ХИМИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ. — 1998. — № 8. — С. 1079—1087

Л. А. Свиридова, Г. А. Голубева, И. В. Длинных, И. Ф. Лещева, Л. Д. Ашкинадзе, В. В. Нестеров, М. Ю. Антипин

РЕАКЦИИ ГИДРОКСИАЗОЛИДИНОВ С *л*-ДОНОРНЫМИ ГЕТЕРОЦИКЛАМИ

2*. ВЗАИМОДЕЙСТВИЕ 1-АЦЕТИЛ-5-ГИДРОКСИПИРАЗОЛИДИНОВ С ПИРАЗОЛОНАМИ-5 НА ПОВЕРХНОСТИ АДСОРБЕНТОВ

Реакция 1-ацетил-2-фенил-5-гидроксипиразолидинов с пиразолонами-5 приводит к соответствующим 4-(пиразолидинил-5) пиразолонам, существующим преимущественно в форме оксипиразолов. Процесс протекает на поверхности адсорбентов в неполярном растворителе. Изучены строение и стереохимия полученных бисгетероциклов.

Непосредственное взаимодействие гидроксипиразолидинов с *л*-донорными гетероциклическими системами может служить удобным методом синтеза бисгетероциклов, являющихся комбинацией насыщенного и ароматического гетероциклических ядер. Однако до последнего времени это удавалось лишь в реакциях с индолами [2].

Недавно мы показали [1] принципиальную возможность прямой атаки 5-гидроксипиразолидинов пиразолонами на поверхности адсорбента. В настоящей работе предпринято систематическое исследование этого процесса. Мы обнаружили, что в реакции с 5-гидроксипиразолидинами I могут участвовать любые как 1-незамещенные, так и 1-замещенные 3-метилпиразолоны-5 II, а в качестве практически единственных продуктов превращения во всех случаях были выделены соответствующие 4-(пиразолидинил-5) пиразолоны-5 IIIа—з, IV (табл. 1—3).

I a $R^1 = H$, 6 $R^1 = Me$; II a $R^2 = H$, 6 $R^2 = Ph$, 8 $R^2 = CH_2Ph$, r $R^2 = CH_2CH_2CN$; III a $R^1 = R^2 = H$, 6 $R^1 = Me$, $R^2 = H$, 8 $R^1 = H$, $R^2 = Ph$, r $R^1 = Me$, $R^2 = Ph$, g $R^1 = H$, $R^2 = CH_2Ph$, e $R^1 = Me$, $R^2 = CH_2Ph$, w $R^1 = H$, $R^2 = CH_2CH_2CN$, 3 $R^1 = Me$, $R^2 = CH_2CH_2CN$

* Сообщение 1 см. [1].

Таблица 1

- --

- ----

Соеди- Время реакции,		Адсорбент*	Брутто-	<u>Найдено, %</u> Вычислено, %		Т _{пл} , °С	R _f	ИК спектр, см ⁻¹	Масс- спектр,	м+	Выход, %	
нение	ч	-	формузы	с	н	N				141 +	DDI4+	
IIIa	3	Полцамид	C ₁₅ H ₁₈ N ₄ O ₂	<u>63,00</u>	<u>6,34</u>	19,49	165167	0,13	1605, 1635, 1720,	286	286	57
шб	11	Полцамид	$C_{16}H_{20}N_4O_2$	62,94 64,57 64,00	6,29 <u>7,20</u> 6,67	19,58 <u>18,14</u> 18,60	143145	0,15	24003200, 3480 1640, 1735, 24003400	300	300	65
Шв	2	A12O3	$C_{21}H_{22}N_4O_2$	<u>69,75</u> 69,60	<u>6,03</u> 6,08	<u>15,48</u> 15,50	133135	0,75	1610, 1640, 2500 2900			70
IIIr	<u>;</u> 7	Al ₂ O ₃	$C_{22}H_{24}N_4O_2$	<u>70,16</u> 70,21	<u>6,45</u> 6,38	$\frac{14,88}{14,89}$	135137	0,85	1620, 1640 25003000	376	376	62
Шд	5,	Флоризил	$C_{22}H_{24}N_4O_2$	<u>70,35</u> 70,21	<u>6,68</u> 6,38	<u>14,89</u> 14,89	138139	0,45	1600, 1635, 23003200			55
IIIe	11	Флоризил	$C_{23}H_{26}N_4O_2$	<u>70,40</u> 70,80	<u>6,83</u> 6,70		136138	0,60	1605, 1640, 26003000			60
Шж	10	АЭ-, ДЭАЭ-целлюлозы	$C_{18}H_{21}N_5O_2$				*2	0,22	1605, 1625, 1705, 2260, 25003200	339	339	48
III3	15	АЭ-, ДЭАЭ-целлюлозы	$C_{19}H_{23}N_5O_2$				180 разл.	0,27	1605, 1625, 1680, 2265, 25003100	353	353	25
IV	10	Al ₂ O ₃	$C_{22}H_{21}N_4O_2F_3$	$\frac{61,24}{61,40}$	<u>4,79</u> 4,88	$\frac{13,02}{13,07}$	165167	0,80	1605, 1635 22003100	430	430	60

