С. В. Толкунов, А. И. Хижан, С. В. Шишкина^а, О. В. Шишкин^а, В. И. Дуленко

АНОМАЛЬНАЯ РЕАКЦИЯ БЕКМАНА В РЯДУ ОКСИМОВ 4-АРИЛ-2,7,7-ТРИМЕТИЛ-5-ОКСО-5,6,7,8-ТЕТРАГИДРОХИНОЛИНОВ В ПОЛИФОСФОРНОЙ КИСЛОТЕ

2*. НЕОЖИДАННЫЙ СИНТЕЗ 4',7',7'-ТРИМЕТИЛ-4-ОКСО-3'-ЭТОКСИКАРБОНИЛ-2',6',7',8'-ТЕТРАГИДРОСПИРО(ЦИКЛОГЕКСА-2,5-ДИЕН-1,2'-ПИРРОЛО[4,3,2-*d*,*e*]ХИНОЛИНОВ)

Оксимы 4-галоген(метокси)фенил-2,7,7-триметил-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолинов в ПФК превращаются в 4',7',7'-триметил-4-оксо-3'-этоксикарбонил-2',6',7',8'-тетрагидроспиро(циклогекса-2,5-диен-1,2'-пирроло[4,3,2-*d*,*e*]хинолин). Проведен РСА одного из синтезированных соединений.

Ключевые слова: оксимы 4-арил-2,7,7-триметил-5-оксо-3-этоксикарбонил-5,6,7,8тетрагидрохинолинов, 4',7',7'-триметил-4-оксо-3'-этоксикарбонил-2',6',7',8'-тетрагидроспиро(циклогекса-2,5-диен-1,2'-пирроло[4,3,2-*d*,*e*]хинолины), ПФК.

Ранее нами сообшалось об аномальной реакции Бекмана в ряду оксимов 4-арил-2,7,7-триметил-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолинов в ПФК [1]. Было показано, что в зависимости от заместителя в положении 4 хинолинового цикла реакция может протекать по трем направлениям: с ароматизацией насыщенного цикла (ароматизация Земмлера–Вольфа), с образованием азепинонов — нормальных продуктов перегруппировки Бекмана и с образованием пиридоакридинов. Изучая превращения оксимов 2,7,7-триметил-5-оксо-4-хлор(бром, метокси)фенил-3-этоксикарбонил-5,6,7,8-тетрагидрохинолинов в ПФК, мы обнаружили новый путь протекания реакции. Как оказалось, при нагревании оксимов **1а–с**

1 a $R^1 = Cl$, b $R^1 = Br$, c $R^1 = OMe$, d $R^1 = Cl$; a-c $R^2 = H$, d $R^2 = Cl$; **2** a $R^2 = H$, b $R^2 = Cl$

^{*} Сообщение 1 см. [1].

Строение соединения 2а

в ПФК происходит элиминирование заместителя, находящегося в положении 4 фенильного кольца, и образование одного и того же продукта – 4',7',7'-триметил-4-оксо-3'-этоксикарбонил-2',6',7',8'-тетрагидроспиро(циклогекса-2,5-диен-1,2'-пирроло[4',3',2'-d,e]хинолина) (**2a**). При R¹ = Cl или Вг из реакционной смеси выделяется галогеноводород.

Строение соединения 2а установлено рентгеноструктурным исследованием (табл. 1–3).

Тетрагидроцикл находится в конформации *софа*. Отклонение атома $C_{(3)}$ от среднеквадратичной плоскости остальных атомов цикла составляет 0.65 Å. Один из метильных заместителей при атоме $C_{(3)}$ имеет аксиальную ориентацию относительно плоскости тетрагидроцикла, второй – экваториальную (торсионные углы $C_{(1)}$ – $C_{(2)}$ – $C_{(3)}$ – $C_{(20)}$ – $67.4(3)^\circ$, $C_{(1)}$ – $C_{(2)}$ – $C_{(3)}$ – $C_{(21)}$ 172.9(2)°). Отталкивание между атомом $H_{(20C)}$ и атомами цикла (укороченные внутримолекулярные контакты $H_{(20C)}$... $C_{(1)}$ 2.79, $H_{(20C)}$... $C_{(5)}$ 2.67, $H_{(20C)}$... $C_{(6)}$ 2.73 Å (сумма вандерваальсовых радиусов 2.87 Å [2])) приводит, очевидно, к удлинению связи $C_{(3)}$ – $C_{(4)}$ до 1.557(3) Å по сравнению с ее средним значением 1.538 Å [3].

