Ю. М. Воловенко, Г. Г. Дубинина, А. Н. Чернега^а

ВЗАИМОДЕЙСТВИЕ 3,4-ДИХЛОР-N-R-МАЛЕИМИДОВ С ЗАМЕЩЕННЫМИ 2-ТИОУРАЦИЛАМИ

Взаимодействие 3,4-дихлор-N-R-малеимидов с замещенными 2-тиоурацилами при 40 °C приводит к смесям (1:1) двух изомерных пирролотиазолопиримидинтрионов. В условиях термодинамического контроля (100 °C, 5 ч) образуются только пирроло[3',4':4,5]-тиазоло[3,2-*a*]пиримидин-4,6,8-трионы, гидролиз которых с последующим декарбоксилированием приводит к 5-оксо-5H-тиазоло[3,2-*a*]пиримидин-2-карбоксамидам. Структура N²-фенил-6-метил-5-оксо-5H-тиазоло[3,2-*a*]пиримидин-2-карбоксамида подтверждена методом PCA. Аналогичная циклизация 3,4-дихлор-N-R-малеимидов с 2-тиоксохиназол-4-оном также дает смеси двух изомеров, которые удалось разделить фракционной кристаллизацией.

Ключевые слова: 7-R-2-R²-3-R¹-7,8-дигидро-4H,6H-пирроло[3',4':4,5]-[1,3]тиазоло-[3,2-*a*]пиримидин-4,6,8-трионы, N²-R-6-R¹-5-оксо-5H-[1,3]тиазоло[3,2-*a*]пиримидин-2-карбоксамиды, нуклеофильное замещение в 3,4-дихлор-N-R-малеимидах.

В работах Катрицкого 1989–1990 гг. [1, 2] описано образование пирроло[3,4-*d*]тиазольного цикла в результате взаимодействия 3,4-дихлор-N-фенилмалеимида с тиоамидами (тиомочевиной, ацетамидом, дитиооксамидом). Позднее японские авторы сообщили о получении ими при взаимодействии замещенного малеимина с дитиооксамидом иного продукта – тетрагидро-1H,5H-[1,4]дитиино[2,3-*b*:6,5-*b*']дипиррола [3], а в 1993 г. Катрицкий показал, что при действии малеимидов на тиоамиды пирроло[3,4-*d*]тиазолы получаются лишь в незначительных количествах, а главным продуктом реакции является тетрагидро-1H,5H-[1,4]дитиино[2,3-*b*:6,5-*b*']дипиррол [4].

В настоящей работе нами исследовано взаимодействие 3,4-дихлор-N-Rмалеимидов 1 с 2-тиоурацилами 2, которые содержат три нуклеофильных центра: атом серы и атомы азота в положениях 1 и 3.

Схема

 $R = CH_2Ph$, Ar; $R^1 = H$, Me, R^1 , $R^2 = CH_2-CH_2$; $R^2 = H$, Me, *n*-Pr

В мягких условиях (30–40 °C) реакция не останавливается на стадии замещения одного атома хлора в имиде 1, а происходит циклизация, в результате которой образуется смесь изомеров 3 и 4 приблизительно в равном соотношении (судя по спектрам $\text{ЯМР}^{-1}\text{H}$) (схема).

Проведение реакции в более жестких условиях (100 °C, 5 ч) приводит к образованию лишь изомеров **3а–m**. Выделить изомеры **4** в индивидуальном виде нам не удалось. Расчет энергии изомерных структур **3** и **4** методом AM1 (пакет программ Hyper Chem. 5.0, grad = 0.01 ккал/моль) указывает на то, что изомеры **3** имеют меньшую энергию по сравнению с изомерами **4** ($\Delta E = 7-10$ ккал/моль). Очевидно, при кипячении реакционной смеси изомеры **4** превращаются в термодинамически более выгодные изомеры **3** подобно тому, как это имеет место в случае перегруппировки Димрота [5].

В ИК спектрах соединений **За-т** две полосы валентных колебаний карбонильных групп малеимидного цикла наблюдаются в области 1785–1775 (*as*) и 1730–1715 (*s*) см⁻¹. Полоса валентных колебаний карбонильной группы пиримидинового цикла наблюдается в области 1715–1685 см⁻¹, что в соответствии с данными [6] характерно для изомеров типа **3**.

