М. В. Вовк, П. С. Лебедь, А. Н. Чернега, В. В. Пироженко, В. И. Бойко, И. Ф. Цымбал

ГЕТЕРОЦИКЛИЗАЦИИ ФУНКЦИОНАЛИЗИРОВАННЫХ ГЕТЕРОКУМУЛЕНОВ С С,N- И С,О-БИНУКЛЕОФИЛАМИ

1. ЦИКЛОКОНДЕНСАЦИЯ 1-ХЛОРАЛКИЛГЕТЕРОКУМУЛЕНОВ И N-(1-ХЛОРАЛКИЛИДЕН)УРЕТАНОВ С 2-ЦИАНОМЕТИЛПИРИДИНОМ

Исследовано взаимодействие 1-хлоралкилизоцианатов, 1-хлоралкилкарбодиимидов, 1,1-дихлоралкилизоцианатов и N-(1-хлорэтилиден)-О-метилуретанов с 2-цианометилпиридином. Обнаружено влияние органического основания на региоселективность циклоконденсации 1-хлоралкилизоцианатов, которая приводит к 2,3-дигидро-1Н-пиридо[1,2-*c*]пиримидин-1-онам или изомерным 2,3-дигидро-1Н-пиридо[1,2-*c*]пиримидин-3-онам. 1-Хлоралкилкарбодиимиды независимо от условий циклизации реагируют с образованием 1-имино-2,3-дигидро-1Н-пиридо[1,2-*c*]пиримидинов. Для 1,1-дихлоралкилизоцианатов и N-(1хлоралкилиден)уретанов также выделен один тип продуктов – 1Н-пиридо[1,2-*c*]пиримидин-1-оны.

Ключевые слова: 1Н-пиридо[1,2-*c*]пиримидины, 1-хлоралкилизоцианаты, 1-хлоралкилкарбодиимиды, N-(1-хлоралкилиден)уретаны, 2-цианометилпиридин, циклоконденсация.

Обобщенные нами ранее [1] результаты химического поведения 1-функционально замещенных алкилгетерокумуленов (изоцианатов и карбодиимидов) позволяют сделать вывод о том, что они перспективны как 1,3-биэлектрофильные [-С=N-С=]²⁺ синтоны во внутри- и межмолекулярных циклизациях с O,O-, O,S- и N,S-бифункциональными реагентами. Однако их взаимодействие с C,N-бинуклеофилами ограничено примерами 1-циклогексенилдиалкиламинов [2] и этилового эфира β-N-метиламинокротоновой кислоты [3]. Образование в последнем случае производных 4-оксо(имино)тетрагидропиримидинов послужило для нас весомой предпосылкой для вовлечения в подобную реакцию объектов, в которых атом азота является элементом гетероцикла, что позволило бы разработать эффективный подход к конденсированным пиримидиновым системам. По этой причине в настоящей работе с целью получения новых пиридо[1,2-с]пиримидинов изучено взаимодействие 1-хлоралкилгетерокумуленов и некоторых их производных с 2-цианометилпиридином. Заметим, что ранее для синтеза производных пиридо[1,2-с]пиримидинов применялись реакции [4+2]-циклоприсоединения 2-винилпиридинов к ацилизоцианатам [4] и электроциклизации 2-(2-гетерокумулено)винилпиридинов [5, 6]. В целом, пристальное внимание к такого типа объектам обусловлено широким спектром их биологической активности [6, 7].

Нами установлено, что 1-хлоралкилизоцианаты 1а-с сравнительно легко реагируют с 2-цианометилпиридином 2 с образованием продуктов пиридо[1,2-с]пиримидиновой структуры. При этом впервые в ряду реакций 1-хлоралкилизоцианатов с бинуклеофильными реагентами удалось обнаружить влияние условий их проведения на строение конечных продуктов. Если взаимодействие реагентов в бензольном растворе в присутствии триэтиламина приводит к 2,3-дигидро-1Н-пиридо[1,2-с]пиримидин-1-онам За-с, то нагревание в указанном растворителе без органического основания сопровождается образованием изомерных 2,3-дигидро-1Н-пиридо[1,2-с]пиримидин-3-онов 4а-с (табл. 1). Мы предполагаем, что при смешении реагентов 1 и 2 имеет место N-карбамоилирование пиридинового кольца и образование соли А. По-видимому, этот процесс является равновесным, подтверждением чему служит появление и постепенное увеличение в спектрах ЯМР ¹⁹F сигналов в области ~ -72 м. д.[8], интенсивность которых через 7-8 сут становится одинаковой с интенсивностью сигналов исходных изоцианатов (~ -80 м. д.). Прибавление к смеси органического основания приводит к созданию на цианометильной группе анионного центра, следствием атаки которого на электрофильную азометиновую связь является замыкание цикла. При нагревании реакционной смеси, по всей видимости, происходит смещение равновесия в сторону исходных реагентов и последующее С-карбамоилирование цианометильной группы с образованием интермедиатов типа В, которые затем циклизуются в 4а-с.