Спиросочлененный с трициклическим фрагментом дигидроцикл плоский с точностью 0.02 Å и развернут практически перпендикулярно плоскости циклов (торсионный угол C₍₆₎–C₍₇₎–C₍₁₀₎–C₍₁₅₎ 113.4(2)°). Связь C₍₁₃₎–O₍₃₎ 1.225(3) Å несколько удлинена по сравнению со средним значением 1.210 Å.

Атом C₍₁₆₎ сложноэфирного заместителя при атоме C₍₈₎ несколько некопланарен плоскости пиридинового кольца (торсионный угол C₍₆₎–C₍₇₎–C₍₈₎–C₍₁₆₎– 171.0(2)°), а карбонильная группа развернута практически перпендикулярно плоскости трициклического фрагмента (торсионный угол C₍₇₎–C₍₈₎–C₍₁₆₎–O₍₁₎ 118.1(3)°, что, вероятно, объясняется отталкиванием между этим заместителем и дигидроциклом. Атом C₍₁₈₎ разупорядочен с равновероятной заселенностью по двум положениям *A* и *B*. В конформере *A* атом C₍₁₈₎ занимает *ac*-положение относительно связи C₍₁₆₎–O₍₂₎, а в конформере *B* – положение, близкое к *ар* (торсионный угол C₍₁₆₎–O₍₂₎–C₍₁₇₎–C₍₁₈₎ 129.7(5)°*A*, 163.4(4)° *B*).

В кристалле соединения **2a** обнаружены укороченные межмолекулярные контакты O₍₁₎...H₍₁₅₎ (0.5-*x*, *y*-0.5, 1.5-*z*) 2.43 и O₍₃₎...H_(1b) (0.5-*x*, 0.5+*y*, 1.5-*z*)

2.43 Å (сумма ван-дер-ваальсовых радиусов 2.46 Å), которые вряд ли можно считать водородными связями, принимая во внимание величины углов $C_{(15)}$ – $H_{(15)}$... $O_{(1)}$ (105°) и $C_{(19)}$ – $H_{(19b)}$... $O_{(3)}$ (74°).

Спектры ЯМР ¹Н полностью согласуются со структурами **2а,b**. Однако обращают на себя внимание особенности спектра ЯМР ¹Н пирролохинолина **2b** ($R^2 = CI$) при сравнении со спектром соединения **2a**. Протоны группы CH₂ в карбоксиэтильном фрагменте магнитно-неэквивалентны и проявляются в виде мультиплета из 10 линий. Магнитно-неэквивалентны также протоны группы 8-CH₂, что обусловлено разной пространственной ориентацией связей С–Н и сдвигом одной из них за счет влияния магнитной анизотропии атома хлора.

Формирование такой конденсированной системы объясняется несогласованной ориентацией в замещенном фенильном кольце, и, как следствие, атака нитрениевым катионом **3** протекает по положению 1 фенильного заместителя с образованием катиона **4**, который далее в результате обычных реакций присоединения–отщепления превращается в пирролохинолины **2а,b**.

Кроме пирролохинолина **2а** в реакции оксима 4-(4'-бромфенил)-2,7,7триметил-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолина (**1b**) обнаружено образование небольших количеств 2,5,5-триметил-1-этоксикарбонил-5,6-дигидро-4H-пиридо[2,3,4-*k*,*l*]акридина (**7**).

