С. М. Десенко, Е. С. Гладков, В. Г. Ненайденко^а, О. В. Шишкин, С. В. Шишкина

ТРИФТОРМЕТИЛЗАМЕЩЕННЫЕ ДИ- И ТЕТРАГИДРОАЗОЛОПИРИМИДИНЫ

Конденсацией 4,4,4-трифторметил-1-фенилпроп-1-ен-3-она с 2-аминобензимидазолом, 3-амино-1,2,4-триазолом и 5-аминотетразолом получены гидроксизамещенные тетрагидропроизводных пиримидо[1,2-*a*]бензимидазола, 1,2,4-триазоло- и тетразоло[1,5-*a*]пиримидина, осуществлена их дегидратация в соответствующие дигидроазолопиримидины. Осуществлен РСА и обсуждена молекулярная структура 5-гидрокси-5-трифторметил-7-фенил-4,5,5,7-тетрагидротетразоло[1,5-*a*]пиримидина.

Ключевые слова: азолопиримидины, трифторметилзамещенные непредельные кетоны, гетероциклизация, стереохимия.

Возросшая в последнее время синтетическая доступность трифторметилзамещенных непредельных карбонильных соединений привлекает внимание к реакциям гетероциклизации на их основе [1]. В настоящей работе изучено взаимодействие 4,4,4-трифторметил-1-фенилпроп-1-ен-3она 2 с 3-амино-1,2,4-триазолом 1а, 5-аминотетразолом 1b и 2-аминобензимидазолом 1с. Известно [2], что взаимодействие ароматических непредельных кетонов с аминоазолами приводит к формированию дигидропроизводных азолопиримидиновых систем. Однако литературные данные по реакциям гетероциклизации кетона 2 указывают на возможность выделения в таких реакциях гидроксизамещенных тетрагидрогетероциклов,

1, **3**, **4 a** X = N, Y = CH; **b** X = N, Y = N; **c** $X+Y = o-C_6H_4$

Таблица 1

Соеди- нение	Брутто- формула	<u>Найдено N, %</u> Вычислено N, %	Т. пл., ^о С	Выход, %
3 a	$C_{12}H_{11}N_4OF_3$	$\frac{19.68}{19.71}$	176–177	55
3b	$C_{11}H_{10}N_5OF_3$	<u>24.55</u> 24.55	163–164	72
3c	$C_{17}H_{14}N_3OF_3$	<u>12.63</u> 12.61	264	80
4 a	$C_{12}H_9N_4F_3$	<u>21.03</u> 21.04	119–121	61
4b	$C_{11}H_8N_5F_3$	<u>26.18</u> 26.21	219–220	86
4c	$C_{17}H_{12}N_3F_3$	<u>13.34</u> 13.33	231–233	93

Характеристики соединений За-с, 4а-с

полуаминальная структура которых стабилизирована сильным электроноакцепторным влиянием группы CF₃. Действительно, выдерживание растворов аминов **1а–с** и кетона **2** в метаноле в течение 2 сут привело к образованию гидроксизамещенных тетрагидроазолопиримидинов **3а–с**. При проведении циклоконденсации в кипящем метаноле из реакционной смеси выделяли исключительно дигидропроизводные **4а–с**. Целевая дегидратация соединений **3а–с** в дигидроазолопиримидины **4а–с** была осуществлена действием *n*-толуолсульфокислоты.

ИК спектры соединений **3**, **4** в таблетках КВг содержат широкие полосы поглощения в области $3235-3410 \text{ см}^{-1}$ (v_{OH} , v_{NH}), в спектрах соединений **4** также присутствует интенсивная полоса $1615-1630 \text{ см}^{-1}$ ($v_{C=C}$).

Спектры ЯМР ¹Н тетрагидропроизводных **3** характеризуются наличием сигналов ароматических протонов, протонов групп NH и OH, а также ABX-системы протонов фрагмента CHCH₂ тетрагидропиримидинового ядра. В спектрах соединений **4** синглет гидроксильного протона исчезает, сигнал протона NH закономерно сдвигается в область более слабых полей, сигналы протонов CH проявляются в виде двух дублетов, один из которых (=CH) уширен вследствие дальнего спин-спинового взаимодействия с протоном иминогруппы (табл. 2).