a Ar = Ph; **b** Ar = 4-MeC₆H₄; **c** Ar = 4-MeOC₆H₄

			Найлено %			[
Соеди-	Брутто-	E	<u>паидено, <i>%</i></u> Зычислено. 9	6	Тпл⁰С	Выход*, %	
нение	формула	С	Н	N	1. iiii., C	(метод)	
3a	$C_{16}H_{10}F_3N_3O$	<u>60.79</u> 60.57	<u>3.09</u> 3.18	<u>13.40</u> 13.24	188–189	60	
3b	$C_{17}H_{12}F_3N_3O$	<u>61.37</u> 61.63	<u>3.61</u> 3.65	<u>12.81</u> 12.68	187–188	71	
3c	$C_{17}H_{12}F_3N_3O_2$	<u>59.07</u> 58.79	<u>3.51</u> 3.48	<u>12.29</u> 12.10	185–186	74	
4a	$C_{16}H_{10}F_3N_3O$	<u>60.29</u> 60.57	<u>3.24</u> 3.18	<u>13.36</u> 13.24	230–231	44	
4b	$C_{17}H_{12}F_3N_3O$	<u>61.50</u> 61.63	<u>3.78</u> 3.65	<u>12.53</u> 12.68	228–229	46	
4c	$C_{17}H_{12}F_3N_3O_2$	<u>59.92</u> 58.79	<u>3.54</u> 3.48	<u>11.94</u> 12.10	214–215	39	
6a	$C_{22}H_{17}F_3N_4$	<u>68.20</u> 67.97	$\frac{4.21}{4.22}$	<u>14.03</u> 13.79	116–117	50 (А), 40 (Б)	
6b	$C_{23}H_{19}F_3N_4$	<u>68.47</u> 68.56	<u>4.69</u> 4.56	<u>13.41</u> 13.33	125–126	38	
6с	C ₂₃ H ₁₉ F ₃ N ₄ O	<u>65.76</u> 66.05	<u>4.32</u> 4.39	<u>12.99</u> 12.84	156–157	43	
9a	$C_{10}H_4F_3N_3O$	<u>50.36</u> 50.22	$\frac{1.54}{1.69}$	<u>17.70</u> 17.57	207–208	52 (А), 37 (Б) 41 (В), 30 (Г)	
9b	$C_{10}H_4Cl_3N_3O$	<u>41.80</u> 41.63	<u>1.57</u> 1.40	<u>14.31</u> 14.56	220–221	56 (A), 47 (B)	

Характеристики синтезированных соединений За-с, 4а-с, 6а-с, 9а,b

* Соединения **3а-с**, **4а-с**, **6а-с**, **9а** перекристаллизованы из этанола; соединение **9b** – из смеси этанол–диоксан, 2 : 1.

Различия между структурами 3 и 4 фиксируются методами ИК, ЯМР ¹Н, ¹⁹F и ¹³C спектроскопии (табл. 2, 3). В ИК спектрах соединений **За-с** полосы группы C=O находятся в области 1732-1735 см⁻¹, а для 4а-с они смещены в более низкочастотную область (1630–1634 и 1648–1650 см⁻¹), что может быть обусловлено ее участием в сопряжении с гексатриеновой системой связей. Более детальный анализ ИК спектров соединений За и 4а показал, что для первого в твердом виде наблюдаются полосы v(C=O) при 1735, v(C=N) при 2195 и v(N-H) при 3261 см⁻¹. В растворе в CH₂Cl₂ (с = 0.018 моль/л) частоты этих полос проявляются, соответственно, при 1733, 2199 и 3385 см⁻¹, т. е. изменению подвергается только полоса v(N–H). При этом изменяется и ее форма, что, очевидно, обусловлено участием группы N-H в образовании в твердом виде межмолекулярных ассоциатов между неподеленной электронной парой узлового атома азота одной молекулы и протоном группы N-H другой. Группа C=O в таком процессе участия не принимает, поскольку в исходном растворе и в разбавленных, соответственно, в 4.5 и 13 раз ее интенсивность и частота остаются теми же, что и в твердом состоянии.