Таблица 1

Атом	x	у	Z	$U_{ m _{3KB}}$
N(1)	1425(2)	-1138(2)	10764 (2)	53(1)
N(2)	3210(3)	2071(2)	11184(2)	61(1)
O ₍₁₎	3122(2)	-664(2)	8271(1)	77(1)
O(2)	1772(2)	675(2)	8017(1)	65(1)
O ₍₃₎	4517(2)	3372(2)	8194(2)	95(1)
C ₍₁₎	1789(2)	-372(2)	11386(2)	45(1)
C(2)	1770(3)	-428(2)	12442(2)	55(1)
C ₍₃₎	2858(3)	249(2)	13087(2)	55(1)
C ₍₄₎	2743(3)	1354(2)	12709(2)	62(1)
C ₍₅₎	2754(3)	1382(2)	11658(2)	52(1)
C(6)	2235(3)	514(2)	11076(2)	46(1)
C ₍₇₎	2374(3)	658(2)	10150(2)	47(1)
C ₍₈₎	2056(2)	-142(2)	9502(2)	47(1)
C ₍₉₎	1547(3)	-1021(2)	9847(2)	50(1)
C(10)	3044(3)	1694(2)	10153(2)	51(1)
C(11)	2205(3)	2439(2)	9477(2)	58(1)
C(12)	2669(3)	2965(2)	8846(2)	61(1)
C ₍₁₃₎	4051(3)	2848(2)	8747(2)	63(1)
C(14)	4873(3)	2077(2)	9342(2)	61(1)
C(15)	4428(3)	1563(2)	9995(2)	57(1)
C(16)	2372(3)	-95(2)	8531(2)	51(1)
C ₍₁₇₎	2183(3)	850(3)	7112(2)	93(1)
C(18a)	914(6)	944(8)	6274(4)	93(3)
C(18b)	1089(7)	1540(6)	6504(6)	76(2)
C(19)	1105(4)	-1917(2)	9200(2)	72(1)
C(20)	4256(3)	-156(3)	13107(2)	77(1)
C ₍₂₁₎	2652(4)	251(3)	14117(2)	79(1)

Координаты (×10⁴) и эквивалентные изотопные тепловые параметры $({\rm \AA}^2 \times 10^3)$ неводородных атомов в структуре 2a

Таблица 2

Длины связей (l) в структуре пирролохинолина 2a

Связь	<i>l</i> , Å	Связь	<i>l</i> , Å	Связь	<i>l</i> , Å
N(1)-C(1)	1.339(2)	C ₍₈₎ –C ₍₁₆₎	1.494(3)	C(3)-C(20)	1.519(4)
N(2)-C(5)	1.288(3)	C(10)-C(11)	1.495(4)	C(3)-C(4)	1.555(4)
O ₍₁₎ -C ₍₁₆₎	1.197(3)	C(11)-C(12)	1.314(4)	C(5)-C(6)	1.441(4)
O(2)-C(17)	1.466(3)	C(13)-C(14)	1.457(4)	C(7)-C(8)	1.391(4)
C(1)-C(6)	1.371(3)	C(17)-C(18b)	1.538(1)	C ₍₈₎ –C ₍₉₎	1.412(4)
C ₍₂₎ -C ₍₃₎	1.545(4)	N(1)-C(9)	1.348(3)	C ₍₉₎ –C ₍₁₉₎	1.503(4)
C(3)-C(21)	1.531(4)	N(2)-C(10)	1.519(3)	C(10)-C(15)	1.494(4)
C(4)-C(5)	1.498(4)	O(2)-C(16)	1.317(3)	C(12)-C(13)	1.460(4)
$C_{(6)} - C_{(7)}$	1.373(3)	O ₍₃₎ -C ₍₁₃₎	1.229(3)	C(14)-C(15)	1.319(4)
C(7)-C(10)	1.534(4)	C(1)-C(2)	1.509(4)	C ₍₁₇₎ –C _(19a)	1.538(1)