Наличие в молекулах **3** двух хиральных центров ставит вопросы о стереоселективности реакций их образования и о пространственной конфигурации полученных веществ. Ранее [1] было показано, что конденсация кетона **2** с бинуклеофилами протекает, как правило, стереоселективно и приводит к гетероциклам с *цис*-конфигурацией фенильного и трифторметильного заместителей. Действительно, в спектрах ЯМР ¹Н соединений **3а,b** (в том числе и неочищенных продуктов реакции) признаки удвоения однотипных групп сигналов отсутствуют, что свидетельствует об образовании только одного из возможных диастереомеров. Спектр соединения **3с** соответствует смеси пространственных изомеров **A** и **Б** этого вещества с соотношением концентраций ~3:1 (по интегральным интенсивностям соответствующих сигналов). Значение константы спин-спинового взаимодействия $J_{AX} = 11.8-13.9$ Гц как соединений **3a,b**, так и обоих диастереомеров меров соединения **3c**, типично для констант типа J_{aa} и свидетельствует об

	Химические сдвиги, б, м. д. (КССВ, Ј, Гц)					
Соеди- нение	6 H _A (1H)	-Н Н _В (1Н)	7-H (1H)	Аромати- ческие протоны (м)	ОН (1Н, уш. с)	NH (1Н, уш. с)
3a	2.22 (д. д, J = -13.3, J = 12.5)	2.42 (д. д, J = 4.7)	5.27 (д. д)	7.29–7.44	11.9	8.7
3b	2.35 (д. д, J = 13.2, J = 12.1)	2.44 (д. д, <i>J</i> = 4.6)	5.54	7.39–7.48	9.3	7.6
3c	2.28 (д. д, J = -13.1, J = 11.8);	2.47 (д. д, <i>J</i> = 4.4);	5.42	5.84–7.50	8.9	**
	2.43* (д. д, J = -14.3, J = 13.9)	2.74* (д. д, <i>J</i> = 6.0)	5.52*			
4 a	5.60 ((1Н, д)	6.27 (уш. д, <i>J</i> = 3.8)	7.05–7.55	-	10.8
4b	5.62 ((1Н, д)	6.57 (уш. д, <i>J</i> = 2.6)	7.20–7.44	-	11.37
4c	5.52 ((1Н, д)	6.37 (уш. д, <i>J</i> = 3.9)	6.75–7.43	-	11.5

Спектры ЯМР ¹Н протонов соединений За-с, 4а-с в ДМСО-d₆

* Диастереомера Б. Соотношение А:Б, 3:1.

** Перекрыт сигналами ароматических протонов.

экваториальной ориентации фенильного заместителя в молекулах этих веществ (в том числе и обоих диастереомерных формах 3c). Химические сдвиги всех протонов тетрагидропиримидинового цикла соединений 3a,b и диастереомера A соединения 3c близки по своему значению (см. табл. 2). Сигнал протона H_B диастереомера Б соединения 3c заметно (на ~0.3 м. д.) смещен в область более слабых полей по сравнению с сигналом этого протона как в спектрах изомера A, так и в спектрах соединений 3a,b. Данное явление следует связать с изменением в изомере Б пространственной ориентации гидроксильной и трифторметильной групп относительно экваториального протона H_B, что позволяет отнести молекулы соединений 3a,b и преобладающего диастереомера A соединения 3c к одному изомерному ряду. Дополнительным подтверждением этому служит образование соединения 4c при дегидратации 3c.

Строение соединения **3b** (в том числе и его относительная конфигурация) однозначно установлено рентгеноструктурным исследованием (рисунок, табл. 3). Его результаты указывают на диэкваториальное расположение фенильного и трифторметильного заместителей в молекуле **3b**. С учетом особенностей спектров ЯМР ¹Н соединений **3a**-с к этому же изомерному ряду следует отнести молекулы **3a** и изомера **A** соединения **3c**. Таким образом, в реакциях кетона **2** с аминами **1a**-с сохраняется отмеченная ранее [1] закономерность преимущественного образования в реакциях этого кетона с бинуклеофилами тетрагидроциклических систем с *цис*-конфигурацией групп CF₃ и C₆H₅.