Таблица 2

Соеди-	Cherry SMP ¹ H S $M = (L \Gamma r)$	Спектр ЯМР ¹⁹ Е	ИК спектр, v, см ⁻¹			
нение	Спектр лиг 11, 0, м. д. (3, 1 ц)	лічнії Т, б, м. д.	C=O	C≡N	N–H	
3a	6.19–6.24 (1H, M, 7-H), 6.80 (1H, μ , $J = 9.3$, 5-H), 7.09–7.15 (1H, M, 6-H), 7.42–7.53 (3H, M, H _{Ar}), 7.62 (2H, μ , $J = 8.0$, H _{Ar}), 7.95 (1H, μ , $J = 7.3$, 8-H), 9.84 (1H, c, NH)	-76.47	1735	2195	3261	
3b	2.37 (1H, c, CH ₃), 6.30 (1H, M, 7-H), 6.79 (1H, π , $J = 9.4$, 5-H), 7.10–7.24 (1H, M, 6-H), 7.27 (2H, π , $J = 8.1$, H _{Ar}), 7.49 (2H, π , $J = 8.1$, H _{Ar}), 7.93 (1H, π , $J = 7.4$, 8-H), 9.78 (1H, c, NH)	-76.46	1732	2199	3259	
3c	3.82 (3H, c, CH ₃ O), 6.38–6.50 (1H, m, 7-H), 6.82 (1H, π , $J = 9.4$, 5-H), 6.99–7.02 (2H, π , $J = 9.0$, H _{Ar}), 7.11–7.30 (1H, m, 6-H), 7.53 (2H, π , $J = 9.0$, H _{Ar}), 7.93 (1H, π , $J = 7.4$, 8-H), 9.76 (1H, c, NH)	-76.57	1734	2202	3276	
4a	6.43–6.49 (1H, м, 7-H), 6.93–6.95 (1H, д, <i>J</i> = 7.0, 5-H), 7.09–7.12 (1H, д, <i>J</i> = 9.0, 8-H), 7.49–7.54 (1H, м, 6-H), 7.47–7.58 (3H, м, H _{Ar}), 7.62–7.66 (2H, м, H _{Ar}), 8.96 (1H, с, NH)	-75.69	1634, 1650	2210	3157	
4b	2.41 (3H, c, CH ₃), 6.43–6.48 (1H, м, 7-H), 6.94 (1H, д, <i>J</i> = 7.0, 5-H), 7.09 (1H, д, <i>J</i> = 9.1, 8-H), 7.37 (2H, д, <i>J</i> = 8.3), 7.45–7.58 (1H, м, 6-H), 7.55 (2H, д, <i>J</i> = 8.3, H _{Ar}), 8.93 (1H, c, NH)	-75.89	1630, 1647	2210	3178	
4c	3.84 (3H, c, CH ₃ O), 6.44–6.52 (1H, m, 7-H), 6.96 (1H, π , $J = 7.0$, 5-H), 7.05–7.17 (3H, 8-H + H _{Ar}), 7.46–7.55 (1H, m, 6-H), 7.59 (2H, π , $J = 8.5$, H _{Ar}), 8.92 (1H, c, NH)	-76.02	1632, 1648	2212	3163	
6a*	2.31 (3H, c, CH ₃), 6.13–6.17 (1H, м, 7-H), 7.03–7.56 (11H, м, 5-H + 6-H + H _{Ar}), 7.70 (1H, <i>J</i> = 7.2, 8-H), 8.98 (1H, c, NH)	75.44		2197	3385	
6b**	2.31 (6H, уш. с, CH ₃), 6.09–6.21 (1H, м, 7-H), 7.01–7.17 (6H, м, 5-H + 6-H + H _{Ar}), 7.42–7.55 (4H, м, H _{Ar}), 7.68 (1H, д, <i>J</i> = 7.2, 8-H), 8.95 (1H, с, NH)	-75.45		2198	3318	
6c***	2.29 (3H, c, CH ₃), 3.75 (3H, c, CH ₃ O), 6.08–6.19 (1H, м, 7-H), 6.86–7.11 (6H, м, 5-H + 6-H + H _{Ar}), 7.42–7.45 (4H, м, H _{Ar}), 7.67 (1H, д, <i>J</i> = 6.8, 8-H), 8.93 (1H, c, NH)	-75.69		2190	3318	
9a	7.91–7.96 (1Н, м, 7-Н), 8.19 (1Н, д, <i>J</i> = 8.5, 5-Н), 8.50–8.55 (1Н, м, 6-Н), 9.35 (1Н, д, <i>J</i> = 6.8, 8-Н)	-68.18	1709	2235		
9b	7.82–7.87 (1Н, м, 7-Н), 8.20 (1Н, д, <i>J</i> = 8.4, 5-Н), 8.43–8.48 (1Н, м, 6-Н), 9.27 (1Н, д, <i>J</i> = 6.9, 8-Н)		1714	2237		

