# И. Иовель, Л. Голомба, С. Беляков, А. Кемме, Ю. Попелис, Э. Лукевиц

### ТРИМЕТИЛСИЛИЛЦИАНИРОВАНИЕ N-[3-(2-ФУРИЛ)-2-ПРОПЕНИЛИДЕН]ТРИФТОРМЕТИЛАНИЛИНОВ

В присутствии катализатора AlBr<sub>3</sub> изучено присоединение Me<sub>3</sub>SiCN к N-[3-(2-фурил)-2-пропенилиден]трифторметиланилинам, различающимся положением группы CF<sub>3</sub> в бензольном кольце и наличием или отсутствием метильной группы в гетероцикле. Определено направление процессов – 1,2-присоединение во всех случаях – и выявлены некоторые другие закономерности изучаемых реакций. Синтезирована серия соответствующих ненасыщенных гетероциклических  $\alpha$ -аминонитрилов. Молекулярная и кристаллическая структура одного из них определена методом PCA.

**Ключевые слова**: α-аминонитрилы, N-[3-(2-фурил)-2-пропенилиден]анилины, кислота Льюиса, триметилсилилцианид, катализ.

В последнее время нами синтезирована серия новых N-[3-(2-фурил)-2пропенилиден]трифторметиланилинов [1–3] конденсациями фурилакролеинов с 2-, 3- и 4-трифторметиланилинами. В продолжение предыдущих исследований [4–6] взаимодействия Me<sub>3</sub>SiCN с различными азометинами в настоящей работе изучено триметилсилилцианирование ряда новых альдиминов. В литературе данные относительно взаимодействия Me<sub>3</sub>SiCN с пропенилиденаминами отсутствуют. При исследовании гидросилилирования фурилакролеина, его производных и аналогов, содержащих сопряженные связи O=C-C=C, было показано, что в этих процессах образуются продукты 1,2- и 1,4-присоединения [7]. Исходя из этого представляло интерес определение направления процессов триметилсилилцианирования системы связей N=C-C=C.

В работах [4, 5] установлено, что среди примененных кислот Льюиса наиболее активным катализатором процессов присоединения триметилсилилцианида к различным гетероциклическим альдиминам является бромид алюминия в присутствии молекулярных сит 4А. Поэтому в данном исследовании также использовали указанную каталитическую систему. Изучено взаимодействие с триметилсилилцианидом 2-, 3- и 4-трифторметилпроизводных N-[3-(гетарил)-2-пропенилиден]анилинов (**1а–f**, где гетарил = 2-фурил и 5-метил-2-фурил). Реакции проводили в хлористом метилене или ацетонитриле при 40 или 65 °C, используя молярное соотношение субстрат : силилцианид 1 : 1.2 и концентрацию катализатора 20 мол. %.



При изучении взаимодействия субстратов 1а-f с триметилсилилцианидом оказалось, что наибольшая реакционная способность характерна для соединений, содержащих 4-CF<sub>3</sub> группу в бензольном кольце. Метильная группа фуранового кольца практически не оказывает влияния на скорость процесса, по-видимому, вследствие удаленности от реагирующей связи. При триметилсилилцианировании альдиминов **1а-f** после проведения процесса гидролиза и разделения реакционных смесей методом препаративной жидкостной колоночной хроматографии во всех случаях получены продукты 1,2-присоединения – соответствующие α-аминонитрилы N-[3-(гетарил)-1-циано-2-пропенил]трифторметиланилины 3a-f с выходом 57-85 % (схема, табл. 1). Следует отметить, что в отличие от триметилсилилцианированных азометинов гидролиз связи N-Si в образовавшихся промежуточных продуктах 2a-f протекает в очень мягких условиях – под действием влажного ацетона при комнатной температуре. Таким образом, в изученных процессах присоединение Me<sub>3</sub>SiCN происходит селективно по N=C связи исходных иминов, не затрагивая C=C двойную связь.

Все полученные соединения – маслообразные или кристаллические вещества желтого цвета, их спектры ЯМР <sup>1</sup>Н (табл. 2) и элементный анализ твердых соединений (см. табл. 1) соответствовали структуре целевых продуктов. В спектрах ЯМР <sup>1</sup>Н всех синтезированных нитрилов **3а**–**f** величина КССВ протонов у двойной связи  $H_{\beta}C=CH_{\gamma}$  составляет 15.4–15.8 Гц, что свидетельствует о *транс*-положении указанных атомов водорода.