Строение молекулы 3b (без атома водорода) с длинами связей (Å)

Таблица З

Длины связей (*l*) в молекуле соединения 3b

0	. 8	2	. 8
Связь	l, A	Связь	l, A
F(1)–C(5)	1.333(8)	F(2)–C(5)	1.348(7)
F(3)–C(5)	1.336(6)	O(1)–C(4)	1.390(6)
N(1)-C(1)	1.344(6)	N(1)–C(4)	1.452(6)
N(2)–C(1)	1.324(7)	N(2)–N(3)	1.366(7)
N(3)–N(4)	1.293(6)	N(4)–N(5)	1.325(6)
N(5)–C(1)	1.337(6)	N(5)–C(2)	1.495(6)
C(2)–C(3)	1.509(7)	C(2)–C(6)	1.537(7)
C(3)–C(4)	1.549(7)	C(4)–C(5)	1.516(8)
C(6)–C(7)	1.364(8)	C(6)–C(11)	1.386(7)
C(7)–C(8)	1.403(8)	C(8)–C(9)	1.39(1)
C(9)–C(10)	1.35(1)	C(10)–C(11)	1.373(8)

Таблица4

Угол	ω, град.	Угол	τ, град.
N(5)-C(2)-C(3)	105.3(3)	C(2)-N(5)-C(1)-N(1)	8.4(7)
N(5)-C(2)-C(6)	110.4(4)	C(4)-N(1)-C(1)-N(5)	-17.7(7)
O(1)-C(4)-N(1)	109.7(4)	C(1)-N(5)-C(2)-C(3)	-25.2(6)
O(1)-C(4)-C(3)	112.3(4)	C(1)-N(5)-C(2)-C(6)	-143.3(5)
N(1)-C(4)-C(5)	107.6(4)	N(5)-C(2)-C(3)-C(4)	50.9(5)
C(5)–C(4)–C(3)	109.4(4)	C(1)-N(1)-C(4)-O(1)	-80.1(5)
C(7)–C(6)–C(2)	122.8(4)	C(1)-N(1)-C(4)-C(5)	160.4(4)
C(11)–C(6)–C(2)	117.9(5)	C(1)-N(1)-C(4)-C(3)	42.5(6)
		C(2)-C(3)-C(4)-N(1)	-62.0(5)
		C(3)-C(4)-C(5)-F(1)	51.6(6)
		N(5)-C(2)-C(6)-C(7)	43.9(7)

Некоторые валентные (ш) и торсионные (т) углы в молекуле соединения 3b

По данным ренгеноструктурного исследования, тетрагидроцикл молекулы **3b** находится в конформации искаженное *полукресло*. Атомы $C_{(3)}$ и $C_{(4)}$ отклоняются от среднеквадратичной плоскости остальных атомов цикла на -0.49 и 0.25 Å соответственно.

Фенильный заместитель при атоме $C_{(2)}$ находится в экваториальном положении (торсионный угол $C_{(1)}$ – $N_{(5)}$ – $C_{(2)}$ – $C_{(6)}$ –143.3(5)°) и повернут относительно связи $N_{(5)}$ – $C_{(2)}$ на 43.9(7)° (торсионный угол $N_{(5)}$ – $C_{(2)}$ – $C_{(6)}$ – $C_{(7)}$). Гидроксильная группа при атоме $C_{(4)}$ занимает аксиальное положение, а трифторметильный заместитель – экваториальное (торсионные углы $C_{(1)}$ – $N_{(1)}$ – $C_{(4)}$ – $O_{(1)}$ –80.1(5)°, $C_{(1)}$ – $N_{(1)}$ – $C_{(5)}$ 160.4(4)°).

Длины связей в тетразольном фрагменте близки длинам связей в родственных соединениях [3–5]. Связи $N_{(5)}$ – $C_{(2)}$ 1.495(6) Å и $C_{(2)}$ – $C_{(6)}$ 1.537(7) Å несколько удлинены по сравнению с их средними значениями 1.469 и 1.513 Å, соответственно [6], что, вероятно, можно объяснить некоторой стерической напряженностью в этом фрагменте, на что указывает укороченный контакт 3а-Н... $C_{(7)}$ 2.82 Å при сумме ван-дер-ваальсовых радиусов 2.87 Å [7].