Спектральные характеристики синтезированных соединений

 $\begin{array}{c} * \ \nu_{C=N} \ 1665 \ \text{cm}^{-1} \\ ** \ \nu_{C=N} \ 1663 \ \text{cm}^{-1} \\ *** \ \nu_{C=N} \ 1659 \ \text{cm}^{-1} \end{array}$

Таблица З

Со- еди- не- ние	C ₍₁₎	C ₍₃₎	C ₍₄₎	C _(4a)	C ₍₅₎	C ₍₆₎	C ₍₇₎	C ₍₈₎	C=N	CF ₃	CCl ₃	C _{Ar}	C _{Ar'}	Другие сигналы
3a	146.93	63.66 (кв, <i>J</i> = 29)	68.00	148.09	119.44	136.21	108.50	128.98	117.49	125.38 (кв, <i>J</i> = 292)		136.60 (<i>i</i>) 127.31 (<i>o</i>) 128.64 (<i>m</i>) 129.11 (<i>p</i>)		
3b	146.86	63.46 (кв, <i>J</i> = 29)	68.18	147.91	119.38	135.96	108.32	128.84	117.38	125.30 (кв, J = 290)		133.63 (<i>i</i>) 138.52 (<i>o</i>) 129.06 (<i>m</i>) 127.10 (<i>p</i>)		20.50 (CH ₃)
3c		63.66 (кв, <i>J</i> = 29)								125.40 (кв, <i>J</i> = 290)		128.47 (<i>i</i>) 128.67 (<i>o</i>) 113.83 (<i>m</i>) 159.45 (<i>p</i>)		55.23 (CH ₃ O)
4a	81.36 (кв, J = 31)	160.46	68.87	153.15	119.54	139.50	112.57	136.08	117.40	124.15 (кв, J = 296)		133.83 (<i>i</i>) 128.31 (<i>o</i>) 129.41 (<i>m</i>) 130.97 (<i>p</i>)		

Спектры ЯМР ¹³С полученных соединений, б, м. д. (*J*, Гц)

4b	81.33 (кв, J = 31)	160.55	68.86	153.09	119.48	139.46	112.49	136.00	117.39	124.17 (кв, J = 296)		130.84 (<i>i</i>) 128.20 (<i>o</i>) 129.90 (<i>m</i>) 140.80 (<i>p</i>)		20.67 (CH ₃)
4c	81.14 (кв, J = 30)	160.39	69.22	152.87	119.46	138.75	111.87	135.48	116.87	124.01 (кв, J = 296)		125.11 (i) 129.69 (o) 114.38 (m) 160.61 (p)		55.23 (CH ₃ O)
6a	143.00	63.52 (кв, <i>J</i> = 27)	69.16	148.37	119.92	133.53	107.94	130.22	118.04	124.77 (кв, J = 285)		139.62 (<i>i</i>) 126.86 (<i>o</i>) 128.17 (<i>m</i>) 128.43 (<i>p</i>)	137.20 (<i>i</i>) 120.52 (<i>o</i>) 129.04 (<i>m</i>) 132.11 (<i>p</i>)	20.28 (CH ₃)
6b	142.95	63.33 (кв, <i>J</i> = 27.2)	69.30	148.27	119.91	133.39	107.87	130.23	118.05	124.83 (кв, <i>J</i> = 285)		136.67 (<i>i</i>) 126.76 (<i>o</i>) 128.72 (<i>m</i>) 137.87 (<i>p</i>)	137.27 (i) 120.44 (o) 129.02 (m) 132.05 (p)	20.44 (CH ₃) 20.26 (CH ₃ ')
9a	148.50	154.46 (кв, J = 34)	81.10	149.36	123.16	143.78	123.16	133.05	112.90	154.46 (кв, J = 34)				
9b	148.03	163.44	79.70	150.11	121.90	142.97	122.70	132.59	113.78		95.26			

Соединение **4a** в твердом состоянии характеризуется широкой полосой поглощения группы C=O при 1634 с высокочастотным плечом при 1650 см⁻¹. В области поглощения v(N-H) имеется широкая полоса при 3157 см⁻¹. В растворе в CH₂Cl₂ (c = 0.018 моль/л) наблюдаются две полосы группы C=O (1641 и 1669 см⁻¹) и полоса группы N–H при 3390 см⁻¹, из которых полосы при 1669 и 3390 см⁻¹ являются полосами v(C=O) и v(N-H) мономерных молекул, что указывает на существование в твердом виде межмолекулярных ассоциатов с двумя водородными связями.