Спектры ГЖХ-МС соединений 3a-f зарегистрировать не удалось, по-видимому, вследствие термической нестабильности синтезированных  $\alpha$ -аминонитрилов, что выражается в потере этими молекулами газообразного HCN и образовании в условиях анализа соответствующих иминов.

Для получения дополнительных сведений, выявляющих структуру указанных веществ, на примере соединения **3b** было проведено исследование методами 2D-COSY и ЯМР <sup>13</sup>С. Полученные результаты полностью подтвердили предложенную структуру конечного продукта (см. схему).

### Таблица 1

|             |       | r               |                                                                           |                                                                            |                                   |                     |                     |                                   |             |
|-------------|-------|-----------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|---------------------|---------------------|-----------------------------------|-------------|
| Со-<br>еди- | R     | Пози-<br>ция    | Пози-<br>ция<br>CF <sub>3</sub> Т, °C/<br>Время, ч<br>(раство-<br>ритель) | Брутто-<br>формула<br>(М <sub>выч</sub> )                                  | <u>Найдено, %</u><br>Вычислено, % |                     |                     | Т. пл.,                           | Вы-<br>ход, |
| не-<br>ние  | ние С | CF <sub>3</sub> |                                                                           |                                                                            | С                                 | Н                   | Ν                   | ť                                 | %           |
| 3a          | Н     | 2'-             | 40/25,<br>65/6<br>(MeCN)                                                  | C <sub>15</sub> H <sub>11</sub> N <sub>2</sub> OF <sub>3</sub><br>(292.26) | _                                 | _                   | _                   | Масля-<br>нистая<br>жид-<br>кость | 71          |
| 3b          | Н     | 3'-             | 40/6<br>(CH <sub>2</sub> Cl <sub>2</sub> )                                | C <sub>15</sub> H <sub>11</sub> N <sub>2</sub> OF <sub>3</sub><br>(292.26) | <u>61.70</u><br>61.65             | <u>3.89</u><br>3.79 | <u>9.05</u><br>9.58 | 87–88                             | 72          |
| 3c          | Н     | 4'-             | 40/4<br>(CH <sub>2</sub> Cl <sub>2</sub> )                                | C <sub>15</sub> H <sub>11</sub> N <sub>2</sub> OF <sub>3</sub><br>(292.26) | <u>61.50</u><br>61.65             | <u>3.74</u><br>3.79 | <u>9.36</u><br>9.58 | 136–137                           | 85          |
| 3d          | Ме    | 2'-             | 40/15<br>(CH <sub>2</sub> Cl <sub>2</sub> )                               | C <sub>16</sub> H <sub>13</sub> N <sub>2</sub> OF <sub>3</sub><br>(306.29) | _                                 | _                   | _                   | Масля-<br>нистая<br>жид-<br>кость | 57          |
| 3e          | Ме    | 3'-             | 65/5<br>(MeCN)                                                            | C <sub>16</sub> H <sub>13</sub> N <sub>2</sub> OF <sub>3</sub><br>(306.29) | _                                 | _                   | -                   | Масля-<br>нистая<br>жид-<br>кость | 70          |
| 3f          | Me    | 4'-             | 40/3<br>(CH <sub>2</sub> Cl <sub>2</sub> )                                | C <sub>16</sub> H <sub>13</sub> N <sub>2</sub> OF <sub>3</sub><br>(306.29) | <u>62.47</u><br>62.74             | $\frac{4.34}{4.28}$ | <u>8.90</u><br>9.15 | 115–116                           | 75          |

