А. Р. Геворкян, Э. О. Чухаджян, Эл. О. Чухаджян, Г. А. Паносян^а

ЦИКЛИЗАЦИЯ ДИАЛКИЛ(4-ГИДРОКСИ-2-БУТИНИЛ)(3-АЛКЕНИЛПРОПАРГИЛ)-АММОНИЕВЫХ СОЛЕЙ И РЕЦИКЛИЗАЦИЯ ПОЛУЧЕННЫХ 2,2-ДИАЛКИЛ-4-ГИДРОКСИМЕТИЛИЗОИНДОЛИНИЕВЫХ СОЛЕЙ

В условиях водно-щелочного расщепления хлористые соли 2,2-диалкил-4-гидроксиметилизоиндолиния аналогично бензизоиндолиниевым солям гладко подвергаются внутримолекулярной рециклизации, включающей стадии разрыва изоиндолиниевого цикла и формирования дигидрофуранового кольца с образованием (1,3-дигидроизобензофуран-4-илметил)диалкиламинов.

Ключевые слова: 4-гидрокси-2-бутинильная группа, диалкил(3-алкенилпропаргил)(4гидроксибутин-2-ил)аммониевые соли, (1,3-дигидроизобензофуран-4-илметил)диалкиламины, основной катализ, рециклизация, циклизация.

Хлористые и бромистые соли диалкил(4-гидрокси-2-бутинил)(3-алкенилпропаргил)аммония типа 1 и -(3-фенилпропаргиламмония) в присутствии каталитических количеств водной щелочи подвергаются внутримолекулярной циклизации с образованем 2,2-диалкил-4-гидроксиметилизоиндолиниевых солей 2 и -бенз[f] изоиндолиниевых солей [1]. При изучении водно-щелочного расщепления хлористых и бромистых солей 2,2-диалкил-4-гидроксиметилбенз[f]изоиндолиния обнаружена рециклизация внутримолекулярного характера [2]. С целью установления общности этой реакции в настоящей работе изучено поведение солей 2,2-диалкил-4-гидроксиметилизоиндолиния **2а–g** в условиях водно-щелочного расщепления.

1a, 2a, 3a; 1b, 2b, 3b R = Et; 1c, 2c, 3c R = Pr; 1d, 2d, 3d R = Bu; 1e, 2e, 3e R₂ = (-CH₂-)₄; 1f, 2f, 3f R₂ = (-CH₂-)₅, 1g, 2g, 3g R₂ = (CH₂)₂O(CH₂)₂ Во всех случаях X = H, 1b, 2b, 3b X = Me

Таблица 1

Соеди-	Брутто- формуца	<u>Найдено, %</u> Вычислено, %			Т. кип., ℃ (<u>мм рт. ст.</u>)	$n_{\rm D}^{20}$	Т. пл. пикрата, ⁰С	Т. пл. хлоргидрата, °С	ИК спектр, v, см ⁻¹	Выход, %
	С Н N Т. пл., °С			(этанол)	(абс. этанол)					
3 a	C ₁₃ H ₁₉ NO	<u>76.38</u> 76.06	<u>9.47</u> 9.33	<u>6.05</u> 6.82	110 (2)	1.5238	137	140–141	705, 760, 1050, 1200, 1550, 1600, 3030	61
3b	C ₁₄ H ₂₁ NO	<u>76.97</u> 76.67	<u>9.02</u> 9.65	<u>6.60</u> 6.39	114 (2)	1.5290	*	**	840, 1030–1070, 1200, 1590, 1600	64
3c	C ₁₅ H ₂₃ NO	<u>77.56</u> 77.21	<u>9.83</u> 9.93	<u>6.25</u> 6.00	140 (1)	1.5110	145–146	152–154	705, 770, 1050, 1200–1240, 1540, 1590, 3040	59
3d	C ₁₇ H ₂₇ NO	$\frac{78.44}{78.11}$	$\frac{10.60}{10.41}$	<u>5.07</u> 5.36	82 (1)	1.5070	*	**	700, 770, 1050, 1200, 1550, 1600, 3040	60
3e	C ₁₃ H ₁₇ NO	<u>77.10</u> 76.81	<u>8.68</u> 8.43	$\frac{7.04}{6.89}$	107 (1)	1.5440	155	193	705, 770, 1050, 1200–1240, 1540, 1590, 3040	60
3f	C14H19NO	<u>77.73</u> 77.38	<u>9.06</u> 8.81	$\frac{6.23}{6.45}$	127 (1)	1.5410	186–187	224–225	700, 750–770, 1050, 1200, 1550, 1600, 3040	68
3g	C ₁₃ H ₁₇ NO ₂	<u>71.57</u> 71.21	<u>7.56</u> 7.81	<u>6.14</u> 6.39	<u>145 (2)</u> 50–51 (гексан)	_	174–175	194–195	705, 760, 1050, 1200, 1550, 1590, 3050	69