В спектрах ЯМР ¹Н пиридо[1,2-*c*]пиримидин-1-онов **За–с** показательными являются дублеты протонов 8-Н в слабопольной части спектра (7.93–7.95 м. д.), что обусловлено дезэкранирующим влиянием карбонильной группы, а также синглеты протонов N–H при 9.76–9.84 м. д. Для пиридо[1,2-*c*]пиримидин-3-онов **4а–с** аналогичные сигналы 8-Н и N–H смещены в сильное поле примерно на 0.9 м. д.

Сравнение спектров ЯМР ¹⁹F соединений **За–с** и **4а–с** показывает, что сигналы группы CF₃, независимо от их местоположения в пиримидиновом цикле, резонируют в примерно одинаковом диапазоне (от –75 до –76 м. д.), хотя в системе связей C–C(CF₃)–N (**За–с**) наблюдается сильнопольный сдвиг (~0.5 м. д.) по сравнению с системой связей N–C(CF₃)–N (**4а–с**).

Спектры ЯМР ¹³С подтверждают циклическое строение продуктов реакции изоцианатов **1а–с** с 2-цианометилпиридином **2** и имеют отличительные особенности для каждого циклического изомера. Для соединений **3а–с** синглет атома $C_{(1)}$ (группа C=O) находится при 146, а квартет атома $C_{(3)}$ – при 63 м. д. ($J_{C-F} = 29 \Gamma \mu$). В то же время, для соединений **4а–с** атом $C_{(1)}$ проявляется как квартет при 81 ($J_{C-F} = 30–31 \Gamma \mu$), а атом $C_{(3)}$ (группа C=O) – синглет при 160 м. д.

Особенности молекулярной и кристаллической структуры соединения 4а были также изучены методом PCA. Общий вид молекулы 4а показан на рис. 1, основные длины связей и валентные углы приведены в табл. 4. Центральная бициклическая система $N_{(1)}N_{(2)}C_{(1-8)}$ заметно непланарна – отклонения атомов от среднеквадратичной плоскости достигают 0.323 Å. При этом цикл $N_{(1)}C_{(2)}C_{(5-8)}$ плоский в пределах 0.032 Å, тогда как гетероцикл $N_{(1)}N_{(2)}C_{(1-4)}$ имеет конформацию уплощенного *полукресла* (модифицированные параметры Кремера–Попла [9] *S*, θ и ψ составляют 0.48, 53.4 и 5.8° соответственно). В силу стерических условий бензольное кольцо $C_{(9-14)}$ практически ортогонально бициклической системе – соответствующий двугранный угол составляет 84.4°. В кристалле молекулы соединения 4а посредством водородных связей $O_{(1)}\cdots H_{(2)}-N_{(2)}$ ($O_{(1)}\cdots N_{(2)}$ 2.866(2), $O_{(1)}\cdots H_{(2)}$ 2.04(2) Å, $O_{(1)}H_{(2)}N_{(2)}$ 176.7(14)°) объединены в центросимметричные димеры (рис. 2), что подтверждает приведенные выше результаты ИК спектральных исследований.

Рис. 1. Общий вид молекулы 4а с нумерацией атомов

Рис. 2. Кристаллическая упаковка соединения **4a** (штриховыми линиями показаны межмолекулярные водородные связи $N_{(2)}H_{(2)}\cdots O_{(1)}$)