Таблица 3

Угол	ω, град.	Угол	ω, град.
C(1)-N(1)-C(9)	118.4(2)	C(5)-N(2)-C(10)	107.6(2)
$C_{(16)} - O_{(2)} - C_{(17)}$	114.6(2)	$N_{(1)} - C_{(1)} - C_{(6)}$	119.9(2)
$N_{(1)}-C_{(1)}-C_{(2)}$	123.5(2)	$C_{(6)} - C_{(1)} - C_{(2)}$	116.6(2)
$C_{(1)}-C_{(2)}-C_{(3)}$	112.4(2)	$C_{(20)}-C_{(3)}-C_{(21)}$	109.2(2)
$C_{(20)} - C_{(3)} - C_{(2)}$	110.1(2)	C (21)-C(3)-C(2)	108.8(2)
$C_{(20)}-C_{(3)}-C_{(4)}$	109.4(2)	$C_{(21)}$ - $C_{(3)}$ - $C_{(4)}$	108.3(2)
$C_{(2)}-C_{(3)}-C_{(4)}$	111.0(2)	$C_{(5)} - C_{(4)} - C_{(3)}$	110.5(2)
N(2)-C(5)-C(6)	113.3(2)	N(2)-C(5)-C(4)	129.2(3)
$C_{(6)}-C_{(5)}-C_{(4)}$	117.5(2)	$C_{(1)} - C_{(6)} - C_{(7)}$	123.2(2)
$C_{(1)} - C_{(6)} - C_{(5)}$	127.2(2)	$C_{(7)} - C_{(6)} - C_{(5)}$	109.4(2)
$C_{(6)}-C_{(7)}-C_{(8)}$	117.9(2)	$C_{(6)} - C_{(7)} - C_{(10)}$	105.7 (2)
$C_{(8)}-C_{(7)}-C_{(10)}$	135.8(2)	$C_{(7)} - C_{(8)} - C_{(9)}$	116.4(2)
$C_{(7)}-C_{(8)}-C_{(16)}$	120.8(2)	$C_{(9)}$ - $C_{(8)}$ - $C_{(16)}$	122.5(2)
$N_{(1)}-C_{(9)}-C_{(8)}$	124.0(2)	$N_{(1)} - C_{(9)} - C_{(19)}$	114.7(2)
$C_{(8)} - C_{(9)} - C_{(19)}$	121.3(2)	$C_{(11)}$ - $C_{(10)}$ - $C_{(15)}$	113.3(2)
$C_{(11)} - C_{(10)} - N_{(2)}$	108.4(2)	$C_{(15)}-C_{(10)}-N_{(2)}$	107.2(2)
$C_{(11)}$ - $C_{(10)}$ - $C_{(7)}$	113.8(2)	$C_{(15)}$ - $C_{(10)}$ - $C_{(7)}$	109.5(2)
$N_{(2)}-C_{(10)}-C_{(7)}$	104.1(2)	$C_{(12)}$ - $C_{(11)}$ - $C_{(10)}$	123.0(3)
$C_{(11)} - C_{(12)} - C_{(13)}$	121.8(3)	$O_{(3)} - C_{(13)} - C_{(14)}$	120.7(3)
$O_{(3)}-C_{(13)}-C_{(12)}$	122.3(3)	$C_{(14)}$ - $C_{(13)}$ - $C_{(12)}$	117.0(2)
$C_{(15)} - C_{(14)} - C_{(13)}$	121.5(3)	$C_{(14)}$ - $C_{(15)}$ - $C_{(10)}$	123.1(3)
$O_{(1)} - C_{(16)} - O_{(2)}$	124.3(2)	$O_{(1)} - C_{(16)} - C_{(8)}$	123.9(3)
$O_{(2)} - C_{(16)} - C_{(8)}$	111.7(2)	O ₍₂₎ -C ₍₁₇₎ -C _(18b)	105.3(4)
$O_{(2)}-C_{(17)}-C_{(18a)}$	109.1(4)	$C_{(18b)} - C_{(17)} - C_{(18a)}$	32.4(4)

Валентные углы (ш) в структуре 2а

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборе Varian VXR-300 (300 МГц) и на приборе Gemini-200 (200 МГц), внутренний стандарт ТМС. Контроль за чистотой полученных соединений осуществляли с помощью ТСХ на пластинках Silufol UV-254. Проявление в УФ свете или парами иода.