#### Характеристики реакций и продуктов

В спектре соединения **3b** наблюдались следующие химические сдвиги сигналов ЯМР <sup>13</sup>С,  $\delta$ , м. д. (КССВ С–F, *J*, Гц): 47.18 С<sub>α</sub>, 110.76 (4.0) С<sub>2</sub>, 111.18 и 111.70 С<sub>3</sub> и С<sub>4</sub>, 116.68 (4.0) С<sub>4</sub>, 116.95 (1.1) С<sub>5</sub>, 117.04 С=N, 118.21 С<sub>6</sub>, 123.31 С<sub>β</sub>, 123.93 (272.2) CF<sub>3</sub>, 130.07 С<sub>γ</sub>, 131.85 (32.1) С<sub>3</sub>, 143.31 С<sub>5</sub>, 144.67 С<sub>1</sub>, 150.35 С<sub>2</sub>. Приведенный спектр подтверждает наличие С<sub>β</sub>=С<sub>γ</sub> двойной связи и присутствие заместителя N=C у атома С<sub>α</sub>. Кроме того, зарегистрированный спектр согласуется с прогнозом для структуры **3b**, выполненным с использованием кодов HOSE (<u>H</u>ierarchical <u>O</u>rdered <u>S</u>pherical Description of <u>E</u>nvironment) [8].

С целью однозначного установления строения соединения **3f** были получены его монокристаллы и проведен рентгеноструктурный анализ. На рис. 1 дана пространственная модель молекулы с обозначениями атомов и их эллипсоидами тепловых колебаний. В табл. 3 приведены основные значения длин связей и валентных углов. В молекуле **3f** можно выделить два приблизительно плоских фрагмента: фурановый цикл вместе с атомами C(7), C(8) и фенильное кольцо с атомами N(12), C(9), C(10) и N(11). Торсионный угол C(7)–C(8)–C(9)–N(12), характеризующий взаимный разворот плоских фрагментов, равен 117.1(8)°. Результаты рентгеноструктурного исследования свидетельствуют о *син-транс*-конфигурации соединения, что согласуется с данными ЯМР <sup>1</sup>Н относительно расположения протонов у двойной связи C<sub>β</sub>=C<sub>γ</sub>.



*Рис. 1.* Пространственная модель молекулы соединения N-[3-(5-метил-2-фурил)-1-циано-2-пропенил]-4-трифторметиланилина **3f** 



Рис. 2. Фрагмент кристаллической структуры соединения 3f

В структуре **3f** атомы фтора разупорядочены, аналогично структурам **5b** и **5c** в работе [3]. Для всех шести атомов фтора величины *g*-факторов равны 0.5. В кристаллической структуре обнаружена вилочная водородная связь типа NH...N с длинами 3.207(5)Å (N(12)–H(12)...N(11) =  $148(4)^\circ$ , H(12)...N(11) = 2.45(6)Å) и 3.136(5)Å (N(12)–H(12)...N(11) =  $121(4)^\circ$ , H(12)...N(11) = 2.61(6)Å). Эти длины несколько выше среднестатистического значения длины водородной связи данного типа 2.98 Å [9]. На рис. 2 представлен фрагмент упаковки молекул с указанием водородных связей в кристалле. Кристаллы соединения **3f** являются центросимметричными и содержат молекулы *S*- и *R*-энантиомеров в равных количествах.