Таблица 4

Связь	d, Å	Угол	ω, град.
O ₍₁₎ –C ₍₄₎	1.234(2)	C(1)-N(1)-C(2)	119.57(13)
N(1)-C(1)	1.498(2)	C(2)-N(1)-C(8)	121.12(14)
N(1)-C(2)	1.379(2)	C(1)-N(2)-C(4)	124.13(13)
N(1)-C(8)	1.379(2)	N(1)-C(1)-N(2)	108.98(13)
N ₍₂₎ -C ₍₁₎	1.437(2)	N ₍₁₎ -C ₍₂₎ -C ₍₃₎	119.67(14)
N(2)-C(4)	1.372(2)	N(1)-C(2)-C(5)	116.77(15)
C ₍₂₎ –C ₍₃₎	1.396(2)	$C_{(2)} - C_{(3)} - C_{(4)}$	121.00(14)
C ₍₂₎ -C ₍₅₎	1.422(2)	N(2)-C(4)-C(3)	115.49(14)
$C_{(3)} - C_{(4)}$	1.436(2)	$C_{(2)} - C_{(5)} - C_{(6)}$	121.47(16)
C(5)-C(6)	1.354(3)	$C_{(5)} - C_{(6)} - C_{(7)}$	119.66(16)
$C_{(6)} - C_{(7)}$	1.408(3)	$C_{(6)} - C_{(7)} - C_{(8)}$	119.32(16)
$C_{(7)} - C_{(8)}$	1.343(3)	$N_{(1)} - C_{(8)} - C_{(7)}$	121.36(16)

Длины связей (d) и валентные углы (w) в молекуле соединения 4a

Иминоаналоги 1-хлоралкилизоцианатов 1a-c - 1-хлоралкилкарбодиимиды 5a-c - являются системами с менее электрофильной гетерокумулено $вой группой и более выраженными электрофильными свойствами <math>\alpha$ -углеродного атома. Это существенным образом сказывается и на характере их взаимодействия с 2-цианометилпиридином **2**.

a Ar = Ph, Ar' = 4-MeC₆H₄; **b** Ar = Ar' = 4-MeC₆H₄; **c** Ar = 4-MeOC₆H₄, Ar' = 4-MeC₆H₄

Установлено, что при 10 ч нагревании реагентов **5а**–с и **2** в кипящем бензоле получаются не аналоги соединений **4**, а аналоги соединений **3** – 1-имино-1Н-пиридо[1,2-*c*]пиримидины **6а**–с (см. табл. 1). Наиболее вероятно, что в данном случае первоначально происходит образование продуктов С-алкилирования **C**, которые затем внутримолекулярно циклизуются в **6а–с**. Наличие в спектрах ЯМР ¹Н соединения **6а** (см. табл. 2) дублетных сигналов протонов 8-Н в интервале 7.67–7.70, а в спектрах ЯМР ¹³С (см. табл. 3) соединения **6а,b** квартетов атомов C₍₃₎ при 63 м. д. ($J_{C-F} = 27$ Гц) надежно подтверждает предложенную структуру. При исследовании реакции карбодиимидов 5 с 2-цианометилпиридином 2 в присутствии органического основания положительный результат был получен только при применении в качестве основания N-этил-N,N-диизопропиламина. На примере карбодиимида **5a** показано, что при использовании указанного основания он также реагирует с пиридином **2** по приведенной выше схеме с образованием соединения **6a** с выходом 40%.

С целью синтеза негидрированных аналогов пиридо[1,2-c]пиримидинов **3** и **4** было исследовано взаимодействие 2-цианометилпиридина **2** с 1,1-дихлоралкилизоцианатами **7а,b** и N-(1-хлор-2,2,2-тригалогенэтилиден)-О-метилуретанами **8а,b** в различных экспериментальных условиях. Полученные результаты свидетельствуют о том, что независимо от характера реагентов **7** и **8**, а также условий реакции образуется один тип соединений – 3-тригалогенметил-1H-пиридо[1,2-c]пиримидин-1-оны **9а,b** (см. табл. 1–3). Логично предположить, что благодаря более сильным электрофильным свойствам гетерокумуленовой группы изоцианатов **7а,b** по сравнению с изоцианатами **1а–с** вначале образуются более устойчивые пиридиниевые соли типа **A**, которые под действием основания или температуры дегидрохлорируются в циклическую систему **9**. N-(1-Хлорэтилиден)уретаны **8а,b** реагируют с нитрилом **2** по схеме С-иминоалкилирования с образованием на первой стадии интермедиатов **D**, внутримолекулярная конденсация которых также приводит к гетероциклу **9**.