Характеристики полученных соединений III, IV

• Используемые адсорбенты в большинстве случаев могут варьироваться; здесь приведены лишь те, на которых достигнут максимальный выход.

•² Масло.

Наиболее эффективным в данном превращении оказался метод проведения процесса на поверхности адсорбента. Этот метод, получивший широкое распрстранение в органической химии и химии азолидинов, до сих пор использовался как «сухая» реакция [1, 3] на поверхности твердого носителя без растворителя. Мы установили, что оптимальными для исследуемого процесса являются условия его проведения на поверхности адсорбента в присутствии неполярного растворителя, плохо растворяющего исходный пиразолон-5 II, для повышения скорости обмена в поверхностном слое. Данный метод, в отличие от описанного нами в кратком сообщении [1] способа синтеза соединений III6,г, позволил в три раза сократить требуемое количество адсорбента, уменьшить время реакции от 2 сут до нескольких часов, а также повысить выход соединений III, IV. Других продуктов замещения мы не обнаружиди, однако в реакционной смеси присутствовали следы распада исходных 5-гидроксипиразолидинов I.

По спектральным данным, соединения III и IV в растворе имеют преимущественно оксипиразольное строение (форма A). Хотя сигналы формы Б в спектрах ЯМР¹Н и ¹³С в CDCl₃ не наблюдаются, наличие полосы поглощения циклической амидной группы пиразолонового фрагмента в ИК спектрах производных IIIа,6,ж,з указывает на присутствие в растворе хлористого метилена этого таутомера в очень малых количествах. В растворах синтезированных нами соединений III, IV методом ИК спектроскопии обнаружена водородная связь между протоном гидроксильной группы формы A и карбонильным атомом кислорода 1-ацетильного заместителя пиразолидинового цикла. На примере производного IIIг установлен ее внутримолекулярный характер.

По данным спектроскопии ПМР с применением ядерного эффекта Оверхаузера, соединение Шг имеет *транс*-расположение заместителей

Таблица 2

Со- еди- не- ние	3 ' -Ң, м	4'-H, 4'-H', M	5'-Н, м	3'-CH3, д	СН ₃ СО, с	3-CH3, c	R ²	ОН
IIIa	3,41 4,00	2,29 2,61	5,17	_	2,09	1,93	9,50	9,50
щб	4,25	2,00 2,75	5,21	1,27	2,07	1,80	11,20	11,20
Шв	3,36 3,96	2,28 2,68	5,14	_	2,13	1,81	6,97,9 (C ₆ H ₅)	11,34
IIIr	4,25	1,99 2,85	5,21	1,28	2,11	1,83	6,87,5 (C ₆ H ₅)	11,40
Щд	3,37 3,95	2,25 2,65	5,14	_	2,12	1,74	5,05, д, 5,17, д (CH2) 6,97,4 (С6H5)	10,81
IIIe	4,12	1,98 2,80	5,15	1,28	2,10	1,77	5,06, д, 5,17, д (CH2) 6,87,5 (С6H5)	10,87
Шж	3,34 3,93	2,24 2,62	5,08	_	2,11	1,73	2,81 (CH ₂ CN) 4,18 (NCH ₂)	11,10
III3	4,19	2,01 2,77	5,18	1,29	2,10	1,76	2,86 (CH ₂ CN) 4,24 (NCH ₂)	11,05
IV	4,34	2,15 2,84	5,28	1,30	2,15	—	6,87,9 (C ₆ H ₅)	12,31

Химические сдвиги протонов соединений III, IV (d, м. д.)