Рентгеноструктурное исследование. Кристаллы соединения **2а** моноклинные, $C_{21}H_{22}N_2O_3$, при температуре 20 °C: a = 10.212(4), b=13.258(5), c = 14.226(5) Å, $\beta = 104.04(2)^\circ$, V = 1869(1) Å³, $M_{\Gamma} - 349.40$, Z = 4, пространственная группа $P2_1/n$, $d_{\rm выч} = 1.242$ г/см³, μ (Мо K_{α}) = 0.084 мм⁻¹, F(000) = 740. Параметры элементарной ячейки и интенсивности 3174 отражений (3001 независимых, $R_{\rm int} = 0.025$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (Мо K_{α} , графитовый монохроматор, 20/ θ -сканирование, $2\theta_{\rm max} = 50^\circ$).

Структура расшифрована прямым методом по комплексу программ SHELX97 [4]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{\mu_{30}}$ - $nU_{_{3KB}}$ (n = 1.5 для метильной группы и n = 1.2 для остальных атомов водорода). При уточнении структуры налагались ограничения на длины связей в разупорядоченном фрагменте (C(sp^3)-C(sp^3) 1.54(1) Å). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.155$ по 3001 отражению ($R_1 = 0.052$ по 1827 отражениям с $F > 4\sigma(F)$, S = 0.971).

4-Арил-2,7,7-триметил-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолины получены по методикам [5, 6].

Общая методика получения оксимов 4-арил-2,7,7-триметил-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолинов (1а–d). К раствору 10 ммоль соответствующего тетрагидрохинолина в 50 мл этанола прибавляют 6.9 г (100 ммоль) солянокислого гидроксиламина и 8 мл пиридина. Смесь кипятят 6 ч, выливают в воду, нейтрализуют разбавленной соляной кислотой до нейтральной реакции, продукт отфильтровывают.

Оксим 2,7,7-триметил-5-оксо-3-этоксикарбонил-4-(4'-хлорфенил)-5,6,7,8-тетрагидрохинолина (1а). Выход 56.6 %. Т. пл. 170 °С (спирт). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 0.95 (3H, т, *J* = 7.1, COOCH₂<u>CH</u>₃); 1.02 (6H, с, 7-, 7-CH₃); 2.45 (3H, с, 2-CH₃); 2.55 (2H, с, 8-CH₂); 2.78 (2H, с, 6-CH₂); 3.96 (2H, к, *J* = 7.1, COO<u>CH₂</u>CH₃); 7.18 (2H, д, *J*_{2,3} = 8.2, 3'-, 5'-H); 7.50 (2H, д, *J*_{5,6} = 8.2, 2'-, 6'-H); 10.90 (1H, с, NOH). Найдено, %: С 65.33; H 6.05; CI 9.23; N 7.35. C₂₁H₂₃ClN₂O₃. Вычислено, %: С 65.20; H 5.99; CI 9.16; N 7.24.

Оксим 4-(4'-бромфенил)-2,7,7-триметил-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолина (1b). Выход 61.5%. Т. пл. 213 °С (спирт). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 0.95 (3H, т, *J* = 7.1, СООСН<u>2СН</u>₃); 1.02 (6H, с, 7-, 7-СН₃); 2.45 (3H, с, 2-СН₃); 2.55 (2H, с, 8-СН₂); 2.78 (2H, с, 6-СН₂); 3.96 (2H, к, *J* = 7.1, СОО<u>СН</u>₂СН₃); 7.15 (2H, д, *J*_{2,3} = 8.2, 3'-, 5'-H); 7.57 (2H, д, *J*_{5,6} = 8.2, 2'-, 6'-H); 10.90 (1H, с, NOH). Найдено, %: С 58.61; H 5.31; Br 18.60; N 6.30. C₂₁H₂₃BrN₂O₃. Вычислено, %: С 58.48; H 5.37; Br 18.52; N 6.49.