Таблица 2

| Co-                | Химический сдвиг (CDCl <sub>3</sub> ), б, м. д., КССВ ( <i>J</i> , Гц) |                           |                                   |                                    |                                                                         |                                                                                                                                                                    |  |  |
|--------------------|------------------------------------------------------------------------|---------------------------|-----------------------------------|------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| еди-<br>не-<br>ние | CH <sub>3</sub> ,<br>c                                                 | NH,<br>д                  | СНN,<br>д. д                      | СН <sub>β</sub> ,<br>д д           | $\begin{array}{c} CH_{\gamma}\square\square,\\ \mathcal{I} \end{array}$ | Протоны колец                                                                                                                                                      |  |  |
| 3a                 | _                                                                      | 4.51<br>( <i>J</i> = 7.8) | 5.08<br>( <i>J</i> = 5.4,<br>7.8) | 6.19<br>( <i>J</i> = 5.4,<br>15.7) | 6.91<br>( <i>J</i> = 15.7)                                              | 6.42 (2H, с, H-3, H-4), 6.9–7.0<br>(2H, м, H-5', H-6'), 7.40 (1H, с,<br>H-5), 7.5–7.6 (2H, м, H-3', H-4')                                                          |  |  |
| 3b                 | _                                                                      | 4.53<br>( <i>J</i> = 8.6) | 5.05<br>( <i>J</i> = 5.4,<br>8.6) | 6.17<br>( <i>J</i> = 5.4,<br>15.6) | 6.83<br>( <i>J</i> = 15.6)                                              | 6.40 (2H, c, H-3, H-4), 6.9–7.0<br>(2H, м, H-2', H-6'), 7.12 (1H, д,<br><i>J</i> = 8.0, H-5'), 7.35 (1H, c, H-5),<br>7.39 (1H, м, H-2')                            |  |  |
| 3c                 | -                                                                      | 4.20<br>( <i>J</i> = 8.4) | 5.09<br>( <i>J</i> = 5.3,<br>8.4) | 6.20<br>( <i>J</i> = 5.3,<br>15.8) | 6.86<br>( <i>J</i> = 15.8)                                              | 6.42 (2H, c, H-3, H-4), 6.81 (2H, $d$ , $J = 8.4$ , H-2', H-6'), 7.41 (1H, c, H-5), 7.51 (2H, $d$ , $J = 8.4$ , H-3', H-5')                                        |  |  |
| 3d                 | 2.32                                                                   | 4.50<br>( <i>J</i> = 7.2) | 5.06<br>( <i>J</i> = 5.2,<br>7.2) | 6.12<br>( <i>J</i> = 5.2,<br>15.8) | 6.80<br>( <i>J</i> = 15.8)                                              | 6.02 (1Н, д, <i>J</i> = 3.0, Н-4), 6.31<br>(1Н, д, <i>J</i> = 3.0, Н-3), 6.9–7.0 (2Н,<br>м, H-5', H-6'), 7.5–7.6 (2Н, м, H-3',<br>H-4')                            |  |  |
| 3e                 | 2.32                                                                   | 4.07<br>( <i>J</i> = 8.2) | 5.05<br>( <i>J</i> = 4.8,<br>8.2) | 6.10<br>( <i>J</i> = 4.8,<br>15.4) | 6.77<br>( <i>J</i> = 15.4)                                              | 6.01 (1H, д, <i>J</i> = 3.1, H-4), 6.30<br>(1H, д, <i>J</i> = 3.1, H-3), 6.9–7.0 (2H,<br>м, H-2', H-6'), 7.12 (1H, д,<br><i>J</i> = 7.4, H-5'), 7.35 (1H, м, H-2') |  |  |
| 3f                 | 2.31                                                                   | 4.20<br>( <i>J</i> = 8.8) | 5.04<br>( <i>J</i> = 5.4,<br>8.8) | 6.09<br>( <i>J</i> = 5.4,<br>15.6) | 6.80<br>( <i>J</i> = 15.6)                                              | 6.01 (1H, $\mu$ , $J = 3.4$ , H-4), 6.29<br>(1H, $\mu$ , $J = 3.4$ , H-3), 6.75 (2H, $\mu$ ,<br>$J = 8.4$ , H-2', H-6'), 7.54 (2H, $\mu$ ,<br>J = 8.4, H-3', H-5') |  |  |