2-Тиоксо-1,2,3,4-тетрагидро-4-хиназолон (**5**), являющийся бензоаннелированным производным 2-тиоурацила, взаимодействует с дихлормалеимидами **1** ($\mathbf{R} = 4$ -MeC₆H₄, 4-MeOC₆H₄) в мягких условиях также с образованием смесей изомеров **6** и **7** в равном соотношении (по данным спектров ЯМР ¹H).

6, **7 a** R = 4-MeC₆H₄; **b** R = 4-MeOC₆H₄

Однако нагревание реакционной смеси при 100 °С в течение 5 ч в данном случае лишь незначительно увеличивает количество изомера 7. Методом фракционной кристаллизации были выделены в индивидуальном виде соединения **6b**, **7a**,**b**. Спектр ЯМР ¹Н изомера **6b** позволил найти по разности положения сигналов протонов также и изомера **6a** в спектре ЯМР ¹Н смеси обоих изомеров (табл. 1). Изомеры **6a**,**b**, в отличие от изомеров **7a**,**b**, мало растворимы в диоксане, более высокоплавки, хроматографически менее подвижны (R_f (**6**) = 7.8; R_f (**7**) = 8.8).

Благодаря ангулярному строению плоских молекул изомеров **6а,b** протон в положении 1 находится в одной плоскости с карбонильной группой малеимидного цикла. В спектре ЯМР ¹Н соединений **6а,b** дезэкранирующее воздействие карбонильной группы вызывает значительное смещение сигнала этого протона в слабое поле: 9.11 (**6a**) и 9.08 м. д. (**6b**) (1H, д). В спектре ЯМР ¹Н соединений **7a,b** наиболее слабопольный сигнал принадлежит протону в положении 9 и наблюдается в области 8.31, 8.29 м. д. (1H, д). В ИК спектре соединений **6b**, **7a,b** две полосы валентных колебаний карбонильных групп малеимидного цикла наблюдаются в области 1785–1770 (*as*) и 1720–1715 (*s*) см⁻¹. Полоса валентных колебаний карбонильной группы хиназолонового ядра наблюдается в спектрах изомеров **7a,b** в области 1700, а в спектре изомера **6b** – в области 1650 см⁻¹.

Кипячение соединений **3** в водном диоксане в присутствии эквивалента триэтиламина приводит к гидролизу и разрушению малеимидного цикла с последующим декарбоксилированием и образованием соединений **8а–с**.

В спектрах ЯМР ¹Н соединений **8а–с** появляется синглет протона тиазольного кольца в области 8.99–9.14 м. д. Сигнал амидного протона, исчезающий при добавлении D₂O, наблюдается в области 10.39–10.71 м. д., сигналы протонов заместителей R, R¹, R² приведены в табл. 1.

В ИК спектрах соединений **8а–с** исчезают полосы валентных колебаний карбонильных групп малеимидного цикла. Полосы валентных колебаний амидной карбонильной группы и карбонильной группы пиримидинового цикла проявляются в области 1650–1640 см⁻¹. Полоса валентных колебаний связи N–H наблюдается в области 3290–3280 см⁻¹, а полоса связи С–H тиазольного ядра – в области 3080–3060 см⁻¹.

Строение соединения **8b** было подтверждено с помощью PCA (рисунок, табл. 2) по методике [7]. Бициклическая система $S_{(1)}N_{(1)}N_{(2)}C_{(1-6)}$