	T		T						
Атомы углерода	IIIa	III6	Шв	IIIr	шд	IIIe	Шж	III3	IV
	· · · · · · · · · · · · · · · · · · ·					·····			
C ₍₃₎	138,49	139,00	145,40	145,20	144,00	143,84	145,00	144,71	137,58*
C ₍₄₎	98,87	98,37	97,20	96,71	95,57	95,09	95,88	- 95,31	97,56
C(5)	161,00	160,87	152,97	152,77	152,79	152,60	152,98	152,74	154,04
3-CH ₃	12,29	12,49	15,71	15,55	15,70	15,59	15,51	15,32	121,28* ²
C _(3')	55,04	62,37	55,35	62,50	55,45	62,74	55,32	62,87	62,16
C(4')	28,66	33,91	27,87	33,06	27,93	33,20	27,93	32,96	34,70
C(5')	52,32	51,37	53,22	52,07	53,39	52,24	53,08	51,90	52,39
3'-CH3	·	19,15	·	18,75	·	18,89	·	18,72	19,54
<u>C</u> H ₃ CO	21,27	21,11	21,13	21,03	21,25	21,19	21,11	20,98	21,62
СН <u>3С</u> О	175,23	176,02	175,82	176,39	175,70	176,31	175,75	176,23	178,33
Ph Co	116,03	115,74	116,14	115,90	116,24	116,04	116,11	115,84	115,48
C_m	129,39	129,23	128,84	129,25	129,48	128,44	129,20	129,43	129,12
C_p	122,42	122,34	122,86	122,65	122,82	122,64	122,84	122,56	122,40
\dot{C}_i	149,61	149,47	149,14	149,43	149,29	149,32	149,10	149,10	148,76
R²			121,28	121,06	50,27	50,08	18,12	17,89	119,95
			125,72	125,48	127,49	127,29	41,77	41,49	122,53
			129,51	129,25	127,75	127,54	117,34	117,04	129,51
			138,79	138,59	128,65	129,25			138,00
					137,51	137,31			

Химические сдвиги 13 С для соединений III, IV (δ , м. д.)

J_{CF} = 37 Гц. CF₃, J_{CF} = 270 Гц. * *2

Общий вид молекулы Шг

в пиразолидиновом цикле (табл. 4) аналогично описанным ранее производным пиразолидинов, строение которых изучалось этим же методом [4]. Кроме того, наблюдалось взаимодействие протона 5-Н пиразолидинового заместителя и группы ОН пиразолонового фрагмента, что говорит об их пространственной близости.

Таблица 4

Насыщенные	Наблюдаемые протоны							
протоны	5'-Н	3'-H	4'-H ^a	4'-H' ^a	ОН			
5'-H			_	7,60	9,7			
3′-Н	—		5,40					
4'-H	_	9,5		20,5				
4'-H'	8,8	1,0	22,0		. —			

Величины ЯЭО (η, %) для соединения Шг

^а 4'-н — слабопольный протон, 4'-н' —сильнопольный протон.

Рентгеноструктурным исследованием установлена структура соединения Шг в кристаллическом состоянии. На рисунке показан общий вид молекулы; длины связей, валентные и основные торсионные углы приведены в табл. 5—7 соответственно.