Спектры ЯМР <sup>1</sup>Н синтезированных соединений

Таблица З

| Связь       | <i>d</i> , Å | Угол              | <i>θ</i> , град. | Угол              | <i>θ</i> , град. |
|-------------|--------------|-------------------|------------------|-------------------|------------------|
| 1           | 2            | 3                 | 4                | 5                 | 6                |
| O(1)-C(5)   | 1.371(5)     | C(5)-O(1)-C(2)    | 106.6(4)         | F(3)-C(19)-F(2')  | 61.4(14)         |
| O(1)–C(2)   | 1.375(5)     | C(13)-C(18)-C(17) | 120.0(4)         | F(3)-C(19)-F(3')  | 50.(2)           |
| C(18)-C(13) | 1.403(5)     | N(12)-C(9)-C(10)  | 111.5(3)         | F(1')-C(19)-F(2') | 100.0(14)        |
| C(18)-C(17) | 1.389(6)     | N(12)-C(9)-C(8)   | 110.5(3)         | F(1')-C(19)-F(3') | 113.(2)          |
| C(9)–N(12)  | 1.451(5)     | C(10)-C(9)-C(8)   | 111.4(3)         | F(2')-C(19)-F(3') | 102.(2)          |
| C(9)–C(10)  | 1.489(6)     | C(9)-N(12)-C(13)  | 123.6(3)         | C(19)-F(2)-F(1')  | 64.0(11)         |
| C(9)–C(8)   | 1.508(6)     | C(9)-C(10)-N(11)  | 177.4(4)         | C(19)-F(2)-F(2')  | 64.(2)           |
| N(12)-C(13) | 1.363(5)     | C(18)-C(13)-N(12) | 122.8(4)         | F(1')-F(2)-F(2')  | 126.(3)          |
| C(10)-N(11) | 1.139(5)     | C(18)-C(13)-C(14) | 117.8(4)         | C(19)-F(3)-F(2')  | 52.2(10)         |
| C(13)-C(14) | 1.386(6)     | N(12)-C(13)-C(14) | 119.3(4)         | C(19)-F(3)-F(3')  | 60.(2)           |
| C(14)-C(15) | 1.367(7)     | C(13)-C(14)-C(15) | 121.5(4)         | F(2')-F(3)-F(3')  | 103.(2)          |
| C(5)–C(4)   | 1.312(8)     | O(1)-C(5)-C(4))   | 110.3(5          | F(1)-F(1')-C(19)  | 52.9(9)          |
| C(5)–C(6)   | 1.503(8)     | O(1)-C(5)-C(6)    | 114.6(5)         | F(1)-F(1')-F(2)   | 100.1(12)        |
| C(2)–C(7)   | 1.438(6)     | C(4)-C(5)-C(6)    | 135.1(5)         | C(19)-F(1')-F(2)  | 56.7(8)          |
| C(2)–C(3)   | 1.344(7)     | O(1)-C(2)-C(7)    | 118.2(4)         | C(19)-F(2')-F(2)  | 74.(2)           |
| C(16)-C(15) | 1.391(7)     | O(1)-C(2)-C(3)    | 109.0(4)         | C(19)-F(2')-F(3)  | 66.3(11)         |
| C(16)-C(17) | 1.368(6)     | C(7)-C(2)-C(3)    | 132.8(5)         | F(2)-F(2')-F(3)   | 136.(3)          |
| C(16)-C(19) | 1.487(8)     | C(15)-C(16)-C(17) | 118.7(5)         | F(1)-F(3')-C(19)  | 64.(2)           |
| C(8)–C(7)   | 1.323(6)     | C(15)-C(16)-C(19) | 120.3(5)         | F(1)-F(3')-F(3)   | 132.(2)          |
| F(1)-C(19)  | 1.267(11)    | C(17)-C(16)-C(19) | 121.0(5)         | C(19)-F(3')-F(3)  | 70.2(11)         |
| F(1)–F(1')  | 1.45(2)      | C(9)-C(8)-C(7)    | 125.3(4)         | C(13)-C(18)-H(18) | 117.(3)          |
| F(1)-F(3')  | 1.09(6)      | C(2)-C(7)-C(8)    | 125.6(4)         | C(17)-C(18)-H(18) | 121.(3)          |
| C(4)–C(3)   | 1.420(8)     | C(14)-C(15)-C(16) | 120.7(5)         | N(12)-C(9)-H(9)   | 109.(2)          |
| C(19)–F(2)  | 1.291(15)    | C(19)-F(1)-F(1')  | 60.9(8)          | C(10)-C(9)-H(9)   | 105.(2)          |
| C(19)–F(3)  | 1.397(13)    | C(19)-F(1)-F(3')  | 65.4(12)         | C(8)-C(9)-H(9)    | 109.(2)          |
| C(19)–F(1') | 1.387(14)    | F(1')-F(1)-F(3')  | 121.(2)          | C(9)-N(12)-H(12)  | 101.(3)          |
| C(19)-F(2') | 1.21(2)      | C(18)-C(17)-C(16) | 121.2(4)         | C(13)-N(12)-H(12) | 121.(4)          |
| C(19)-F(3') | 1.28(2)      | C(5)-C(4)-C(3)    | 107.4(5)         | C(13)-C(14)-H(14) | 116.(3)          |
| F(2)-F(1')  | 1.33(2)      | C(2)-C(3)-C(4)    | 106.8(5)         | C(15)-C(14)-H(14) | 122.(3)          |
| F(2)-F(2')  | 0.90(3)      | C(16)-C(19)-F(1)  | 114.5(6)         | C(9)-C(8)-H(8)    | 113.(2)          |
| F(3)–F(2')  | 1.34(2)      | C(16)-C(19)-F(2)  | 116.6(10)        | C(7)-C(8)-H(8)    | 122.(2)          |
| F(3)-F(3')  | 1.14(4)      | C(16)-C(19)-F(3)  | 109.3(6)         | C(2)-C(7)-H(7)    | 118.(2)          |
| C(18)-H(18) | 0.95(5)      | C(16)-C(19)-F(1') | 107.6(7)         | C(8)-C(7)-H(7)    | 116.(2)          |
| C(9)-H(9)   | 1.08(4)      | C(16)-C(19)-F(2') | 116.4(10)        | C(14)-C(15)-H(15) | 117.(3)          |