Физико-химические характеристики и выходы аминов За-д

* Не образуют пикрата. ** Гигроскопичны.

Таблица 2

Соеди- нение	Брутто- формула		<u>Найде</u> Вычисл	<u>ено, %</u> пено, %		Т. кип., ° С (мм рт. ст.)	$n_{\rm D}^{20}$	Т. пл. гидрохлорида, ⁰С (абс. этанол)	Выход , %
		С	Н	Cl	Ν				
4c	$C_{11}H_{19}N$	<u>80.24</u> 79.94	<u>11.84</u> 11.59		<u>8.26</u> 8.47	64–65 (3)	1.4662	**	58
4d	$C_{13}H_{23}N$	<u>81.21</u> 80.76	<u>12.29</u> 11.99		<u>6.92</u> 7.25	84 (3)	1.4690	83	55
4f	$C_{10}H_{15}N$	$\frac{80.85}{80.48}$	<u>10.36</u> 10.13		<u>9.70</u> 9.39	83–85 (2)	1.5020	137–138	58
1c	C ₁₅ H ₂₄ ClNO	<u>67.02</u> 66.77	<u>9.12</u> 8.97	<u>13.48</u> 13.14	<u>4.98</u> 5.19	*			~100
1d	C ₁₇ H ₂₈ ClNO	<u>68.75</u> 68.5	<u>9.65</u> 9.47	$\frac{11.58}{11.90}$	<u>4.96</u> 4.70	*			~100
1f	C ₁₄ H ₂₀ ClNO	<u>66.51</u> 66.26	<u>8.14</u> 7.94	<u>13.62</u> 13.97	<u>5.77</u> 5.52	*			~100
1g	C ₁₃ H ₁₈ ClNO ₂	<u>61.33</u> 61.05	<u>7.30</u> 7.09	<u>13.53</u> 13.86	<u>5.50</u> 5.48	*			~100

Физико-химические характеристики аминов 4c,d,f и солей 1c,d,f,g

* Соли **1с,d,f,g** медообразны. ** Соль гигроскопична.

Таблица З

Спектры ЯМР ¹Н аминов За-д в ДМСО-d₆+ССl₄, б, м. д., КССВ (*J*, Гц)