В кристалле также обнаружены укороченные внутримолекулярные контакты За-Н... $F_{(1)}$ 2.50 Å, $H_{(1N)}$... $F_{(3)}$ 2.45 Å (сумма ван-дер-ваальсовых радиусов 2.56 Å) и укороченный межмолекулярный контакт $H_{(2)}$... $N_{(3)}$ (*x*-1, *y*, *z*) 2.56 Å (2.66 Å).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование. Кристаллы 5-гидрокси-7-фенил-5-трифторметил-4,5,6,7-тетрагидротетразоло[1,5-*a*]пиримидина **3b** моноклинные, C₁₁H₁₀N₅OF₃, при 20 °C *a* = 6.429(2), *b* = 7.334(2), *c* = 26.94(1)Å, β = 95.07(3)°, *V* = 1265.2(7) Å³, M_r = 285.24, *Z* = 4, пространственная группа *P*2(1)/*c*, $d_{\text{выч}}$ = 1.498 г/см³, μ (Mo K_{α}) = 0.132 мм⁻¹, *F*(000) = 584. Параметры элементарной ячейки и интенсивности 2194 отражений (2011 независимых, $R_{int} = 0.154$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (Мо K_{α} , графитовый монохроматор, 2 θ/θ -сканирование, 2 $\theta_{max} = 50^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELX97 [8]. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездника" с $U_{\rm изo} = nU_{\rm экв}$ (n = 1.5 для гидроксильной группы и n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до w $R_2 = 0.23$ по 2011 отражениям ($R_1 = 0.075$ по 808 отражениям с $F > 4\sigma(F)$, S = 0.882). Окончательные координаты атомов приведены в табл. 3.

Спектры ЯМР ¹Н измерены на приборе Varian Mercury-200 (200 МГц) в ДМСО- d_6 (внутренний стандарт ТМС). ИК спектры получены в таблетках КВг на спектрометре Specord IR-75. Индивидуальность соединений контролировали методом ТСХ на пластинках Silufol UV-254, элюент метанол.

5-Гидрокси-5-трифторметил-7-фенил-4,5,6,7-тетрагидротетразоло[1,5-*а*]пиримидин (**3b**). Смесь 0.85 г (10 ммоль) 5-аминотетразола **1b** и 2.0 г (10 ммоль) 4,4,4-трифторметил-1-фенилпроп-1-ен-3-она **2** в 25 мл метанола перемешивают 2 сут при 25 °C. Раствор упаривают до объема 10 мл и после охлаждения отфильтровывают 2.05 г (72%) соединения **3b** с т. пл. 163–164 °C (из метанола).

Аналогично получают соединения За и Зс.

5-Трифторметил-7-фенил-4,7-дигидротетразоло[1,5-а]пиримидин (4b). А. Раствор 1.45 г (5 ммоль) **3b** и 0.1 г *п*-толуолсульфокислоты в 20 мл метанола кипятят в течение 2 ч. Раствор упаривают до объема 10 мл и отфильтровывают 1.25 г (86%) соединения **4b** с т. пл. 219–220 °C (из метанола).

Б. Смесь 0.85 г (10 ммоль) 5-аминотетразола **1b** и 2.0 г (10 ммоль) 4,4,4-трифторметил-1-фенилпроп-1-ен-3-она **2** в 25 мл метанола кипятят в течение 10 ч. Раствор упаривают до объема 10 мл и отфильтровывают 2.5 г (90%) соединения **4b**.

Аналогично получают соединения 4а и 4с.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Г. Ненайденко, А. В. Санин, Е. С. Баленкова, *Успехи химии*, **68**, 483 (1999).
- 2. С. М. Десенко, ХГС, 147 (1995).
- 3. G. Hajos, A. Messmer, A. Neszmelyi, L. Parkanyi, J. Org. Chem., 49, 3199 (1984).
- 4. M. M. Goodman, J. L. Atwood, R. Carlin, W. Hunter, W. W. Paudler, J. Org. Chem., 41, 2860 (1976).
- 5. J. Zabrocki, G. D. Smith, J. B. Dunbar Junior, H. Lijima, G. R. Marshall, *J. Am. Chem. Soc.*, **110**, 5875 (1988).
- 6. H. B. Burgi, J. D. Dunitz, Structure correlation, 2, VCH, Weinheim, 741 (1994).
- 7. Н. С. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- 8. G. M. Sheldrick, *SHELX97*. PC Version. A system of computer programs for the crystal structure solution and refinement. Rev. 2 (1998).

НТК Институт монокристаллов, Харьков 61001, Украина e-mail: desenko@isc.kharkov.com Поступило в редакцию 02.10.2001

^аМосковский государственный университет им. М. В. .Ломоносова, Москва 119899, Россия e-mail: Nen@acylium.chem.msu.ru