Основные длины связей (d) и значения валентных углов ( $\theta$ ) в молекулах соединения 3f

| 1           | 2       | 3                 | 4         | 5                 | 6       |
|-------------|---------|-------------------|-----------|-------------------|---------|
| N(12)-H(12) | 0.85(6) | C(16)-C(19)-F(3') | 116.7(10) | C(16)-C(15)-H(15) | 122.(3) |
| C(14)–H(14) | 1.00(5) | F(1)-C(19)-F(2)   | 113.1(12) | С(18)-С(17)-Н(17) | 124.(3) |
| C(8)-H(8)   | 1.04(4) | F(1)-C(19)-F(3)   | 99.6(10)  | С(16)-С(17)-Н(17) | 114.(3) |
| C(7)-H(7)   | 1.00(3) | F(1)-C(19)-F(1')  | 66.2(11)  | C(5)-C(4)-H(4)    | 126.(3) |
| C(15)-H(15) | 0.95(6) | F(1)-C(19)-F(2')  | 129.1(11) | C(3)-C(4)-H(4)    | 127.(3) |
| C(17)-H(17) | 0.91(5) | F(1)-C(19)-F(3')  | 51.(2)    | C(2)-C(3)-H(3)    | 120.(3) |
| C(4)-H(4)   | 0.98(5) | F(2)-C(19)-F(3)   | 101.4(12) | C(4)-C(3)-H(3)    | 133.(3) |
| C(3)–H(3)   | 1.13(5) | F(2)-C(19)-F(1')  | 59.3(10)  | C(5)-C(6)-H(6A)   | 112.(4) |
| C(6)-H(6A)  | 0.81(7) | F(2)-C(19)-F(2')  | 42.0(13)  | C(5)-C(6)-H(6B)   | 108.(3) |
| C(6)-H(6B)  | 0.92(5) | F(2)-C(19)-F(3')  | 125.6(12) | C(5)-C(6)-H(6C)   | 108.(5) |
| C(6)-H(6C)  | 0.86(8) | F(3)-C(19)-F(1')  | 143.1(8)  | H(6A)-C(6)-H(6B)  | 112.(5  |
|             |         |                   |           | H(6A)-C(6)-H(6C)  | 92.(6)  |
|             |         |                   |           | H(6B)-C(6)-H(6C)  | 124.(6) |

Окончание таблицы 3

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР <sup>1</sup>Н и <sup>13</sup>С исследованы на спектрометре Varian Mercury (200 и 50.3 МГц, соответственно) для растворов в CDCl<sub>3</sub>, внутренний стандарт ТМС. Ацетонитрил (квалификации ос. ч.) использовали без предварительной очистки, дихлорметан перед использованием перегоняли над  $P_2O_5$ . Триметилсилилцианид (Aldrich) применяли без дополнительной очистки. В работе использовали AlBr<sub>3</sub> (Fluka), молекулярные сита 4A (VEB Laborchemie Apolda), силикагель для колоночной хроматографии (Kieselgel 60, 0.063–0.200 меш, Merck). Анализы методом ТСХ осуществляли на пластинках Kieselgel 60  $F_{254}$  (Merck).