Молекулярная структура соединения 8b

Таблица 1

Характеристики соединений За–т, 6а,b, 7а,b, 8а–с

Соеди-	R*	Брутто- формула	<u>Найдено, %</u> Вычислено, %		Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)	Т. пл.,	Выход,
нение			Ν	S		t	%
1	2	3	4	5	6	7	8
3a	CH ₂ Ph	$C_{15}H_9N_3O_3S$	$\frac{13.42}{13.50}$	$\frac{10.23}{10.30}$	4.78 (2H, c, CH ₂); 6.42 (1H, д, <i>J</i> = 6.0, C(3)-H); 7.22–7.39 (5H, м, H _{Ar}); 8.03 (1H, д, <i>J</i> = 6.0, C(2)-H)		65
3b	3-MeC ₆ H ₄	$C_{15}H_9N_3O_3S$	<u>13.59</u> 13.50	$\frac{10.10}{10.30}$	2.38 (3H, c, CH ₃); 6.50 (1H, д, $J = 6.0$, C(3)-H); 7.19–7.22 (2H, м, 2'- и 4'-H _{Ar}); 7.30 (1H, д, $J = 9.0$, 6'-H _{Ar}); 7.44 (1H, т, $J = 7.8$, 5'-H _{Ar}); 8.04 (1H, д, $J = 6.0$, C(2)-H)	212–213	58
3c	4-MeOC ₆ H ₄	$C_{15}H_9N_3O_4S$	$\frac{13.07}{12.84}$	<u>9.56</u> 9.79	3.80 (3H, с, OCH ₃); 6.43 (1H, д, <i>J</i> = 6.0, C(3)-H); 7.08 (2H, д, <i>J</i> = 8.7, 3'- и 5'-H _{Ar}); 7.32 (2H, д, <i>J</i> = 8.7, 2'- и 6'-H _{Ar}); 8.05 (1H, д, <i>J</i> = 6.0, C(2)-H)	189–190	60
3d	CH ₂ Ph	$C_{16}H_{11}N_3O_3S$	$\frac{13.04}{12.92}$	<u>9.99</u> 9.85	2.30 (3H, c, CH ₃); 4.78 (2H, c, CH ₂); 6.32 (1H, c, C(3)-H); 7.2–7.3 (5H, м, H _{Ar})	185–186	61
3e	Ph	$C_{15}H_9N_3O_3S$	$\frac{13.32}{13.50}$	$\frac{10.17}{10.30}$	2.19 (3H, c, CH ₃); 7.2–7.4 (3H, м, 3'-, 4'- и 5'-H _{Ar}); 7.72 (2H, д, <i>J</i> = 7.5, 2'- и 6'-H _{Ar}); 8.03 (1H, c, C(2)-H)	193–194	53
3f	Ph	$C_{17}H_{13}N_3O_3S$	$\frac{12.50}{12.38}$	<u>9.37</u> 9.45	0.95 (3H, T , $J = 7.2$, CH ₃); 1.68 (2H, M , CH ₂ - <u>CH₂</u> -CH ₃); 2.58 (2H, T , $J = 7.2$, <u>CH₂-CH₂-CH₃</u>); 6.36 (1H, c, C(3)-H); 7.3–7.6 (5H, M , H _{Ar})	191–192	62
3g	CH ₂ Ph	$C_{18}H_{15}N_3O_3S$	<u>12.09</u> 11.89	<u>9.28</u> 9.07	0.93 (3H, τ , $J = 7.2$, CH ₃); 1.65 (2H, M, CH ₂ - <u>CH₂-CH₃</u>); 2.53 (2H, τ , $J = 7.0$, <u>CH₂-CH₂-CH₃</u>); 4.78 (2H, c, C ₆ H ₅ C <u>H₂</u>); 6.30 (1H, c, C(3)-H); 7.2–7.4 (5H, M, H _{Ar})	151–152	58
3h	2-MeC ₆ H ₄	$C_{18}H_{15}N_3O_3S$	<u>12.12</u> 11.89	<u>9.31</u> 9.07	0.92 (3H, τ , $J = 7.3$, CH ₃); 1.67 (2H, M, CH ₂ - <u>CH₂-CH₃</u>); 2.19 (3H, c, CH ₃); 2.58 (2H, τ , $J = 7.2$, <u>CH₂-CH₂-CH₃</u>); 6.38 (1H, c, C(3)-H); 7.30–7.45 (4H, M, H _{Ar})	214–215	59
3i	Ph	$C_{17}H_{11}N_3O_3S$	<u>12.38</u> 12.46	<u>9.48</u> 9.50	2.08 (2H, м, C(7)-H); 2.76 (2H, т, <i>J</i> = 7.6, C(6)-H); 2.90 (2H, т, <i>J</i> = 7.6, C(8)-H); 7.4–7.55 (5H, м, H _{Ar})	233–234	69
3ј	2-MeC ₆ H ₄	$C_{18}H_{13}N_3O_3S$	$\frac{12.05}{11.96}$	<u>9.18</u> 9.12	2.09 (2H, м, C(7)-H); 2.18 (3H, с, CH ₃); 2.76 (2H, т, <i>J</i> = 7.5, C(6)-H); 2.91 (2H, т, <i>J</i> = 7.5, C(8)-H); 7.3–7.45 (4H, м, H _{Ar})	222-223	55
3k	4-MeC ₆ H ₄	$C_{18}H_{13}N_3O_3S$	<u>11.88</u> 11.96	<u>9.15</u> 9.12	2.08 (2H, м, C(7)-H); 2.37 (3H, c, CH ₃); 2.75 (2H, т, $J = 7.6$, C(6)-H), 2.90 (2H, т, $J = 7.6$, C(8)-H); 7.26 (2H, д, $J = 8.4$, 3'- и 5'-H _{Ar}); 7.34 (2H, д, $J = 8.4$, 2'- и 6'-H _{Ar})	209–210	67