Оксим 2,7,7-триметил-4-(4'-метоксифенил)-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолина (1с). Выход 77.47%. Т. пл. 190–192 °С (спирт). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 0.95 (3H, т, *J* = 7.1, COOCH₂<u>CH₃</u>); 1.02 (6H, с, 7-, 7-CH₃); 2.45 (3H, с, 2-CH₃); 2.55 (2H, с, 8-CH₂); 2.78 (2H, с, 6-CH₂); 3.79 (3H, с, 4'-OCH₃); 4.01 (2H, к, *J* = 7.1, COO<u>CH₂</u>CH₃); 6.92 (2H, д, *J*_{2,3} = 8.6, 3'-, 5'-Н); 7.05 (2H, д, *J*_{5,6} = 8.6, 2'-, 6'-Н); 10.92 (1H, с, NOH). Найдено, %: С 69.37; Н 6.67; N 7.21. С₂₂Н₂₆N₂O₄. Вычислено, %: С 69.09; Н 6.85; N 7.32.

Оксим 4-(2',4'-дихлорфенил)-2,7,7-триметил-5-оксо-3-этоксикарбонил-5,6,7,8-тетрагидрохинолина (1d). Выход 57.5%. Т. пл. 158–159 °С (спирт). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 0.90 (3H, т, *J* = 7.1, СООСН₂<u>СН</u>₃); 0.92 (3H, с, 7-СН₃); 1.03 (3H, с, 7-СН₃); 2.46 (3H, с, 2-СН₃); 2.50 (2H, с, 8-СН₂); 2.78 (2H, с, 6-СН₂); 3.93 (2H, к, *J* = 7.1, СОО<u>СН</u>₂СН₃); 7.15 (1H, д, *J*_{5,6} = 8.2, 6-Н); 7.41 (1H, д. д, *J*_{5,6} = 8.2, *J*_{3,5} = 2.1, 5-Н); 7.57 (1H, д, *J*_{3,5} = 2.1, 3-Н); 10.88 (1H, с, NOH). Найдено, %: С 59.91; H 5.15; Cl 16.75; N 6.45. С₂₁Н₂₂Cl₂N₂O₃. Вычислено, %: С 59.87; H 5.26; Cl 16.83; N 6.65.

Общая методика получения соединений 2a,b, 7. Смесь 10 г ПФК и 1 г соответствующего оксима (1a-d) выдерживают 1 ч при 100 °С. Реакционную смесь выливают в 100 мл воды, нейтрализуют водным раствором аммиака и выпавший осадок экстрагируют хлороформом. Очищают хроматографированием на силикагеле. Для 2а элюент хлороформ-спирт, 10:0.5, для 2b элюент толуол-хлороформ-спирт, 5:1:0.4.

4',7',7'-Триметил-4-оксо-3'-этоксикарбонил-2',6',7',8'-тетрагидроспиро(циклогекса-2,5-диен-1,2'-пирроло[4',3',2'-*d,e***]хинолин) (2а). Выход 28.4%. Т. пл. 110–112 °С (гексан).** *R***_f 0.60. Спектр ЯМР ¹H (ДМСО-d₆), δ, м. д. (***J***, Гц): 1.07 (6H, с, 7-, 7-CH₃); 1.16 (3H, т,** *J* **= 7.1, COOCH₂<u>CH</u>₃); 2.62 (3H, с, 2-CH₃); 2.72 (2H, с, 6-CH₂); 2.86 (2H, с, 8-CH₂); 4.08 (2H, к,** *J* **= 7.1, COO<u>CH</u>₂<u>CH</u>₃); 6.43 (4H, с, CH=CH). Спектр ЯМР ¹H (пиридин-d₅), δ, м. д. (***J***, Гц): 0.98 (6H, с, 7-, 7-CH₃); 1.21 (3H, т,** *J* **= 7.1, COOCH₂<u>CH</u>₃); 2.72 (3H, с, 2-CH₃); 2.89 (4H, с, 6-, 8-CH₂); 4.25 (2H, к,** *J* **= 7.1, COO<u>CH</u>₂CH₃); 6.55 (2H, д,** *J***_{2,3} = 10, 2,6-CH=CH); 6.75 (2H, д,** *J***_{5,6} = 10, 3,5-CH=CH). Найдено, %: С 71.79; H 6.45; N 7.80. C₂₁H₂₂N₂O₃. Вычислено, %: С 71.98; H 6.33; N 7.99.**