В исследованной молекуле двугранный угол между плоским пиразольным гетероциклом и фенильным заместителем (C₍₆₎...C₍₁₁₎) равен 30,4°. Значение торсионного угла C₍₅₎—C₍₄₎—C₍₁₅₎—N₍₁₄₎ — 87,8° указывает на скрученность молекулы вокруг связи C₍₄₎—C₍₁₅₎. Пиразолидиновый гетероцикл находится в конформации конверта, отклонение атома C₍₁₇₎ от плоскости N₍₁₃₎—N₍₁₄₎—C₍₁₅₎—C₍₁₆₎ (плоскость выполняется с точностью до ±0,003 Å) составляет 0,580 Å, а двугранный угол между рассматриваемой плоскостью и плоскостью, проведенной через атомы C₍₁₆₎—C₍₁₇₎—N₍₁₃₎, равен 38,8°. Двугранный угол между плоской частью пиразолидинового гетероцикла и фенильным кольцом C₍₁₉)...C₍₂₄) составляет 107,5°.

Таблица 5

Связь	<i>ι</i> , Å	Связь	<i>l</i> , Å
O(1)-C(5)	1,333(2)	$C_{(6)}-C_{(11)}$	1,380(3)
O(2)C(25)	1,233(3)	C(7)—C(8)	1,392(4)
N(1)C(5)	1,361(3)	C(8)—C(9)	1,378(4)
N(1)—N(2)	1,374(2)	C(9)-C(10)	1,366(5)
N(1)—C(6)	1,423(3)	C(10)-C(11)	1,376(4)
N(2)—C(3)	1,338(3)	C(15)-C(16)	1,532(3)
N(13)—N(14)	1,424(2)	C(16)C(17)	1,521(4)
N(13)—C(19)	1,425(3)	C(17)—C(18)	1,518(5)
N(13)C(17)	1,482(3)	C(19)—C(20)	1,382(3)
N(14)-C(25)	1,342(3)	C(19)—C(24)	1,385(3)
N(14)C(15)	1,499(3)	C(20)—C(21)	1,364(5)
C(3)-C(4)	1,419(3)	C(21)C(22)	1,378(5)
C(3)-C(12)	1,488(3)	C(22)C(23)	1,364(5)
C(4)—C(5)	1,380(3)	C(23)—C(24)	1,372(4)
C(4)-C(15)	1,504(3)	C(25)—C(26)	1,496(4)
C(6)-C(7)	1,378(3)		

Длины связей в молекуле Шг

Таблица б

Валентные углы в молекуле Шг

Угол	ω, град.	Угол	ω, град.
C(5)—N(1)—N(2)	110,6(2)	C(9)-C(8)-C(7)	119,9(3)
C(5)—N(1)—C(6)	129,7(2)	$C_{(10)} - C_{(9)} - C_{(8)}$	119,8(3)
$N_{(2)} - N_{(1)} - C_{(6)}$	119,6(2)	C(9)—C(10)—C(11)	120,8(3)
$C_{(3)}$ — $N_{(2)}$ — $N_{(1)}$	105,4(2)	$C_{(10)} - C_{(11)} - C_{(6)}$	119,8(3)
N(14)—N(13)—C(19)	114,5(2)	N(14)C(15)C(4)	114,4(2)
N(14)—N(13)—C(17)	103,4(2)	N(14)C(15)C(16)	101,4(2)
C(19)-N(13)-C(17)	117,3(2)	$C_{(4)} - C_{(15)} - C_{(16)}$	117,3(2)
C(25)-N(14)-N(13)	119,4(2)	$C_{(17)} - C_{(16)} - C_{(15)}$	104,4(2)
C(25)-N(14)-C(15)	122,4(2)	N(13)C(17)-C(18)	109,5(3)
N(13)-N(14)-C(15)	112,3(2)	N(13)-C(17)-C(16)	103,0(2)
N(2)-C(3)-C(4)	111,4(2)	C(18)C(17)-C(16)	114,2(3)
N(2)-C(3)-C(12)	117,1(2)	$C_{(20)} - C_{(19)} - C_{(24)}$	118,4(3)
$C_{(4)} - C_{(3)} - C_{(12)}$	131,5(2)	C(20)—C(19)—N(13)	117,6(2)
$C_{(5)} - C_{(4)} - C_{(3)}$	104,2(2)	C(24)—C(19)—N(13)	123,8(2)
$C_{(5)}-C_{(4)}-C_{(15)}$	121,7(2)	$C_{(21)} - C_{(20)} - C_{(19)}$	120,4(3)
$C_{(3)}-C_{(4)}-C_{(15)}$	133,9(2)	$C_{(20)} - C_{(21)} - C_{(22)}$	120,9(3)
O(1)—C(5)—N(1)	121,0(2)	$C_{(23)} - C_{(22)} - C_{(21)}$	119,2(3)
$O_{(1)} - C_{(5)} - C_{(4)}$	130,7(2)	$C_{(22)} - C_{(23)} - C_{(24)}$	120,5(3)
$N_{(1)}-C_{(5)}-C_{(4)}$	108,3(2)	C(23)—C(24)—C(19)	120,7(3)
$C_{(7)} - C_{(6)} - C_{(11)}$	120,0(2)	$O_{(2)}-C_{(25)}-N_{(14)}$	121,4(2)
C(7)-C(6)-N(1)	121,3(2)	$O_{(2)} - C_{(25)} - C_{(26)}$	119,9(3)
C(11)-C(6)-N(1)	118,7(2)	$N_{(14)} - C_{(25)} - C_{(26)}$	118,6(2)
$C_{(6)} - C_{(7)} - C_{(8)}$	119,7(3)		