Окончание таблицы 1

1	2	3	4	5	6	7	8
31**	4-ClC ₆ H ₄	$C_{17}H_{10}ClN_3O_3S$	$\frac{11.44}{11.30}$	<u>8.70</u> 8.62	2.08 (2H, м, C(7)-H); 2.75 (2H, т, <i>J</i> = 7.6, C(6)-H); 2.90 (2H, т, <i>J</i> = 7.6, C(8)-H); 7.43 (2H, д, <i>J</i> = 8.7, 3'- и 5'-H _{Ar}); 7.61 (2H, д, <i>J</i> = 8.7, 2'- и 6'-H _{Ar})	228–229	53
3m***	2,3-Cl ₂ C ₆ H ₃	$C_{17}H_9Cl_2N_3O_3S$	$\frac{10.42}{10.34}$	<u>8.08</u> 7.89	2.10 (2H, м, C(7)-H); 2.77 (2H, т, <i>J</i> = 7.6, C(6)-H); 2.91 (2H, т, <i>J</i> = 7.6, C(8)-H); 7.58 (2H, м, 4'- и 5'-H _{Ar}); 7.87 (1H, д, <i>J</i> = 9.0, 6'-H _{Ar})	232–233	58
6a	4-MeC ₆ H ₄	$C_{19}H_{11}N_3O_3S$	11.63	8.87	2.40 (3H, c, CH ₃); 7.26 (2H, π , $J = 8.2$, 3'- μ 5'-H _{Ar}); 7.37 (2H, π , $J = 7.8$, 2'- μ 6'-H _{Ar}); 7.75 (1H, π , $J = 8.1$, C(3)-H); 8.0 (1H, π , $J = 8.1$, C(2)-H); 8.26 (1H, π , $J = 7.8$, C(4)-H); 9.11 (1H, π , $J = 9.0$, C(1)-H)		
6b	4-MeOC ₆ H ₄	$C_{19}H_{11}N_3O_4S$	<u>11.19</u> 11.13	<u>8.54</u> 8.50	3.82 (3H, c, OCH ₃); 7.13 (2H, д, $J = 8.4$, 3'- и 5'-H); 7.39 (2H, д, $J = 7.8$, 2'- и 6'-H _{Ar}); 7.72 (1H, т, $J = 8.1$, C(3)-H); 7.98 (1H, т, $J = 8.4$, C(2)-H); 8.22 (1H, д, $J = 8.1$, C(4)-H); 9.08 (1H, д, $J = 8.1$, C(1)-H)	279–280	11
7a	4-MeC ₆ H ₄	$C_{19}H_{11}N_3O_3S$	<u>11.57</u> 11.63	<u>8.68</u> 8.87	2.38 (3H, c, CH ₃); 7.29 (2H, π , $J = 8.1$, 3'- μ 5'-H _{Ar}); 7.35 (2H, π , $J = 7.8$, 2'- μ 6'-H _{Ar}); 7.62 (1H, π , $J = 8.1$, C(8)-H); 7.72 (1H, π , $J = 8.1$, C(6)-H); 7.95 (1H, π , $J = 8.1$, C(7)-H); 8.31 (1H, π , $J = 8.1$, C(9)-H)	245–246	23
7b	4-MeOC ₆ H ₄	$C_{19}H_{11}N_3O_4S$	<u>11.25</u> 11.13	<u>8.46</u> 8.50	3.82 (3H, c, OCH ₃); 7.09 (2H, π , $J = 9.0$, 3'- μ 5'-H _{Ar}); 7.34 (2H, π , $J = 8.7$, 2'- μ 6'-H _{Ar}); 7.61 (1H, π , $J = 8.1$, C(8)-H); 7.70 (1H, π , $J = 7.8$, C(6)-H); 7.94 (1H, π , $J = 7.8$, C(7)-H); 8.29 (1H, π , $J = 8.1$, C(9)-H)	234–235	26
8 a	4-MeOC ₆ H ₄	$C_{14}H_{11}N_3O_3S$	<u>14.05</u> 13.95	<u>10.57</u> 10.64	3.75 (3H, c, OCH ₃); 6.33 (1H, α , $J = 6.0$, C(6)-H); 6.95 (2H, α , $J = 8.0$, 3'- μ 5'-H _{Ar}); 7.61 (2H, α , $J = 8.0$, 2'- μ 6'-H _{Ar}); 8.06 (1H, α , $J = 6.0$, C(7)-H); 9.09 (1H, c, C(3)-H); 10.57 (1H, c, NH)	276–277	77
8b	Ph	$C_{14}H_{11}N_{3}O_{2}S \\$	<u>14.81</u> 14.73	<u>11.10</u> 11.24	2.06 (3H, c, CH ₃); 7.16 (1H, t, $J = 7.5$, 4'H _{Ar}); 7.39 (2H, t, 3'- μ 5'-H _{Ar}); 7.71 (2H, μ , $J = 7.3$, 2'- μ 6'-H _{Ar}); 8.02 (1H, c, C(7)-H); 9.14 (1H, c, C(3)-H); 10.71 (1H, c, NH)	242–243	85
8c	4-MeC ₆ H ₄	$C_{17}H_{15}N_3O_2S$	<u>13.08</u> 2.91	<u>10.00</u> 9.85	2.03 (2H, м, C(7)-H); 2.28 (3H, c, CH ₃); 2.75 (2H, т, <i>J</i> = 7.8, C(8)-H); 2.85 (2H, т, <i>J</i> = 7.8, C(6)-H); 7.17 (2H, д, <i>J</i> = 8.4, 3'- и 5'-H _{Ar}); 7.54 (2H, д, <i>J</i> = 8.4, 2'- и 6'-H _{Ar}); 8.99 (1H, c, C(3)-H); 10.39 (1H, c, NH)	253–254	62