3b* R = C₂H₅, X = CH₃; **3a, c-g** R = C₂H₅, C₃H₇, C₄H₉, (CH₂)₄, (CH₂)₅, (CH₂)₂O(CH₂)₂, X = H

Соеди- нение	N–CH ₂ , c	H ₂ C–O–CH ₂ , т	Н _{Аг} , м	R
3 a	3.46	4.97, 5.03, <i>J</i> = 2.2	7.05–7.15	1.01 (6H, т, <i>J</i> = 7.2, 2CH ₃); 2.45 (4H, к, <i>J</i> = 7.2, 2CH ₂)
3c	3.44	4.98, 5.02, <i>J</i> = 2.3	7.06–7.17	0.85 (6H, т, <i>J</i> = 7.3, 2CH ₃); 1.45 (4H, м, 2CH ₃ <u>CH₂</u>); 2.32 (4H, т, <i>J</i> = 7.3, N(CH ₂) ₂)
3d	3.43	4.99, 5.02, <i>J</i> = 2.3	7.05–7.17	0.87 (6H, т, <i>J</i> = 7.2, 2CH ₃); 1.27 (4H, м, 2CH ₃ <u>CH₂</u>); 1.41 (4H, м, 2CH ₃ CH ₂ <u>CH₂</u>); 2.34 (4H, т, <i>J</i> = 7.1, N(CH ₂) ₂)
3e	3.52	4.99, 5.02, <i>J</i> = 2.3	7.05–7.17	1.70–1.80 (4Н, м, 2СН ₂); 2.41–2.48 (4Н, м, N(СН ₂) ₂)
3f	3.36	4.98, 5.03, <i>J</i> = 2.3	7.06–7.16	1.44 (2H, м, CH ₂); 1.55 (4H, квн, <i>J</i> = 5.1, 2CH ₂); 2.32 (4H, т, <i>J</i> = 5.1, N(CH ₂) ₂)
3g	3.41	5.00, 5.05, <i>J</i> = 2.2	7.05–7.20	2.36 (4H, м, N(CH ₂) ₂); 3.59 (4H, м, O(CH ₂) ₂)

* Спектр ЯМР ¹Н амина **3b** (CDCl₃), δ, м. д. (*J*, Гц): 1.03 (6H, т, *J* = 7.2, 2CH₃); 2.36 (3H, c, CH₃); 2.48 (4H, κ, *J* = 7.2, 2CH₂); 3.45 (2H, c, NCH₂); 5.08 (2H, уш, OCH₂); 5.14 (2H, уш, OCH₂); 6.92 и 7.01 (2H, уш, H_{Ar}).

Спектр ЯМР ¹³С амина **3f** (ДМСО-d₆ + CCl₄), б, м. д.: 23.90 (CH₂); 25.49 (2CH₂); 53.90 (N(CH₂)₂); 61.38 (NCH₂); 72.04 (OCH₂); 72.34 (OCH₂); 118.76, 126.52 и 126.81 (3CH_{Ar}); 132.41, 137.99 и 138.83 (3C_{Ar}).

Спектр ЯМР ¹³С амина **3g** (ДМСО-d₆ + CCl₄), δ, м. д.: 52.98 (N(CH₂)₂); 60.91 (NCH₂); 65.94 (O(CH₂)₂); 71.93(OCH₂); 72.31(OCH₂); 118.97, 126.49 и 126.92 (3CH_{Ar}); 131.25; 137.99 и 138.86 (3C_{Ar}).

Поскольку соли **2а**–**g**, образующиеся циклизацией диалкил(4-гидрокси-2-бутинил)(3-алкенилпропаргил)аммониевых солей **1а**–**g**, не удалось получить в кристаллическом виде, мы изучили их расщепление без выделения.

Рециклизация солей **2а–***g*, в отличие от бензизоиндолиниевых аналогов, реализуется при длительном нагревании. Продукты рециклизации – (1,3-дигидроизобензофуран-4-илметил)диалкиламины **3а–***g* – получены с выходами 60–68% (табл. 1). На основании проведенных исследований можно сказать, что обнаруженная нами внутримолекулярная рециклизация [2] имеет общий характер и открывает широкие возможности для формирования потенциально биоактивных аминов, содержаших дигидрофурановое кольцо. Гидрированный фурановый цикл входит в состав молекул многих природных алкалоидов. Амины **3а–***g* с выходами 5–10% получены и при циклизации солей **1а–***g* в условиях основного катализа.

В ИК спектрах синтезированных впервые исходных диалкил(3-винилпропаргил)аминов **4c,d,f** имеются характерные полосы поглощения двузамещенной ацетиленовой связи при 2220–2230, -CH=CH₂ при 920, 930, сопряженной связи C=C при 1580–1610 см⁻¹ (табл. 2).