Угол	τ, град.	Угод	τ, град.
$C_{(5)}-C_{(4)}-C_{(15)}-N_{(14)}$	-87,8	N(13)—C(17)—C(16)—C(15)	-37,8
N(13)—N(14)—C(15)—C(4)	-126,6	N(14)-C(15)-C(16)-C(17)	22,7
C(17)—N(13)—N(14)—C(15)	-24,2	N(13)—N(14)—C(15)—C(16)	0,6
C(19)—N(13)—N(14)—C(15)	104,6	$O_{(2)}-C_{(25)}-N_{(14)}-C_{(15)}$	-13,9
N(14)-N(13)-C(17)-C(16)	37,6	$C_{(26)}-C_{(25)}-N_{(14)}-C_{(15)}$	170,2
C(20)-C(19)-N(13)-N(14)	175,5	C(19)-N(13)-N(14)-C(25)	-101,7

Основные торсионные углы в молекуле Шг

Наблюдаемая конформация и взаимная ориентация заместителей пиразолидинового цикла, по-видимому, характерна для подавляющего большинства известных функциональных производных пиразолидинов [5—7].

В кристаллах соединения IIIг между атомом водорода гидроксильной группы и кислородом карбонильной группы ацетильного заместителя также наблюдается довольно прочная внутримолекулярная водородная связь O(1)—H(1)...O(2) с параметрами: O(1)...O(2) 2,585(3), O(1)—H(1) 0,90(3), H(1)...O(2) 1,69(3) Å, угол O(1)—H(1)...O(2) 169(2)°.

Остальные геометрические параметры (длины связей и валентные углы) в исследованной молекуле имеют стандартные значения [8] и сопоставимы с установленными в родственных соединениях [5—7]. В кристалле сокращенных межмолекулярных невалентных контактов не обнаружено.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры измерены на приборе UR-20 в растворах CCl4 и CH₂Cl₂, спектры ПМР и ЯМР ¹³С — на приборе Varian VXR-400 в растворе хлороформа при 28 °C с ТМС в качестве внутреннего стандарта. Для экспериментов по ЯЭО использовалась программа NOEDIF [9]. Масс-спектры сняты на приборе KRATOS MS-890 с прямым вводом образца в ионный источник при температурах, близких к температурам плавления, энергия ионизации 70 эВ.

Использовали адсорбенты: окись алюминия нейтральную по Брокману; флоризил 60/100, Merk; полиамид, Woelm; целлюлозу ДЭАЭ, Reanal (анионит, содержащий диэтиламиноэтильные группы, емкость 0,6...0,8 мэкв/г) и аминоэтилцеллюлозу, Reanal (АЭ, емкость 0,3...0,5 мэкв/г). Контроль за ходом реакции и чистотой полученных соединений осуществляли методом TCX на пластинках Silufol UV-254 в системе бензол—этилацетат, 1:1, проявлением парами иода и спиртовым раствором FeCl3. Очистку полученных соединений проводили методом высокоэффективной флеш-хроматографии на силикагеле марки L 40/100, а также методом хромотографии на сухой колонке на силикагеле L 5/40.