* **3a–d**, **f–h**, **8a** $R^1 = H$, **3e**, **8b** $R^1 = Me$, **3i–m**, **8c** $R^1 + R^2 = (CH_2)_3$; **3a–c**, **e**, **8a**, **b** $R^2 = H$, **3d** $R^2 = Me$, **3f–h** $R^2 = n$ -Pr.

** Найдено, %: Cl 9.62; вычислено, %: Cl 9.54. *** Найдено, %: Cl 17.42; вычислено, %: Cl 17.45.

плоская в пределах 0.026 Å, двугранный угол между кольцами $S_{(1)}N_{(1)}C_{(1-3)}$ и N₍₁₎N₍₂₎C₍₃₋₆₎ составляет лишь 1.9°. Геометрические параметры данной циклической системы свидетельствуют о значительной делокализации электронной плотности [8, 9]. Экзоциклический карбоксамидный фрагмент С(1)С(8)О(2)N(3)С(9) также почти плоский (торсионные углы С₍₁₎-С₍₈₎-N₍₃₎-С₍₉₎ и О₍₂₎-С₍₈₎-N₍₃₎-С₍₉₎: 174.5 и -4. 2°) и образует с плоскостью бицикла S₍₁₎N₍₁₎N₍₂₎C₍₁₋₆₎ двугранный угол 7.8°. Атом N₍₃₎ имеет плоскотригональную конфигурацию связей: сумма углов связей 360.0°. Бензольное кольцо $C_{(9-14)}$ развернуто относительно плоскости C₍₁₎C₍₈₎O₍₂₎N₍₃₎C₍₉₎ на 28.1°. В кристалле молекулы соединения **8b** связаны в зигзагообразные цепи и образуют межмолекулярные водородные связи N₍₃₎-H₍₃₎···O₍₁₎ со следующими параметрами: N₍₃₎···O₍₁₎ 2.877(3), H₍₃₎···O₍₁₎ 2.12(3), $N_{(3)}$ - $H_{(3)}$ 0.81(3) Å, $N_{(3)}H_{(3)}O_{(1)}$ 157(2)°.