Общая методика триметилсилилцианирования. Реакционную пробирку Ріегсе объемом 5 см<sup>3</sup> продувают аргоном и помещают в нее 2 мл сухого растворителя, 0.5 ммоль исходного имина, 0.1 ммоль AlBr<sub>3</sub> и 0.5 г молекулярных сит. Затем в смесь добавляют шприцем 0.6 ммоль  $Me_3SiCN$ . Реакцию проводят при 40 или 65 °C, периодически отбирая пробы и анализируя их методами TCX и ГЖХ-МС. По окончании реакции (продолжительность процессов указана в табл. 1) смесь фильтруют, упаривают при пониженном давлении (30 °C/15 мм) и добавляют ацетон. При этом выпадает белый осадок соединений, содержащих группу  $Me_3Si$ . Смесь фильтруют, упаривают, добавляют эфир, сушат над безводным  $Na_2SO_4$ , затем вновь фильтруют и концентрируют. Остаток разделяют методом жидкостной хроматографии на колонке с силикагелем, используя элюент бензол–этилацетат, 9.5 : 0.2.

Рентгеноструктурные исследования. Монокристаллы соединения 3f выращены из смеси бензол–гексан, 1 : 3. Съемка дифракционной картины осуществлялась при 20 °С на автоматическом дифрактометре Nonius KappaCCD (МоК<sub>а</sub>-излучение) до  $2\theta_{max} = 51^{\circ}$ . Кристаллы принадлежат моноклинной сингонии, параметры кристаллической решетки следующие: a = 22.4388(8) Å, b = 5.9784(2) Å, c = 22.758(1) Å,  $\beta = 90.745(1)^{\circ}$ ; V = 3052.7(2) Å<sup>3</sup>; d = 1.333 г/см<sup>3</sup>, Z = 8, F(000) = 1264,  $\mu = 0.11$  мм<sup>-1</sup>. Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном приближении. Атомы водорода найдены из разностного синтеза и уточнены изотропно. Из 3050 симметрически независимых рефлексов в расчетах использовано 1536 с  $I > 3\sigma(I)$ . Окончательный фактор расходимости равен 0.094. Все расчеты выполнены с помощью программ [10, 11].

Авторы благодарны Латвийскому совету по науке за финансирование работы (грант № 181).

## СПИСОК ЛИТЕРАТУРЫ

- 1. И. Иовель, Л. Голомба, Ю. Попелис, А. Гаухман, Э. Лукевиц, ХГС, 324 (2000).
- И. Иовель, Л. Голомба, С. Беляков, Ю. Попелис, А. Гаухман, Э. Лукевиц, XГС, 361 (2003).
- 3. И. Иовель, Л. Голомба, С. Беляков, Ю. Попелис, Э. Лукевиц, ХГС, 1642 (2003).
- 4. I. Iovel, L. Golomba, S. Belyakov, J. Popelis, S. Grinberga, E. Lukevics, *Appl. Organometal. Chem.*, **14**, 721 (2000).
- 5. I. Iovel, L. Golomba, S. Belyakov, A. Kemme, E. Lukevics, *Appl. Organometal. Chem.*, **15**, 733 (2001).
- 6. И. Иовель, Л. Голомба, Ю. Попелис, А. Гаухман, Э. Лукевиц, ХГС, 847 (2003).
- 7. I. Iovel, J. Popelis, A. Gaukhman, E. Lukevics, J. Organometal. Chem., 559, 123 (1998).
- 8. W. Bremser, B. Franke, H. Wagner, *Chemical Shift Ranges in Carbon-13 NMR Spectroscopy*, Verlag Chemie, Weinheim, Deerfield Beach-Florida, Basel, 1982, 890.
- 9. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- 10. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, R. Spagna, *J. Appl. Crystallogr.*, **32**, 115 (1999).
- 11. S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, *maXus Computer Program for the Solution and Refinement of Crystal Structures*, Bruker Nonius, The Netherlands, MacScience, Japan & The University of Glasgow, 1999.

Латвийский институт органического синтеза, Pura LV-1006 e-mail: iovel@osi.lv Поступило в редакцию 22.02.2003