Рентгеноструктурные исследования. Кристаллы соединения Шг моноклинные, при -25 °С: $a = 11,138(3), b = 13,218(4), c = 14,369(5) Å, \beta = 107,82(2)°, V = 2014(1) Å³, d_{Быч} = 1,242 г/см³, Z =4, пространственная группа P2_{1/n}. Параметры ячейки и интенсивности 3564 независимых$ отражений измерены на четырехкружном автоматическом дифрактометре Siemens P3/PC(<math>M оК α , графитовый монохроматор, $\theta/2\theta$ -сканирование до $\theta_{max} = 26°$). Структура расшифрована прямым методом, выявившим все неводородные атомы, и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов. Все атомы водорода объективно выявлены разностными Фурье-синтезами и уточнены изотропно. Окончательные значения факторов расходимости R = 0,047 по 2080 отражениям с $I > 2\sigma(I)$, $R_w = 0,121$ по 3503 отражениям. Все расчеты проведены по программе SHELXTL PLUS (версия PC). Координаты и изотропные эквивалентные (для H изотропные) тепловые параметры неводородных атомов даны в табл. 8.

3-Метил-4-(1-ацетил-2-фенилпиразолидинил-5)пиразолоны-5 (IIIа—3). Раствор 4,5 ммоль 3-метилпиразолона-5 II в минимальном количестве абсолютного метанола добавляют к 5 г твердого адсорбента. Смесь встряхивают 10 мин, растворитель удаляют в вакууме. К носителю

Координаты (×10⁴) и изотропные эквивалентные тепловые параметры неводородных атомов (Н-изотропные) в молекуле Шг

Атом	x	у	Z	U(eq)
1	2	3	4	5
O(1)	733(2)	6754(1)	7055(1)	62(1)
O(2)	1435(2)	6316(1)	5547(1)	67(1)
N(1)	-173(2)	5566(1)	7850(1)	52(1)
N(2)	20(2)	4593(1)	8201(1)	60(1)
N(13)	3261 (2)	4096(1)	5942(1)	59(1)
N(14)	2432(2)	4855(1)	6091 (1)	52(1)
C(3)	1031 (2)	4261 (2)	7973(2)	56(1)
C(4)	1519(2)	5020(2)	7490(2)	51(1)
C(5)	721 (2)	5833(2)	7428(2)	49(1)
C(6)	-1176(2)	6148(2)	7994(2)	53(1)
C(7)	-1774(2)	6885(2)	7338(2)	63(1)
C(8)	-2768(3)	7426(2)	7494(3)	76(1)
C(9)	-3158(3)	7212(3)	8295(3)	88(1)
C(10)	-2549(3)	6485(3)	8944(3)	88(1)
C(11)	-1560(3)	5951 (2)	8803(2)	73(1)
C(12)	1437(4)	3200(2)	8243(3)	78(1)
C(15)	2668(2)	5091 (2)	7153(2)	55(1)
C(16)	3768(3)	4378(3)	7633(2)	72(1)
C(17)	4365(2)	4164(2)	6833(2)	72(1)
C(18)	5249(4)	4988(4)	6701 (4)	112(1)
C(19)	2695(2)	3126(2)	5693(2)	57(1)
C(20)	3420(3)	2370(2)	5470(2)	87(1)
C(21)	2910(4)	1442(3)	5172(3)	115(1)
C(22)	1663(4)	1243(3)	5074(3)	114(1)
C(23)	935(4)	1989(2)	5280(2)	91(1)
C(24)	1437(3)	2925(2)	5579(2)	68(1)
C(25)	1938(2)	5534(2)	5383(2)	56(1)
C(26)	1928(4)	5292(3)	4363(2)	85(1)
H(1)	1064(32)	6644(26)	6563(27)	132(13)
H(7)	-1528(21)	7045(17)	6767(18)	69(7)
H(8)	-3104(26)	7933(22)	7021 (22)	97(10)
H(9)	-3881 (29)	7646(24)	8405(22)	117(10)
H(10)	-2836(28)	6356(24)	9472(24)	110(11)
H(11)	-1083(23)	5453(18)	9234(19)	72(8)
H(121)	2231 (29)	3168(21)	8707 (23)	96(10)
H(122)	781 (33)	2813(26)	8489(25)	129(12)
H(123)	1480(24)	2779(21)	7703(21)	86(9)
H(15)	2940(17)	5807(15)	7226(14)	47 (5)
H(161)	3444(23)	3704(21)	7809(18)	78(8)
H(162)	4339(24)	4712(19)	8150(19)	78(8)
H(17)	4811(22)	3460(19)	6972(17)	72(7)