Таблица 2

Связь	<i>d</i> , Å	Угол	ω, град.
$S_{(1)} - C_{(1)}$	1.740(3)	$S_{(1)}-C_{(3)}-N_{(1)}$	110.7(2)
S ₍₁₎ -C ₍₃₎	1.731(3)	$N_{(1)}-C_{(3)}-N_{(2)}$	124.7(3)
O ₍₁₎ –C ₍₆₎	1.226(3)	N ₍₂₎ -C ₍₄₎ -C ₍₅₎	126.5(3)
O(2)-C(8)	1.220(3)	$C_{(4)}-C_{(5)}-C_{(6)}$	119.4(3)
N(1)-C(2)	1.395(3)	N ₍₁₎ -C ₍₆₎ -C ₍₅₎	113.0(2)
N(1)-C(3)	1.373(3)	O(2)-C(8)-N(3)	125.9(3)
N(1)-C(6)	1.413(3)	$O_{(2)}-C_{(8)}-C_{(1)}$	118.6(2)
N(2)-C(3)	1.304(4)	$N_{(3)}-C_{(8)}-C_{(1)}$	115.4(2)
N(2)-C(4)	1.362(4)	$N_{(1)}-C_{(2)}-C_{(1)}$	112.5(2)
$C_{(1)} - C_{(2)}$	1.337(4)	$C_{(3)} - N_{(1)} - C_{(6)}$	122.1(2)
C(1)-C(8)	1.491(4)	$C_{(3)} - N_{(2)} - C_{(4)}$	114.3(2)
$C_{(4)} - C_{(5)}$	1.354(4)	$C_{(8)} - N_{(3)} - C_{(9)}$	127.2(2)
C(5)-C(6)	1.428(4)	$C_{(2)} - N_{(1)} - C_{(3)}$	113.8(2)
N(3)-C(9)	1.419(4)	$C_{(1)} - S_{(1)} - C_{(3)}$	90.31(14)
N(3)-C(8)	1.341(4)	$S_{(1)}-C_{(1)}-C_{(2)}$	112.6(2)

Длины связей (d) и валентные углы (w) в молекуле соединения 8b

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакции и однородностью синтезированных соединений осуществляли с помощью TCX (Silufol UV-254, элюент хлороформ-метанол, 9:1). ИК спектры записывали на приборах UR-20, Specord IR-75 и Руе-Unicam в таблетках KBr, спектры ЯМР ¹Н – в ДМСО-d₆ на приборе Varian (300 МГц), внутренний стандарт ТМС.

Рентгеноструктурное исследование монокристалла соединения **8b** с линейными размерами 0.25 × 0.31 × 0.59 мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (Мо K_{α} -излучение, отношение скоростей сканирования 20/ ω = 1.2, θ_{max} = 65°, сегмент сферы 0 < *h* < 12, 0 < *k* < 8, -17 < *l* < 17). Всего было собрано 2306 отражений, из которых 2006 являются симметрически независимыми (R_{int} = 0.015). Кристаллы соединения **8b** моноклинные, C₁₄H₁₁N₃O₂S, M = 285.32, *a* = 11.476(4), *b* = 7.471(4), *c* = 15.395(7) Å, β = 100.62(3)°, *V* = 1297.3 Å³, *Z* = 4, *d* = 1.46 г/см³, пространственная группа *P*2₁/*n*, μ = 2.42 см⁻¹, *F*(000) = 593. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [10]. В уточнении использовано 1478 отражений с *I* > 3 σ (*I*). Все атомы водорода были выявлены из разностного синтеза электронной плотности и включены в расчет с фиксированными позиционными и

тепловыми параметрами (лишь атом $H_{(3)}$ был уточнен изотропно). Учет поглощения в кристалле был выполнен с помощью метода азимутального сканирования [11]. При уточнении была использована весовая схема Чебышева [12] с параметрами: 1.61, 0.90, 1.51, -0.22 и 0.38. Окончательные значения факторов расходимости R = 0.041 и $R_W = 0.046$, GOF = 1.137. Полный набор кристаллографических данных, включая координаты атомов и их анизотропные тепловые параметры, депонирован в Кембриджском банке структурных данных (ССDC 155191).