В ИК спектрах исходных солей **1с,d,f,g**, полученных впервые, обнаружены характерные полосы поглощения двузамещенной ацетиленовой связи при 2220–2230, гидроксильной группы при 1020, 3200–3400, –СН=СН₂ при 920, 930, а также сопряженной связи С=С при 1580–1610 см⁻¹ (табл. 2).

В ИК спектрах аминов **3а**–g обнаружены полосы поглощения, характерные для 1,2,3- и 1,2,3,5-замещенных бензольных колец при 700, 760 и 840 см⁻¹, соответственно, ароматического кольца при 1550, 1600, 3050 и эфирной группировки при 1050 и 1200 см⁻¹. Структура аминов **3а**–g подтверждена методом спектроскопии ЯМР ¹Н, а структура аминов **3f**,g – также методом ЯМР ¹³С (табл. 3). Спектры указанных соединений согласуются с предложенными структурами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре UR-20 в таблетках KBr или в вазелиновом масле. Спектры ЯМР ¹H и ¹³C получены на спектрометре Varian Mercury-300 (300 МГц на протонах и 75 МГц на ядрах углерода) при температуре 30 °C (303 K). Внутренний стандарт ТМС.

Исходные диалкил(3-алкенилпропаргил)амины синтезированы по реакции Манниха [3]. Соли **1а–g** получены с количественными выходами в среде ацетонитрила взаимодействием диалкил(3-алкенилпропаргил)аминов **4а–g** с хроматографически чистым 4-гидрокси-1хлор-2-бутином, полученным по методике работы [4].

Характеристики аминов **3а–g** и данные спектров ЯМР ¹H и ¹³C приведены в табл. 1 и 3, характеристики аминов **4c,d,f** и солей **1c,d,f**,g – в табл. 2.

Циклизация солей 1а–g и непосредственное водно-щелочное расщепление солей 2а–g (общая методика). К раствору 18 ммоль исходной соли 1а–g в 4–5 мл воды прибавляют 1.8 мл 2н. раствора КОН (молярное соотношение соль : основание 5 : 1). Реакционную смесь нагревают 5–10 мин при 50–55 °С, далее происходит саморазогревание реакционной смеси до 75–85 °С. Реакционную смесь экстрагируют эфиром (2×30 мл) для удаления продуктов побочных реакций. В каждом случае в эфирном экстракте титрованием обнаружено 5–10% аминов 3а–g, пикраты которых не дают депрессии температуры плавления с пикратами аминов 3а–g, полученных при водно-щелочном расщеплении солей 2а–g. Затем к реакционной смеси без выделения продуктов циклизации 2а–g прибавляют

двукратное мольное количество едкого кали, растворенного в 2–3 мл воды, после чего реакционную смесь кипятят в течение 3–3.5 ч при 85–90 °С. Смесь экстрагируют эфиром (3 \times 50 мл), эфирный экстракт промывают водой и высушивают над MgSO₄. После удаления эфира вакуумной перегонкой получают амины **За–g**.

СПИСОК ЛИТЕРАТУРЫ

- 1. Э. О. Чухаджян, А. Р. Геворкян, Эл. О. Чухаджян, К. Г. Шахатуни, Ф. С. Киноян, Г. А. Паносян, *ХГС*, 34 (2004).
- E. O. Chukhajian, H. R. Gevorkyan, E. O. Chukhajian, K. G. Shahkhatuni, H. A. Panosyan, R. A. Tamazyan, J. Heterocycl. Chem., 40, 1059 (2003).
- 3. Э. О. Чухаджян, А. Р. Геворкян, Эл. О. Чухаджян, К. Г. Шахатуни, ЖОрХ, 36, 9 (2000).
- 4. G. Dupont, R. Dulou, G. Lefebvre, Bull. Soc. Chim. France, 816 (1954).

Институт органической химии НАН Республики Армения, Ереван 375091 e-mail: hasulik4@mail.ru Поступило в редакцию 12.11.2003

^аЦентр исследования строения молекул НАН Республики Армения, Ереван 375014 e-mail: henry@msrc.am