 $\mathbf{a} \mathbf{X} = \mathbf{F}$; $\mathbf{b} \mathbf{X} = \mathbf{Cl}$

В ИК спектрах пиридо[1,2-*c*]пиримидинов **9а,b** имеются полосы поглощения групп C=O при 1709–1714 см⁻¹. Наличие в спектрах ЯМР ¹Н дублета 8-Н в области 9.27–9.35 м. д. согласуется с литературными данными [6], а в спектрах ЯМР ¹³С сигналов атомов C₍₁₎ (группа C=O) при 148 м. д. соответствует таковым для гидрированых аналогов **3а–с**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на приборе UR-20 в таблетках KBr (для соединений **3a** и **4a** также в растворе CH_2Cl_2). Спектры ЯМР ¹H и ¹⁹F растворов в (CD_3)₂SO– CCl_4 , 2:1, и ЯМР ¹³C растворов в (CD_3)₂SO получены на спектрометре Varian-Gemini (300, 188, 75 МГц соответственно), внутренние стандарты ТМС (¹H, ¹³C) и CCl_3F (¹⁹F).

Исходные 1-хлоралкилизоцианаты 1а-с получены по методу [10], 1-хлоралкилкарбодиимиды 5а-с – [11], 1,1-дихлоралкилизоцианаты 7а,b – [12, 13], N-(1-хлорэтилиден)уретаны 8а,b – [14].

3-Арил-3-трифторметил-4-циано-2,3-дигидро-1Н-пиридо[1,2-с]пиримидин-1-оны (За-с). К раствору 0.354 г (З ммоль) 2-цианометилпиридина **2** в 5 мл бензола прибавляют по каплям при перемешивании раствор З ммоль изоцианата **1а-с** в 15 мл бензола, а затем через 30 мин 0.31 г (З.1 ммоль) триэтиламина. Реакционную смесь перемешивают 1 ч, оставляют на 24 ч, а затем фильтруют. Осадок промывают водой и сушат. Фильтрат упаривают, к маслообразному остатку прибавляют 1 мл гексана, 10 мл *i*-PrOH и нагревают до кипения. Образовавшийся при охлаждении осадок отфильтровывают, объединяют с первой порцией осадка и кристаллизуют.

1-Арил-1-трифторметил-4-циано-2,3-дигидро-1Н-пиридо[1,2-с]пиримидин-3-оны (4а-с). Смесь 3 ммоль изоцианата 1а-с и 0.354 г (3 ммоль) 2-цианометилпиридина 2 в 20 мл бензола нагревают при кипении 20 ч. Растворитель упаривают, к остатку прибавляют 6 мл этанола, нагревают до кипения и охлаждают. Образовавшийся осадок фильтруют и сушат.

1-Арилимино-3-арил-3-трифторметил-4-циано-2,3-дигидро-1Н-пиридо[1,2-с]пиримидины (ба–с). А. Смесь 0.354 г (3 ммоль) 2-цианометилпиридина 2 и 3 ммоль карбодиимида 5а–с в 20 мл бензола нагревают при кипении в течение 10 ч. Растворитель упаривают, остаток очищают кристаллизацией.

Б. К раствору 0.354 г (3 ммоль) 2-цианометилпиридина **2** в 5 мл бензола прибавляют по каплям при перемешивании раствор 0.974 г (3 ммоль) карбодиимида **5а** в 15 мл бензола, а затем через 30 мин 0.4 г (3.1 ммоль) N-этил-N,N-диизопропиламина. Реакционную смесь перемешивают 1 ч, оставляют на 96 ч, а затем фильтруют. Фильтрат упаривают, к маслообразному остатку прибавляют 4 мл этанола и нагревают до кипения. Образовавшийся при охлаждении осадок отфильтровывают.

3-Тригалогенметил-4-циано-1Н-пиридо[1,2-*с*]пиримидин-1-оны (9а,b). А. К раствору 0.295 г (2.5 ммоль) 2-цианометилпиридина 2 в 5 мл бензола прибавляют по каплям при перемешивании раствор 2.5 ммоль изоцианата 7а,b в 5 мл бензола, а затем через 30 мин добавляют по каплям раствор 0.505 г (5 ммоль) триэтиламина в 5 мл бензола, перемешивают 3 ч и оставляют на сутки. Образовавшийся осадок отфильтровывают, промывают водой, сушат и кристаллизуют.

Б. Смесь 0.295 г (2.5 ммоль) 2-цианометилпиридина 2 и 2.5 ммоль изоцианата 7а в 15 мл бензола нагревают при кипении 15 ч. Растворитель упаривают, остаток кристаллизуют.

В. К раствору 0.354 г (3 ммоль) 2-цианометилпиридина 2 в 5 мл толуола прибавляют при перемешивании смесь 3 ммоль уретана **8а,b** и 0.303 г (3 ммоль) триэтиламина в 10 мл толуола. Через 3 ч отфильтровывают осадок солянокислого триэтиламина, фильтрат оставляют на 3–4 дня при комнатной температуре (в случае уретана **8b**) или кипятят 3 ч (в случае уретана **8a**). Затем растворитель упаривают, остаток очищают кристаллизацией.

