиака до pH ~5. Образовавшийся осадок отфильтровывают, тщательно промывают водой и высушивают в вакуум-эксикаторе. Получают 1 г амида 6b в виде белого мелкокристаллического порошка.

Аналогично, но при продолжительности гидролиза до 10 ч получены амиды ба,с-е.

4-Метил-2,6-дихлорникотиновая кислота (7b). Смесь 5 г (24 ммоль) амида **6b** и 21.4 мл конц. H_2SO_4 (d = 1.84 г/см³) медленно нагревают до полного растворения амида. К охлажденному раствору медленно при ~0 °C добавляют по каплям раствор 3.9 г (56.5 ммоль) NaNO₂ в 20 мл воды. Реакционную массу выдерживают 40–60 мин при 20–25 °C и выливают на 50 г колотого льда. Выделившийся осадок отфильтровывают и очищают переосаждением из 10% раствора NaOH подкислением 10% раствором HCl, промывают водой, высушивают при 20 °C и получают 4.8 г кристаллогидрата кислоты **7b** с т. пл. 108–110 °C. После дополнительного высушивания в вакууме в течение 1.5 ч при 80 °C получают 4.4 г безводной кислоты **7b** в виде белого порошка.

Аналогично из амидов **6а,с-d** получают замещенные никотиновые кислоты **7а,с-d** соответственно.

4-Метил-5-нитро-2,6-дихлор-2-никотиновая кислота (7f). Раствор 1 г (5.35 ммоль) нитрила **3b** в смеси 7 мл HNO₃ (d = 1.51 г/см³) и 7 мл H₂SO₄ (d = 1.84 г/см³) нагревают 10 ч при ~100 °C. Охлажденную до 0 °C смесь добавляют по каплям к 30 г измельченного и охлажденного до –40 °C льда. Выделившийся осадок отфильтровывают, промывают водой, переосаждают из насыщенного раствора NaHCO₃, промывают водой до pH 7 и высушивают. Получают 0.81 г (60%) кислоты **7f** в виде белого мелкокристаллического порошка.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. И. Михалев, В. К. Кудряшова, М. Е. Коншин, Хим.-фарм. журн., № 5, 7 (1973).
- 2. Пат. Австралии 4593111975; РЖХим, 12О92П (1980).
- 3. В. П. Чесноков, М. Е. Коншин, В. С. Залесов, В. К. Кудряшова, *Хим.-фарм. журн.*, № 11, 7 (1973).
- 4. A. D. Gutman, US Pat. 4251263; РЖХим, 17О339П (1973).

- 5. A. D. Gutman, US Pat. 4327218; *PKXum*, 4O431Π (1983).
- 6. Л. В. Дядюченко, В. Д. Стрелков, В. Н. Заплишный, ХГС, 1641 (1999).
- 7. И. Губен, в кн. Методы органической химии, Госхимиздат, Москва, 1949, IV, Кн. 1, 251.
- 8. К. В. Вацуро, Г. Л. Мищенко, в кн. *Именные реакции в органической химии*, Химия, Москва, 1976, 84.
- 9. К. Наканиси, в кн. Инфракрасные спектры и строение органических соединений, Мир, Москва, 1965, 53.
- 10. O. N. Porter, Mass-spectrometry of Heterocyclic Compounds, N. Y., 1984.
- 11. Б. П. Терентьев, в кн. Масс-спектрометрия в органической химии, Высшая школа, Москва, 1979, 120.
- 12. H. Jahine, H. A. Zaher, F. A. Sayed, M. Sayed, J. Prakt. Chem., 316 (1974).
- 13. Гетероциклические соединения, ред. Р. Эльдерфилд, Изд-во иностр. лит., Москва, 1953, **1**, 360.
- 14. А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс, *Органические растворители*, Изд-во иностр. лит., Москва, 1958.

Всероссийский научно-исследовательский институт биологической защиты растений, Краснодар 350039, Россия Поступило в редакцию 23.03.2001 После доработки 10.01.2002

^аКубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: vlad zpl@mail.ru