4',7',7'-Триметил-4-оксо-2-хлор-3'-этоксикарбонил-2',6',7',8'-тетрагидроспиро(циклогекса-2,5-диен-1,2'-пирроло[4',3',2'-*d,е*]хинолин) (2b). Выход 31.4%. Т. пл. 110 °С (гексан).

Гекса-2,5-дисн-1,2-пирроло[4,5,2-2, е] кинолин) (2D). Выход 31.4%. 1. пл. 110 °С (тексан). R_f 0.33. Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д. (*J*, Гц): 1.02 (3H, с, 7-CH₃); 1.16 (3H, с, 7-CH₃); 1.19 (3H, т, *J* = 7.1, СООСН₂СН₃); 2.71 (3H, с, 2-CH₃); 2.78 (2H, с, 6-CH₂); 2.90 и 2.91 (2H, с, 8-CH₂); 4.14 (2H, м, *J* = 7.1, СОО<u>СН₂</u>СН₃); 6.48 (2H, с, 2,3-CH=CH); 6.80 (1H, с, 5-CH=). Найдено, %: С 65.67; H 5.65; Cl 9.05; N 7.41. С₂₁H₂₁ClN₂O₃. Вычислено, %: С 65.54; H 5.50; Cl 9.21; N 7.28.

9-Бром-2,5,5-триметил-1-этоксикарбонил-5,6-дигидро-4H-пиридо[2,3,4-*k*,*l*]акридин (7). Выход 7%. Т. пл. 178 °С (спирт). Спектр ЯМР ¹Н, 8, м. д. (*J*, Гц): 1.05 (6H, с, 5-, 5-СН₃); 1.34 (3H, т, *J* = 7.1, СООСН<u>2</u>СН₃); 2.58 (3H, с, 2-СН₃); 3.04 (4H, с, 4- и 6-СН₂); 4.40 (2H, к, *J* = 7.1, СОО<u>СН</u>2</sub>СН₃); 7.17 (1H, д. д, *J*_{10,11} = 9.2, *J*_{8,10} = 2.8, 10-H); 7.32 (1H, д, *J*_{8,10} = 2.8, 8-H); 7.95 (1H, д, *J*_{10,11} = 9.2, 11-H). Найдено, %: С 61.36; H 5.27; Br 19.08; N 6.67. С₂₁Н₂₁BrN₂O₂. Вычислено, %: С 61.03; H 5.12; Br 19.33; N 6.78.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. В. Толкунов, А. И. Хижан, В. И. Дуленко, ХГС, 1849 (2003).
- 2. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- 3. H.-B. Burgi, J. D. Dunitz, *Structure correlation*, VCH, Weinheim, 1994, 2, 741.
- 4. G. M. Sheldrick, *SHELX97. PC Version*, A system of computer programs for the crystal structure solution and refinement, 1998, Rev. 2.
- 5. H. J. Antaki, J. Chem. Soc., 4877 (1973).
- 6. Э. Э. Гринштейн, Э. И. Станкевич, Г. Я. Дубур, *XГС*, 1118 (1966).

Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецк 83114 e-mail: tolkunov@uvika.dn.ua Поступило в редакцию 28.08.2001 После доработки 31.01.2002

^аИнститут монокристаллов НАН Украины, Харьков 61001