7-R-2-R²-3-R¹-7,8-Дигидро-4H,6H-пирроло[3',4':4,5]тиазоло[3,2-*а***]пиримидин-4,6,8-трионы За-h; 2-R-2,3,6,7,8,9-гексагидро-1H-циклопента**[*d*]пирроло[3',4':4,5]тиазоло-[3,2-*а*]пиримидин-1,3,9-трионы 3i-m. Раствор 10 ммоль соответствующего дихлормалеимида 1, 10 ммоль 2-тиоурацила 2 и 1.52 г (15 ммоль) триэтиламина в 20 мл сухого диоксана кипятят в течение 5 ч. К охлажденной реакционной смеси добавляют 10 мл этанола. Отфильтровывают выпавший осадок, промывают его этанолом и кристаллизуют из сухого диоксана.

Смеси изомеров **3** и **4** получены в мягких условиях аналогично методике получения смеси изомеров **6a** + **7a** и **6b** + **7b**.

9-R-9,10-Дигидро-5H,8H-пирроло[3',4':4,5]тиазоло[3,2-*a*]хиназолин-5,8,10-трионы ба,b; **2-R-2,3-дигидро-1H,10H-пирроло[3',4':4,5]тиазоло[2,3-***b*]хиназолин-1,3,10-трионы **7а,b.** К раствору, содержащему 10 ммоль соответствующего дихлормалеимида **1** (R = 4-MeC₆H₄, 4-MeOC₆H₄) и 1.78 г (10 ммоль) 2-тиохиназолона **5** в 25 мл сухого диоксана, при 30–40 °C прибавляют по каплям 1.52 г (15 ммоль) триэтиламина. Затем перемешивают реакционную смесь при 35–45 °C еще 4 ч и оставляют ее на 8 ч при комнатной температуре. Отфильтровывают выпавший осадок, промывают его небольшим количеством диоксана и водой. Осадок представляет собой смесь изомеров **6** и **7** приблизительно в равном соотношении. Суммарный выход смеси изомеров: 55 (**6a** + **7a**) и 67% (**6b** + **7b**). Фракционной кристаллизацией из сухого диоксана выделены в хроматографически чистом виде соединения **6b** (11%); **7a** (23%); **6a** (26%).

N²-R-6-R¹-5-Оксо-5H-тиазоло[3,2-а]пиримидин-2-карбоксамиды 8а,b; N²-(4-метилфенил)-5-оксо-5,6,7,8-тетрагидроциклопента[*f*]тиазоло[3,2-а]пиримидин-2-карбоксамид (8с) (табл. 1). Раствор 3 ммоль соответствующего соединения 3, 0.303 г (3 ммоль) триэтиламина и 1 мл воды (55 ммоль) в 10 мл диоксана кипятят 1 ч и оставляют реакционную смесь при комнатной температуре на 8 ч. Выпавший осадок отфильтровывают и промывают небольшим количеством диоксана и водой. Перекристаллизовывают из ДМФА.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. R. Katritzky, W. Q. Fan, J. Heterocycl. Chem., 25, 901 (1988).
- 2. A. R. Katritzky, W. Q. Fan, S. Bayyuk, J. Heterocycl. Chem., 26, 885 (1989).
- 3. M. Matsuoka, A. Iwamoto, T. Kitao, J. Heterocycl. Chem., 28, 1445 (1991).
- 4. A. R. Katritzky, W. Q. Fan, J. Heterocycl. Chem., 30, 1679 (1993).
- 5. O. Dimroth, Liebigs Ann. Chem., 364, 183 (1909).
- 6. В. А. Ковтуненко, В. В. Ищенко, А. К. Тылтин, Ф. С. Бабичев, ДАН, 294, 375 (1987).
- D. J. Watkin, C. K. Prout, L. J. Pearce, CAMERON. Chemical Crystallography Laboratory, Univ. of Oxford, Oxford, 1996.
- 8. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- 9. В. А. Наумов, О. Н. Катаева, Молекулярное строение органических соединений кислорода и серы в газовой фазе, Наука, Москва, 1990, с. 137.
- D. J. Watkin, C. K. Prout, J. R. Carruthers, P.W. Betteridge. CRYSTALS Issue 10. Chemical Crystallography Laboratory, Univ. of Oxford, Oxford, 1996.
- 11. A. C. T. North, D. C. Phillips, F. S. Mathews, Acta Crystallogr., A24, 351 (1968).
- 12. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: otava@carrier.kiev.ua Поступило в редакцию 06.06.2001

^аИнститут органичекой химии НАН Украины, Киев 02094