Г. Смесь 0.354 г (3 ммоль) 2-цианометилпиридина **2** и 3 ммоль уретана **8a** в 15 мл бензола нагревают при кипении 12 ч. Растворитель упаривают, остаток кристаллизуют.

Рентгеноструктурное исследование монокристалла соединения 4a с линейными размерами 0.25 × 0.31 × 0.53 мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (CuK_α-излучение, отношение скоростей сканирования 20/ ω = 1.2, θ_{max} = 70°, сегмент сферы 0 ≤ *h* ≤ 14, 0 ≤ *k* ≤ 7, -21 ≤ *l* ≤ 21). Всего было собрано 2951 отражение, из которых 2560 являются симметрически независимыми (R_{int} = 0.01). Кристаллы соединения 4a моноклинные, *a* = 12.120(10), *b* = 6.320(6), *c* = 17.692(11) Å, β = 94.84(6)°, *V* = 1350.5 Å³, M = 317.27, *Z* = 4, $d_{выч}$ = 1.56 г/см³, μ = 10.8 см⁻¹, *F*(000) = 650.3, пространственная группа *P*2₁/*c*. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [15]. В уточнении использовано 2325 отражений с I > 3(I) (248 уточняемых параметров, число отражений на параметр 9.4). Все атомы водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Учет поглощения в кристалле выполнен по методу азимутального сканирования [16]. При уточнении использована весовая схема Чебышева [17] с параметрами: 2.46, -0.74, 0.67, -1.16 и -0.10. Окончательные значения факторов расходимости R = 0.044 и $R_W = 0.044$, GOF = 0.953. Остаточная электронная плотность из разностного ряда Фурье 0.26 и -0.30 е/Å³. Полный набор кристаллографических данных депонирован в Кембриджском банке структурных данных (No. CCDC 178183).

СПИСОК ЛИТЕРАТУРЫ

- 1. М. В. Вовк, Дис. докт. хім. наук, Київ, 1994.
- 2. А. Д. Синица, Л. О. Небогатова, С. В. Бонадык, *ЖОрХ*, 14, 522 (1978).
- 3. М. В. Вовк, В. В. Пироженко, ХГС, 96 (1994).
- 4. Н. Н. Зобова, Н. Р. Рубинова, Б. А. Арбузов, Изв. АН СССР, Сер. хим., 2608 (1975).
- 5. P. Molina, A. Lorenzo, E. Allet, *Tetrahedron*, **48**, 4601 (1992).
- P. Molina, E. Allet, A. Lorenzo, P. Lopez-Cremades, I. Rioja, A. Ubeda, M. C. Terencio, M. J. Alcoroz, J. Med. Chem., 44, 1011 (2001).
- 7. R. J. Chorvat, K. A. Prodon, G. W. Adelstein, J. Med. Chem., 28, 1285 (1985).
- 8. В. Н.Фетюхин, М. В. Вовк, Л. И. Самарай, *ЖОрХ*, **19**, 1232 (1983).
- 9. Н. С. Зефиров, В. А. Палюлин, ДАН, 252, 111 (1980).
- 10. В. Н. Фетюхин, А. С. Корецкий, В. И. Горбатенко, Л. И. Самарай, *ЖОрХ*, **13**, 271 (1977).
- 11. В. И. Горбатенко, В. Н. Фетюхин, Л. И. Самарай, ЖОрХ, 12, 2472 (1976).
- 12. В. И. Горбатенко, Ю. И. Матвеев, М. Н. Герцюк, Л. И. Самарай, *ЖОрХ*, **20**, 2543 (1984).
- 13. В. И. Бойко, М. Н. Герцюк, Л. И. Самарай, *ЖОрХ*, 24, 451 (1988).
- 14. Л. И. Самарай, В. И. Бойко, М. Н. Герцюк, ЖОрХ, 26, 745 (1990).
- 15. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *Crystals*, Is.10, Chemical Crystallography Laboratory, Univ. of Oxford, 1996.
- 16. A. C. T. North, D. C. Phillips, F. Scott, F. S. Matheurs, Acta Crystallogr., A24, 351 (1968).
- 17. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Институт органической химии НАН Украины, Киев 02094 e-mail: mvovk@i.com.ua Поступило в редакцию 19.04.2002