Окончание таблицы 8

1	2	3	4	5
			=252 (20)	100(10)
H(181)	6024(39)	4936(27)	7270(28)	132(13)
H(182)	4853(38)	5663(32)	6642(29)	151(17)
H(183)	5541 (38)	4691 (30)	6211 (30)	148(16)
H(20)	4223(25)	2571 (19)	5466(18)	71 (8)
H(21)	3417(32)	949(28)	4990(26)	137(13)
H(22)	1283(28)	566(25)	4887 (22)	110(10)
H(23)	-21 (33)	1930(24)	5165(24)	125(12)
H(24)	955(19)	3474(17)	5745(15)	57(6)
H(261)	1277 (49)	5672(38)	3864(39)	200(20)
H(262)	2581 (44)	5763(36)	4213(33)	175(18)
H(263)	2242(31)	4773(27)	4292(23)	104(12)

с нанесенным на него реагентом добавляют раствор 4,55 ммоль 5-гидроксипиразолидина I в 30 мл бензола (при $\mathbb{R}^2 = H$, с 1 мл метанола). Реакционную смесь перемешивают при слабом нагревании (60 °C). По окончании реакции растворитель отфильтровывают, продукты реакции экстрагируют с твердой фазы хлороформом или этанолом. Объединенные вытяжки упаривают в вакууме, сухой остаток хроматографируют на сухой колонке с силикагелем в системе бензол—этилацетат.

1-Фенил-3-трифторметил-4-(1-ацетил-2-фенил-3-метилпиразолидинил-5)пиразолон-5 (IV). Получают аналогично соединениям Ша—з из 1-фенил-3-трифторметилпиразолона-5 и 3-метил-5-гидроксипиразолидина (Шб).

Авторы выражают благодарность РФФИ (гранты 96-03-32507, 96-15-97367 и 97-03-33783) за финансовую поддержку данной работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Свиридова Л. А., Голубева Г. А., Длинных И. В. // ХГС. 1996. № 11/12. С. 1657.
- 2. Свиридова Л. А., Афанасьева С. В., Голубева Г. А., Терентьев П. Б., Бундель Ю. Г. // ХГС. — 1990. — № 9. — С. 1204.
- Motorina I. A., Sviridova L. A., Golubeva G. A., Bundel Yu. G. // Tetrah. Lett. 1989. Vol. 30. — P. 117.
- Мусатов Д. М., Свиридова Л. А., Моторина И. А., Лещева И. Ф., Бундель Ю. Г. // ХГС. — 1994. — № 4. — С. 483.
- 5. Свиридова Л. А., Голубева Г. А., Мизгунов А. В., Длинных И. В., Нестеров В. Н. // ХГС. 1997. № 4. С. 509.
- Довгилевич А. В., Зеленин К. Н., Еспенбетов А. А., Стручков Ю. Т., Бежан И. П., Свиридова Л. А., Голубева Г. А., Малов М. Ю., Бундель Ю. Г. // ХГС. — 1985. — № 9. — С. 1242.
- Свиридова Л. А., Голубева Г. А., Длинных И. В., Лещева И. Ф., Нестеров В. Н. // ХГС. 1998. — № 3. — С. 311.
- Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. - 1987. - N 12. - P. S1.
- 9. Kinns M., Sanders J. K. M. // J. Magn. Reson. 1984. Vol. 56. P. 518.

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: svirid@org.chem.msu.su Поступило в редакцию 06.05.98