2,5-Di(het)arylpyridines: synthesis by "1,2,4-triazine" methodology and photophysical properties

Alexei P. Krinochkin^{1,2}, Albert F. Khasanov^{1*}, Maria I. Valieva^{1,2}, Ekaterina A. Kudryashova¹, Mallikarjuna R. Guda¹, Dmitry S. Kopchuk^{1,2}, Olga V. Shabunina³, Nataliya N. Mochulskaya¹, Pavel A. Slepukhin^{1,2}, Grigory V. Zyryanov^{1,2}, Oleg N. Chupakhin^{1,2}

- ¹ Ural Federal University named after the first President of Russia B. N. Yeltsin, Institute of Chemical Engineering,
 19 Mira St., Ykaterinburg 620002, Russia; e-mail: a.f.khasanov@ya.ru
- ² Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St., Yekaterinburg 620108, Russia
- ³ Sirius University of Science and Technology,
 1 Olympic Ave., Sirius Federal Territory 354340, Russia; e-mail: shabunina-olga@yandex.ru

Supplementary Information

Molecule 1		Molecule 2	
Bond/angle	Å/°	Bond/angle	Å/°
Cl1 C16	C16 1.731(2) C11A C16A		1.725(2)
N2 N1	1.339(2)	N2A N1A	1.337(2)
N2 C3	1.315(2)	N2A C3A	1.327(2)
N4 C3	1.349(2)	N4A C3A	1.348(2)
C6 C7	1.470(3)	C6A C7A	1.465(3)
N2 C3 N4	124.32(18)	N2A C3A N4A	123.74(18)
C3 N2 N1	119.57(17)	C3A N2A N1A	119.65(17)
N1 C6 C7 C12	-1.9(3)	N1A C6A C7A C12A	28.0(3)

Table S1 The selected bond distances and angles for compound 3b.

Figure S1 Solvatochromic behavior of **6c** in solvents with different polarity (A) and the Lippert-Mataga plot for **6c** (B), where Δf – orientation polarizability of the solvents.

Solvent	Δf	λ_{abs}, nm	λ_{em}, nm	Stokes shift, nm (cm ⁻¹)
n-Heptane	0.0001	282	335sh, 345, 359sh	63 (6475)
Toluene	0.013	290	354	64 (6234)
THF	0.209	291	356	65 (6274)
DCM	0.218	281	360	79 (7809)
DMSO	0.26	287	370	83 (7816)
DMF	0.275	292	356	73 (6849)
MeCN	0.304	292	364	72 (6774)
МеОН	0.310	291	364	73 (6892)

Figure S2 Solvatochromic behavior of 6f in solvents with different polarity (A) and the Lippert-Mataga plot for 6f (B), where Δf – orientation polarizability of the solvents

Solvent	Δf	λ_{abs} , nm	λ_{em} , nm	Stokes shift, nm (cm ⁻¹)
n-Heptane	0.0001	313	365	52 (4552)
Toluene	0.013	317	370	53 (4519)
THF	0.209	316	368	52 (4472)
DCM	0.218	315	369	54 (4646)
DMSO	0.26	317	371	54 (4592)
DMF	0.275	317	369	52 (4445)
MeCN	0.304	315	366	51 (4423)
MeOH	0.310	315	367	52 (4498)

Table S3 Photophysical properties of 6f in solvents with different polarity

